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Abstract

Background
The peritumoral region (PTR) of glioblastoma (GBM) appears as a T2W-hyperintensity and is
characterized by microscopic tumor and edema. In�ltrative low grade glioma (LGG) comprises tumor
cells that seem similar to GBM PTR on MRI. The work here explored if a radiomics-based approach can
distinguish between LGG and GBM PTR, which can have future implications on existing treatment
paradigms.

Methods
Patients with GBM and LGG imaged using a 1.5 T MRI were included in the study. Image data from cases
of GBM PTR, and LGG were manually segmented guided by T2W hyperintensity. A set of 91 �rst-order
and texture features were determined from each of T1W-contrast, and T2W-FLAIR, diffusion-weighted
imaging sequences. Applying �ltration techniques, a total of 3822 features were obtained. Different
feature reduction techniques were employed, and a subsequent model was constructed using four
machine learning classi�ers. Leave-one-out cross-validation was used to assess classi�er performance.

Results
The analysis included 42 GBM and 36 LGG. The best performance was obtained using AdaBoost
classi�er using all the features with a sensitivity, speci�city, accuracy, and area of curve (AUC) of 91%,
86%, 89%, and 0.96, respectively. Amongst the feature selection techniques, the recursive feature
elimination technique had the best results, with an AUC ranging from 0.87 to 0.92. Evaluation with the F-
test resulted in the most consistent feature selection with 3 T1W-contrast texture features chosen in over
90% of instances.

Conclusions
Quantitative analysis of conventional MRI sequences can effectively demarcate GBM PTR from LGG,
which is otherwise indistinguishable on visual estimation.

Introduction
Radiomics is an emerging �eld in medicine and oncology involving quantitative feature analysis of high-
quality radiographic images [1, 2]. Radiomics can provide information regarding tumor microenvironment
and spatial, genomic, and proteomic data, which can be linked with prognosis, outcomes, and treatment
response [3]. Magnetic resonance imaging (MRI) is considered the gold standard imaging modality for
the management of central nervous system (CNS) malignancies, and it is particularly useful due to its
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high soft tissue contrast and the availability of different functional sequences, which can aid in tissue
characterization [4]. Radiomic analysis has been widely undertaken in various CNS tumors, including
gliomas, aiding in the differentiation between tumor histologies, grading, genetic pro�ling, and
prognostication [5, 6]. 

Gliomas are a heterogeneous group of tumors arising from glial cells and named after their resemblance
to glial cell lineages such as astrocytoma and oligodendrogliomas and classi�ed into four grades that
characterize biological behavior [7]. For the work here, we refer to grade 2 in�ltrative gliomas as low-grade
glioma (LGG), which typically are identi�ed on MRI as T2-W hyperintense lesions. On MRI, distinct
anatomical compartments can be identi�ed in GBM, including tumor enhancement appearing as
contrast-enhancing regions on T1-W sequences, with a central non-enhancing necrotic core and the
adjacent peritumoural region (PTR) appearing as a T2-Weighted hyperintense area. Although the
structural composition is quite distinct, the radiological appearance of LGG is similar to the PTR of GBM.
In LGG, the areas of T2-W hyperintensity represent tumor, whereas GBM PTR is an admixture of
microscopic in�ltrative tumor and vasogenic edema [8, 9]. 

Our previous work demonstrated a radiomic-based approach from 270 features to categorize individual
voxels in the PTR of GBM on a probabilistic scale to indicate in�ltrative tumor or edema extrapolating
feature characteristics from LGG and BM PTR, respectively [10]. The current work was undertaken to
differentiate the entire region of GBM PTR from LGG, expanding the number of features (3822) using
various �ltration techniques. As opposed to 10 patients with GBM with post-operative MRI  analyzed in
the previous work, in this study, 42 patients with GBM were analyzed using preoperative index MRI. Also,
in the present study, different feature selection techniques (all 270 features were used in the previous
study for modeling) along with four machine learning classi�ers (only support vector machine classi�er
in previous work) were investigated. The radiomics model can be explored in future studies to identify
patches of microscopic disease within the PTR of GBM that can help reduce the clinical target volumes
for radiation rather than treating the entire T2W signal changes. 

