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Abstract
Machine learning tools and techniques were utilised to create a Novel Change Detection Algorithm
(NCDA) as a supplementary quality assurance tool to alert users to potential signi�cant changes in linear
accelerator output using daily measurements.

A prototype model was developed and validated that provides a forecast for the daily dose and indicated
when there is the potential for the output to change beyond what is considered normal daily drift. The
model provided a good �t with the validation dataset used, meaning that trends in daily output were easy
to identify.

The NCDA can be used either daily whereby output data is manually entered from the QA3 user interface,
or on a weekly basis allowing input of the other data which is not traditionally presented on the interface.
The NCDA should serve as a tool to alert users when data is trending out of tolerance and inform of
possible output adjustments, therefore enabling effective allocation of time and resources. 

1. Introduction
The International Commission on Radiation Units and Measurements (ICRU) [1] recommends that
treatments using radiotherapy should deliver dose to patients within ±5% of prescription, and to achieve
this, each step in the dosimetry chain must be performed to high accuracy. A robust quality assurance
(QA) program for linear accelerators (Linacs) should be designed in such a way that users are assured
that the machine characteristics have not deviated from their baseline values to such an extent that
treatments are delivered above recommended thresholds. Further recommendations by AAPM in  TG142
[2] that (Linac) outputs should be measured daily with suggested tolerances of +/-3% of nominal output. 

Daily measurements should be checked and monitored by a Medical Physicist, and when out of tolerance
further action taken to ensure that the result is ‘true’, meaning that there has been a change in machine
output not related to set up issues or daily device calibration issues, as opposed to ‘false’, whereby a
negative result is due to equipment failure or user error. In an instance where a Linac output is found to be
out of tolerance it should be returned into acceptable limits, followed by independent veri�cation
measurements before clinical treatments can resume. Regardless of whether or not the Linac output
requires adjustment, this process of verifying a negative daily result is time consuming, in particular when
it comes to the setting up of equipment accurately for veri�cation and measurement, resulting in the
Linac being out of clinical use whilst the issue is resolved.

Waikato Regional Cancer Centre (WRCC) has 4 beam matched Linacs (Varian TrueBeams, Silhouette and
C-Series) used for delivering therapeutic radiation. Daily output is measured using the Sun Nuclear Daily
QA 3 (DQA3, Sun Nuclear Systems). DQA3 measures radiation using a combination of ionization
chambers and diodes, arranged in a �xed pattern allowing for good reproducibility, whereby a deviation in
daily measurements will reveal changes in beam characteristics. The parameters measured are dose
output, beam symmetry, beam �atness, beam energy, and light/radiation �eld coincidence. These
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parameter measurements are compared to a standard using trend graph analysis in the accompanying
software, which stores measurement results in a database allowing trend analysis and report generation.

The device has been shown to consistently deliver good linearity, reproducibility and results similar in
degree to ionisation chamber measurements, for a period of up to eight months, and routine DQA3
calibrations can improve consistency of the detector [3]. Accuracy of the DQA3 is veri�ed alongside
monthly output measurements done in water tank or solid water using an FC65 farmer or Roos parallel
plate ionisation chambers, as part of routine QA. Measured values of the DQA3 and IC should be within
+/- 0.5% of each other, with DQA3 recalibration done when this fails. 

At WRCC a daily tolerance of +/-3% of nominal is set as the action level. Daily measurements can be
carried out by a Physicist, Technician or Radiotherapist (RT), but data must be analysed and reviewed
daily by the Medical Physicist. Large changes in output over the course of two or more days are �agged
and bought to the attention of the team to determine whether machine output is drifting signi�cantly or
that the QA3 device calibration is drifting. This involves veri�cation and clari�cation using more accurate
and complex methods of ionisation chamber measurements in water or water like medium. If the output
change is veri�ed as true, machine recalibration is carried out and independently veri�ed. 

Daily output measurements have been observed to drift within +/-2% of nominal, the accuracy of which is
dependent on techniques used for measurement and individual department
processes. Published analysis of daily output data shows photon and electron beams tend to have a
rising drift in output constancy and occasional sinusoidal variations in beam �atness and symmetry [4] 
[5].

