1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66:683–691.
2. Metter DM, Colgan TJ, Leung ST, Timmons CF, Park JY. Trends in the US and Canadian Pathologist Workforces From 2007 to 2017. JAMA Netw Open 2019;2: e194337.
3. Ivan Damjanov. Robbins Review of Pathology[J]. Modern Pathology, 2000, 13(9):1028–1028.
4. Group C C C W. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version) [J]. Chinese Journal of Cancer Research, 2019, 31(1): 99–116.
5. Sayed S, Lukande R, Fleming KA. Providing Pathology Support in Low-Income Countries. J Glob Oncol 2015; 1:3–6.
6. Komura D, Ishikawa S. Machine Learning Methods for Histopathological Image Analysis. Comput Struct Biotechnol J. 2018; 16:34–42.
7. Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–1567.
8. Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther. 2015 Aug 4;8:2015-22.
9. Veta M, van Diest PJ, Willems SM, et al. (2015). Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20, 237–248.
10. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women with Breast Cancer. JAMA. 2017;318(22):2199–2210.
11. Zhang N, Cai Y X, Wang Y Y, et al. Skin Cancer Diagnosis Based on Optimized Convolutional Neural Network[J]. Artificial Intelligence in Medicine, 2019, 102:101756.
12. Andre Esteva, Brett Kuprel, Roberto A. Novoa, et al, Dermatologist-level classification of skin cancer with deep neural networks, Nature,2017, 542(2): 115–126.
13. Haj-Hassan, H., Chaddad, A., Harkouss, Y., Desrosiers, C., Toews, M., and Tanougast, C. Classifications of Multispectral Colorectal Cancer Tissues Using Convolution Neural Network. J Pathol Inform,2017,8: 1.
14. Sirinukunwattana K, Ahmed Raza SE, Yee-Wah T, Snead DR, Cree IA, Rajpoot NM. Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Trans Med Imaging 2016; 35:1196 − 206.
15. Chaddad A, Tanougast C. Texture Analysis of Abnormal Cell Images for Predicting the Continuum of Colorectal Cancer. Anal Cell Pathol (Amst) 2017; 2017:8428102.
16. Bychkov D, Linder N, Turkki R, et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep 2018; 8:3395.
17. Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLOS Medicine 2019;16:e1002730.
18. Skrede OJ, De Raedt S, Kleppe A, et al. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study. The Lancet, 2020, 395(10221), 350–360.
19. Wang Kuan-Song, Yu Gang, Xu Chao, et al, Accurate Diagnosis of Colorectal Cancer Based on Histopathology Images Using Artificial Intelligence. bioRxiv preprint: 10.1101/2020.03.15.992917.
20. ari CT, Gunduz-Demir C. Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images. IEEE Trans Med Imaging. 2019;38(5):1139–1149.
21. Antti Tarvainen, Harri Valpola, Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results, arXiv preprint arXiv:1703.01780v6
22. I Zeki Yalniz, Herv´e J´egou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale semisupervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019.
23. Shayne Shaw, Maciej Pajak, Aneta Lisowska, Sotirios A. Tsaftaris, Alison Q. ONel, Teacher-student chain for efficient semi-supervised histology image classification, arXiv preprint arXiv:2003.08797v2, 2020.
24. Szegedy C, Wei L, Yangqing J, et al. Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, 7–12 June 2015, 1–9.
25. Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Medicine 2019.
26. Wei JW, Suriawinata A A, Vaickus LJ, et al. (2019). Deep neural networks for automated classification of colorectal polyps on histopathology slides: a multi-institutional evaluation, arXiv preprint arXiv: 1909.12959v2, 2019.