Methods
Patient Selection

This retrospective study was approved by the institutional research ethics review board, and the
requirement of obtaining consent was waived. Adult patients (≥ 18 years of age) with IDH-wildtype GBM
and LGG were identi�ed from an institutional database from January 2014 to December 2018, with MRI
data available from two identical scanners. For patients in the GBM cohort, preoperative MRI was used
for analysis, usually undertaken within one week prior to the date of surgery. The LGG cohort included
grade 2 astrocytoma and oligodendroglioma. Patients with high-risk or atypical features on
histopathological evaluation or higher grade features on radiology, like intervening contrast-enhancing
regions, signi�cant T2W heterogeneity, were excluded.   Post-operative scans were included in the study
for the LGG cohort, but patients with prior radiotherapy or chemotherapy were excluded. During
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segmentation, the surgical cavity and tract were manually excluded. Tumors with segments smaller than
1 cm on at least one dimension were excluded from the study.

MRI Protocol

Imaging was acquired on a GE Signa HDxT 1.5T MRI scanner. using an 8-channel head coil (General
Electric Medical Systems, Waukesha, WI, USA) was used. Three sequences were included in the current
study: Gadolinium (Gd) (Gadovist 01 mmol/kg, 10 ml maximum, bolus) enhanced 3D T1-weighted
FSPGR (T1-CE); Gd-enhanced T2 �uid-attenuated inversion-recovery PROPELLOR (T2-FLAIR); and
diffusion-weighted imaging-derived apparent diffusion coe�cient maps (ADC). A single-shot echo-planar
imaging sequence with 3 diffusion directions and a b-value of 1000 s/mm2 was used to obtain diffusion-
weighted images, and ADC maps were reconstructed online using GE’s Functool. The MRI acquisition
parameters are shown in Supplementary Table 1. 

Image Preprocessing and Segmentation

Figure 1 shows the schema used for the current study. The T2-FLAIR and ADC scans were �rst resampled
to the corresponding T1-CE volume to match the �eld-of-view and resolution using the FMIRB Software
Library (FSL) tool FLIRT. A pre-trained arti�cial neural network-based automated method was used for
skull stripping using HD-BET. The extracted brain volumes from the T2-FLAIR scans were rigidly
registered to the corresponding T1-CE volumes using FLIRT. For the ADC scans, the b=0 s/mm2 images
were used for brain extraction and registration with the resulting transformations were applied to the ADC
volumes. Data handling and scripting were performed in Matlab R2018b (The Mathworks, Inc., Natick,
MA, USA). The T1-CE, T2-FLAIR, and ADC volumes were combined into single workspaces for each
patient using the software platform ITK-SNAP (http://www.itksnap.org) for manual segmentation [11].  

Segmentation was carried out manually initially by a radiation oncologist (AD), and all cases were
individually reviewed by a neuroradiologist (PM) and a neuro-radiation oncologist (AS) in order to achieve
�nal consensus. The segments in LGG included the tumor observed as T2-FLAIR hyperintensity, with the
surgical cavity excluded for post-operative cases. In patients with GBM, the PTR was segmented to
include the T2-FLAIR hyperintense region beyond the contrast-enhancing tumor core.  

Normalization & Feature Extraction

Prior to feature extraction, z-score intensity normalization was performed for all images by centering all
pixel intensities within each brain to zero and then dividing by the standard deviation. The normalized
images were then multiplied by 100 and shifted by 300 to ensure that the ±3σmajority of pixel intensities
were non-negative. Fixed bin width (FBW) quantization was used to discretize pixel intensities within each
segment [12, 13]. The FBWs and corresponding bin counts (BC)s for the T1c images was 13 (BCmedian =
52; BCrange = 16-87); for the T2f images was 20 (BCmedian = 27; BCrange = 16-43); and for the ADC images
was 7 (BCmedian = 52; BCrange = 18-124).

http://www.itksnap.org/
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Feature extraction was performed using PyRadiomics software V2.2.0 The feature set included the
following: 18 �rst-order statistical features; 22 gray level co-occurrence matrix (GLCM) features; 16 gray
level size zone (GLSZM) features; 16 gray level run length matrix (GLRLM) features; 5 neighboring gray
tone difference matrix (NGTDM) features; and 14 gray level dependence matrix (GLDM) features.
Additional features were extracted by pre-processing images, either wavelet or Laplacian of Gaussian
(LoG). LoG features were extracted with kernel sizes of 1, 2, 3, 4, and 5 mm. All features were extracted
from the segments in 3D. Pixel intensities outside the segments were set to zero prior to image �ltration
to reduce the effect of contamination. 91 features were derived from un�ltered images, 728 from wavelet
�ltered images and 455 from LoG �ltered images, resulting in 1274 features per modality and a total of
3822 features. A detailed description of the features can be found on the Pyradiomics website
(https://pyradiomics.readthedocs.io/en/latest/features.html). 