For this project we examined the feasibility of using predictive modelling on daily QA measurements to
anticipate drifts in Linac output on a day-to-day basis. The bene�t of a system that enables identi�cation
of potential deviation beyond normal performance would allow for proper resource allocation and
reduction in machine downtime and delays.

2. Methodology
2.1: Data modelling, cleaning and behaviour analysis

Historic measurements of daily data using the DQA3 was procured along with monthly output
measurements, re-calibration data and any other recorded machine outputs dating back approximately
six years. These daily measurements, when out of tolerance, can be matched with concurrent data
measurements done using IC and water, furthermore the output of the daily device is directly compared to
an absolute output on a monthly basis, meaning we have a cohesive labelled dataset. This along with the
problem being a time series dataset interfaced at a front end by a user (Physicist) leads us to conclude
that our data can best be presented by a supervised learning problem.
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Since the analysis being carried out here is initially retrospective in nature, anomalous data points known
to and identi�ed by the Physicist shouldn’t be included in the data set used for training and testing.
Known excursions beyond control limits, such as those caused by incorrect equipment set-up or user error
were omitted from the data as the reason for the error was clearly known and its recurrence
limited. Results that were beyond limits, yet due to output drift, machine breakdown or failure were kept in
the dataset and considered a true re�ection of the Linacs output and behaviour. [6] [7]

The different supervised learning algorithms investigated fall into distinct groups of regression and
classi�cation. Regression models will use the data sets to predict the output changes on daily basis, and
classi�cation would be a simple binary answer of yes/ no to signi�cant machine output change. The
different supervised learning models considered and tested for this project are discussed below.

2.2 Cumulative Sum

A cumulative sum (CUSUM) chart plots the cumulative sum of the deviations of subgroup averages from
the set target value. Shifts are detected by comparing them with previously occurred values. In an ideal
case the CUSUM plot varies randomly in the vicinity of zero. CUSUM plots clearly show when the actual
values are away from the set target value of the parameter, which in this case would be the output
tolerance limits de�ned by the Physicist. 

A tabular CUSUM chart accumulates deviations above and below the target value in two separate
variables Upper and lower CUSUM, C+ and C- respectively, which are decided beforehand. When the upper
or lower CUSUM line crosses these limits, the process is considered to have gone out of acceptable
control limits [6]. For this project, they were initially set at ±3%, based on the daily tolerance limits
determined by the department and TG142, when the CUSUM line crosses this limit the machine would be
determined to be out of daily tolerance.

The use of CUSUM charts and statistical process control techniques has been reported elsewhere, with
moderate success in identifying instances of loss in process control in spite of the machine QA data
being within allowable action limits. Concluding that the use of such methods can assist physicists in
identifying early recognition of trends that are likely to lead to future breaches of tolerance [6].

2.3 Linear and Logical Regression and Support Vector Machines

Linear regression models the relationship between the response and one or more independent variables
as a linear equation [8] but with some modi�cations we can use a linear regression model for our data
points as well. The concept is that we can use the dates we have for the maintenances that took in the
past to be used to calculate the number of days between breakdowns. 

Logistic Regression (LR) is used when a dependent variable is binary to describe a relationship between a
discrete dependent variable and one or more independent variables by mapping an underlying function.
The advantages of its use being that it is quite simple to implement, interpret and train compared to some
other more complex algorithms [5]. The use of logistic regression was anticipated have limited use in
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terms of developing a change detection algorithm, however, was used in this project to �t a logistic curve
to the given dataset, and then give an output interpreted as a probability. Support Vector Machine (SVM)
algorithms are generally used for classi�cation modelling, each data point is plotted in n-dimensional
space, n being the number of variables, and used to determine the separating hyperplane between two
different classes or labels. SVMs have a high level of accuracy independent of the dimensionality of the
data when compared to many other algorithms. The use of kernel functions allow addition of linear
classi�ers for data that have non-linear relationships, high levels of accuracy can be achieved for
complex datasets, the downfall being that due to its complexity, the training speed is especially slow with
larger datasets, such as the one being used for this study, however previous work found the use of SVMs
for predictive maintenance had better performance than other algorithms such as k-Nearest Neighbour
(kNN) [9] [10].