Feature Selection & Classi�cation

All model building steps were performed in python using scikit-learn V0.22.2 [14]. Three feature selection
approaches were utilized. Two were �lter-based methods: ANOVA F-Test and minimum redundancy
maximum relevance (mRMR). Recursive feature elimination (RFE), a wrapper-based approach, was also
tested. A linear support vector machine (SVM) classi�er (regularization parameter C = 1) was used as the
base learner, and at each iteration, the 5 least important features were eliminated from the total set until a
pre-determined number of features was returned. For each feature selection method, sets of the top 4
features were included. This threshold was chosen based on the commonly employed rule-of-thumb that
models should be trained on datasets that have at least 10 times as many training samples per class as
the number of features to mitigate over�tting [15]. In order to demonstrate the impact of feature selection
on classi�cation performance, a fourth strategy used no feature reduction i.e. models were trained on all
available features.

In order to prevent data leakage that can be present when the same samples used for feature selection
are again used for model validation, a leave-one-patient-out (LOPO) cross-validation approach was
utilized. This strategy precludes the identi�cation of an “optimal” feature set, as different features can be
selected as the training fold is permuted; however, it reduces the optimistic bias that can impact
radiomics studies that make use of internal validation schemes. In lieu of identifying an “optimal” feature
set, this approach can provide descriptive statistics of the selection frequency of different feature types
and allow a degree of stability assessment with respect to feature selection. Features from the training
data were scaled to zero mean and unit standard deviation at each LOPO iteration and the learned
scaling parameters were applied to the features of the test patient.

Four machine learning classi�ers were investigated in this study: support vector machine with a linear
kernel (SVM); K-nearest neighbors (K-NN); linear discriminant analysis (LDA); and adaptive boosting
using decision stumps as the base learner (AdaBoost). Hyperparameter selection was repeated at each
LOPO cross-validation iteration through grid-search with nested 5-fold cross-validation to maximize
balanced accuracy across the nested cross-validation procedure. For SVM, the range of the regularization
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parameter C was 10-4 to 105 in multiples of 10; for K-NN, the range for the number of neighbors was from
1 to 11 in steps of 1; and for AdaBoost, the range for the number of trees was from 50 to 450 in steps of
100. All other tunable model hyperparameters were left as their default values assigned by scikit-learn
(https://scikit-learn.org/0.22/). LOPO model performance was quanti�ed by accuracy, sensitivity,
speci�city, and the area under the receiver operator characteristic curve (ROC AUC).

Results
A total of 74 patients were included in the analysis, 42 patients with GBM with preoperative scans with 42
tumors, and 32 patients with LGG without high-grade features on imaging with a total of 36 tumors.
Patient characteristics are summarized in Table 1. The median patient age was 62 years for the GBM
cohort (range 46-79) and 41 years for the LGG cohort (range 22-71), with the majority male patients (GBM
28/42, LGG 24/32). Twenty-�ve (n=25) (60%) of the GBM patients were O (6)-methylguanine-DNA
methyltransferase (MGMT) methylated. In the LGG cohort, 25 (69%) of patients had tumors with an
astrocytic lineage, and 11 (31%) had an oligodendrocytic lineage. In the LGG cohort, 27 (75%) were IDH
mutated by immunohistochemistry, and 10 (28%) had 1p/19q co-deletion detected. 

Classi�cation

A heat map of the performance metrics for each combination of feature selection method and classi�er
is presented in Figure 2, and the LOPO ROC curves are shown in Figure 3. Among the three feature
selection methods tested, RFE resulted in the highest ROC AUC for all four classi�ers (0.868-0.916). The
ANOVA F-test method resulted in the lowest accuracy scores for all classi�ers (67.9-70.5). Since feature
selection was performed independently at each LOPO iteration to prevent data leakage, the sets of
selected features varied. With 4 selected features for each of the 74 LOPO iterations, the maximum
number of unique features that could be selected was 296. Supplementary Figure 1 depicts a visual
breakdown of the selected features by type across all LOPO iterations for each feature selection method.
The majority of features selected were from T1-CE sequences (33-44%), followed by ADC (33-39%). The
ANOVA F-test was the most stable method with respect to single patient permutation of the training set
as only 9 unique features were selected, two of which were selected every time. In contrast, mRMR and
RFE were less stable, with 62 and 46 unique features selected, respectively. Heat maps of the 5 most
frequently selected features for each method along with their selection frequencies are shown in Figure 4.
Differences were present between the GBM and LGG cases and are presented on a per case basis.

In the cases of model development without feature selection, i.e. all 3822 features included, the accuracy
of the SVM classi�er matched the highest score when feature selection was applied (83.3%) while LDA
(87.2%) and AdaBoost (88.5%) achieved their highest accuracies. Additionally, the highest ROC AUC for
SVM, LDA, and AdaBoost was obtained when all features were used for training, with AUCs of 0.918,
0.915, and 0.958, respectively. In contrast, the K-NN methodology performed slightly worse in terms of
both accuracy and ROC AUC as compared to the highest performance observed with feature selection.
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Discussion
Radiomics has the potential to integrate clinical information and outcomes with radiology using
computer analytics and lead to the development of novel biomarkers in oncology. The PTR of GBM has
been described as the area around contrast enhancement identi�ed as hyperintense on T2 weighted and
T2-FLAIR MRI sequences[16]. The complex microenvironment in the PTR region contains edema, vascular
alterations, neoplastic cells, astrocytes, oligodendrocytes, in�ammatory cells, microglia, stromal cells,
pericytes [17], as well as GBM stem cells [18]. As approximately 90 percent of recurrences are witnessed
in the PTR region [19], understanding tumor cell heterogeneity and microinvasion of cells in this region
have the potential to impact treatment. Prasanna and colleagues [20] predicted survival outcomes using
the top ten performing radiomic features in the PTR on routine MRI sequences. Despite the radiographic
similarities on conventional MRI sequences, in contrast to GBM PTR, the architecture of LGGs is quite
different. LGGs in�ltrate surrounding brain tissue, but unlike GBM, they lack microvascular endothelial
proliferation, necrosis and exhibit a lower Ki-67 proliferative index [21].

In this study, a radiomics approach using conventional MRI sequences distinguished GBM PTR from LGG
with reasonable performance. Applying well-established classi�ers with three feature selection algorithms
to each of the sequences, T1-CE, T2-FLAIR, and ADC resulted in relatively high levels of discrimination. In
terms of classi�cation accuracy, performance ranged from 67.9% to 88.5% among the various models
and feature selection approaches tested. Interestingly, the highest performing model was AdaBoost
without using feature selection. The ROC AUC was also highest for SVM and LDA when all features were
used for training as compared to models built using only 4 features. These models appear to handle high
dimensional data as regularization and/or relative feature importance are implicit in their design. In
contrast, the K-NN methodology performed worse when feature selection was not used prior to model
training. K-NN strictly computes the distance of samples to its neighbors in the feature space and
therefore assigns no relative importance to different features. When the number of features is large, the
performance of local approaches such as K-NN is known to deteriorate 34, which is encompassed in the
phenomenon referred to as the “curse of dimensionality.”  A large number of features and the limited
number of samples likely contributed to spurious associations between samples, which resulted in good
speci�city (86.1%) but poor sensitivity (69.0%). These results indicate that the risk over�tting attributable
to feature dimension relative to sample size is both model and data-dependent and can be observed
using robust cross-validation.