Work in logistic regression and support vector machines was completed using Jupyter Notebook and
Google Colab, and the sci-kit learn library in Python.

2.4 Arti�cial Neural Networks

Arti�cial Neural Networks (ANN) consist of several processing nodes (neurons) organised amongst
hidden layers where data is trained to recognise patterns within the dataset, and subsequently sent to the
output layer. The main advantage of the use of ANNs is that is not held back by assumptions of linearity
or variable independence. The major disadvantage is that its performance can be sensitive to the chosen
parameters and magnitude of the hidden layer where data is processed, and its complexity leads to
longer training times [9].  

3. Results
Initial review and analysis of the data showed sinusoidal variations, drifting within +/- 2% of baseline for
daily measurements, and monthly measurements done using water and ion chamber produces much
more consistent doses within 1.5%of baseline, which is similar to results in the literature. Different energy
levels, although acting in similar matter, with daily variations being sinusoidal overtime, never the less
have different variations in daily output  which means that being able to build a generalised model based
off one energy level is not possible, and instead training  data sets would be needed for each individual
energy separately for our machine learning algorithm. These results provided us with an indication of the
tolerances that should be applied to the �nal model in order to account for the random variations in daily
measurements due to a myriad of factors which include: inter user variability, set up variability, actual
output drift and daily device calibration drift, with our �nal implemented software able to distinguish
when an output change is due to these normal �uctuations or when it is indicative of something more. 

Daily QA measurements presents us with sequential time-series data. Furthermore, predictive modelling
used on this data should help predict future drifts in LINACs, and the trends observed allowed for
decisions to be made on the best models to use, the results of which are discussed below. 
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3.1: Cumulative Sum 

The CUSUM model was developed and implemented using a classic algorithm in Python, accounting for
both positive and negative de�ections and programmed to give an alert when the mean of the input
signi�cantly differs from 0 (Equation 1).

Equation 1: Example of a classic CUSUM algorithm to detect positive and negative deviations

Thresholds were adjusted until the algorithm was able to successfully predict an upcoming output
change of signi�cance. Initial threshold used was +/-3%, this being the daily tolerance in use, and
decreased in value until a value was found that best corresponded to an impending signi�cant output
deviation as con�rmed by a corresponding machine output adjustment or DQA3 recalibration.

3.2: Linear Extrapolation

Linear extrapolation was used to forecast output values for small increments with the aim of predicting
small jumps in the dataset. When the jumps between the points were small, taking an average of the
change and doing a linear extrapolation would give a close prediction. This was plotted, and linear
regression used to forecast the number of days before the next output error would occur. In this case, we
used the basic straight-line equation, y=mx+c, which meant we did not expect a highly accurate model at
predicting drifts out of tolerance, however, was anticipated to be used as a starting point, whereby trends
observed, if any, can be used in an ongoing machine learning algorithm.

3.3 Logistic Regression and Support Vector Machines

Treating the problem as a binary classi�cation, where the primary outcomes were an indication of the
output being out of tolerance and assigned a ‘1’ in binary, and ‘0’ was considered all other instances. Its
use was anticipated to be limited for our primary goal; however, was utilised to aid in training the dataset
to classify different labels. Modelling using logistic regression has a low computational training time
making it easier to test using different parameters that are available within the sci-kit learn library. The
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bene�t of Logistic Regression is that is easy to implement and interpret, it does not assume linearity and
gives an output values interpreted as a probability. These models require large datasets for training and
all data points must be independent from one another, and care needed to be taken as dependency can
lead to inaccurately over�tting of the data. 

A SVM was also developed in parallel for binary classi�cation. Different training-test splits were used to
check if there would be any improvements in the accuracy for both models. SVM models reduce the risk
of over-�tting, with high level accuracy for classi�cation, even with datasets with high dimensionality. It
was anticipated that an SVM model could be used to detect anomalies in daily outputs. SVM is good for
outlier detection and cluster problems making it a good potential candidate for a solution to our problem.
The data within the tolerance level can be placed in one region thus data outside tolerance level can be
detected as anomalies. SVMs tend to be more complex algorithms, more di�cult to implement with more
computation required, especially for larger datasets such as ours.