Distinguishing between LGG tumors and the PTR region of GBM has potential clinical applications.
Previous work had demonstrated a radiomic model could demarcate brain metastasis peritumoural
region (prototype for vasogenic edema) from LGG (prototype for in�ltrative tumor) [10]. The model was
extrapolated on the individual voxels within PTR of GBM to identify areas of microscopic tumor, which
was shown to positively correlate with future areas of recurrence in a proportion of patients. In the
present study, we had included a higher number of patients with GBM using preoperative MRI, a large
number of features were generated, multiple feature selection methods, and four machine learning
classi�ers were used for model development. The current work can be expanded to independently identify
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microscopic disease in the GBM PTR using the LGG-like signature. Also, the radiomics model can be
integrated with the previous work to improve the classi�cation performances and increase the reliability
of a combined model. Some studies have shown the potential improvement in clinical outcomes with
surgical excision of the PTR region in GBM [22, 23], which is currently studied in a Canadian phase 2
randomized trial (NCT04737577). The present study will be particularly important in the preoperative
identi�cation of in�ltrative microscopic disease since the images in the GBM cohort had preoperative MRI
as opposed to post-operative imaging in the previous work. Similarly, identifying areas of in�ltrative
disease within the GBM PTR region can help in individualized radiation planning. Generally, radiation
volumes include large margins empirically to include the entire T2W  hyperintense areas without spatial
information on the microscopic disease, which can lead to increased toxicity. In recent work, the use of
small 5 mm margins beyond the gross tumor and cavity has shown survival outcomes similar to
contemporary clinical trials [24]. The MRI-radiomics model will form an important basis in margin
reduction in patients with GBM to be treated using an MRI-linear accelerator device (MR-LINAC) with GBM
for a prospective phase 2 study of GBM (NCT04726397). Also, by identifying low grade disease within
the PTR, this can allow differential dosing as low grade disease can be effectively treated with doses
ranging from 45-54 Gy in 1.8-2.0 Gy per fraction, and the high grade components can be treated with 60
Gy in.1-8-2.0 Gy/day. This may reduce risks of radiation necrosis and help generating personalized
clinical target volume delineation and dosing.

The work here has some limitations. This was a retrospective study with a limited sample size on one
model of an MRI scanner. Future work can include the standardization of imaging features from different
MRI scanners in order to validate the general applicability of such a model.   Expansion of the study to
include a larger number of patients, incorporating other MRI sequences, and undertaking external
validation approaches will help establish a reliable and reproducible radiomics model in the future.

Conclusion
A radiomics model using routine MRI sequences can discriminate between low grade gliomas and the
glioblastoma peritumoural region with acceptable performance, despite their visual resemblance. The
best results were obtained using an AdaBoost classi�er with an AUC of 0.96 to differentiate between the
two groups.
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 Table 1: Patient and disease charactersistics in the study
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Patient characteristics  

Glioblastoma

Number of patients 42

Number of segments (lesions) 42

Age (years)  

Median (Range)  62 (46-79)

Gender  

Male 28 (67%)

Female 14 (33%)

MGMT (GBM)  

Methylated 25 (60%)

Non-methylated 12 (28%)

Unknown 5 (12%)

Low Grade Glioma

Number of patients 32

Number of segments (lesions) 36

Age (years)  

Median (Range)  41 (22-71)

Gender  

Male 24 (75%)

Female 12 (25%)

Histology (LGG)  

Astrocytoma 25 (69%)

Oligodendroglioma 11 (31%)

IDH status (LGG)  

Mutation 27 (75%)

No mutation 9 (25%)

1p/19q status (LGG)  

Co-deleted 10 (28%)
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No codeletion 21 (58%)

Unknown 5 (14%)

Figures

Figure 1

Schematic of research methodology illustrating initial image registration, segmentation of the areas of
interest in the two cohorts, glioblastoma peritumoral region (GBM PTR) and low-grade glioma (LGG),
image processing, and feature extraction.
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Figure 2

Accuracy, sensitivity, speci�city, and receiver operating characteristic area under curve (ROC AUC)
analyses with four classi�ers, Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), Linear
Discriminant Analysis (LDA), and adaptive boosting (AdaBoost) for all extracted features. Three feature
selection algorithms were applied: ANOVA F-test (F-Test), Minimum Redundancy Maximum Relevance
(mRMR), and Recursive Feature Elimination (RFE).
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Figure 3

Receiver operating characteristic curves for each feature selection method using Support Vector Machine
(SVM), k-Nearest Neighbors (K-NN), Linear Discriminant Analysis (LDA), and adaptive boosting
(AdaBoost).
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Figure 4

Figure 4a shows the heat map of the 5 most frequently selected features for each feature selection
method across 74 iterations of leave-one-patient-out cross-validation. Feature values were scaled from -1
to 1 for visualization. Figure 4b represents the parametric map with quantitative feature values in the
regions of interest (GBM peritumoural region and low grade glioma) for the three most consistently
selected features (all from T1W-contrast sequences) from the F-Test.
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