3.4 ANN:  LSTM Neural Network 

A Long Short-Term Memory (LSTM) is a form of arti�cial recurrent neural network used to process long
data sequences making it ideal for the time-series data such as used for this project. These networks
apply a linear matrix operator to a current observation which in our study is the daily output, and hidden
units from a previous time steps which give a resulting linear term serving as an activation function.
Recurrent networks use the same matrix at each time step over multiple steps this feedback loop results
in ‘memory’ in the model, which allows a decision to be made on whether the observed daily drift is
normal or beyond what is expected, indicating underlying issues requiring investigation [11]. A particular
advantage of using the ANN here is the ability to model the erratic changes that occur in the time-series
data. The model was built using Keras instead of sci-kit learn which was previously used, however, the
model still used Google Colab. 

4. Discussion
4.1: CUSUM

The CUSUM algorithm was tested on all other energy levels available and did not show any obvious
trends observed before intervention was required. Results suggest that Medical Physicists intervention
would be required once the dose change was close to 1.6%, despite the tolerance of the DQA3 machine
being 3%. 

Figure 5 shows time series data for 6X. The alarms shown are for when tolerance threshold was
exceeded, set to 2% for this example. After an alarm was set, there was a reset in the cumulative sum that
was monitored noted by the start button. The y-axis shows the amplitude of the dose tolerance 

Figure 6 shows the cumulative sum of all positive and negative changes in the data which depicted
separately. The x-axis shows points labelled in order dating from the start of January 2014 to the end of
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December 2019. The y-axis shows the change between data points on a daily basis.

The CUSUM model required thresholds to be manually determined, then retrospectively analysed to
determine its accuracy, defeating the purpose to develop an algorithm able to provide a prediction based
on the training dataset. CUSUM does have properties making it ideal for its use in change detection
however its application in our �nal model that was limited. The algorithm shows promise as a graphical
tool to help gain insight into the type of trends seen in the changes of dose tolerance levels.

CUSUM has been used in radiotherapy statistical control processes with moderate success elsewhere
[6] [12] [13], and although it didn’t meet the primary goal of this study, it has been shown the potential to
be a valuable tool in assisting physicists in a radiotherapy department if developed further, namely
helping to strike balance between two competing mistakes made when allocating time to quality
assurance procedures being acting when a problem does not exist and 2: not acting when a problem
exists. [12] A potential procedure for using CUSUM in daily QA management is detailed in Figure
7 adapted from[12]

4.2: Linear Extrapolation

The sinusoidal nature of daily outputs over time, as discussed previously, means a linear
representation as a standalone feature will never easily be able to account for output drift changes on a
daily basis, particularly when there is a continual change in the direction of the output shift (being from
positive to negative difference from nominal). Simple linear modelling was not an ideal tool for predicting
daily output trends on a linear accelerator, one such example of where failure occurs is illustrated
in Figure 8 which shows a linear forecast, determined from a sample of 10 points, for 15MeV electrons.
The forecast predicts a value of approximately +1% for the 5-05-2015, if the trend calculated from 14-04-
2015 to 28-04-2015 was linear.

The actual output data is presented in Figure 9 which shows some initial agreement with the linear trend
prediction, however there is a signi�cant decrease (>2%) in output from 4/05/2015 to 5/05/2015. In this
instance there was a signi�cant issue with the machine requiring intervention due to breakdown, which
would be unable to have been forecast using simple linear regression methods. Unpredictable events
such as this lead to substantial under-�tting using linear extrapolation. 

3.3 Logistic Regression and Support Vector Machines

The use of a logistic regression algorithm requires independence between data points, which meant that
when training the model, our data was not treated as a time-series dataset, leading to errors in its
predicted value. There was signi�cant imbalance in the classes used since the data rarely requires any
‘reset’ points. For data in each different energy level, less than 1% of the data points were ‘reset’ points
which meant that the model nearly always predicted that there was no reset required from the validation
sets used. This bias introduced in the training set meant the model always predicted zero, which also
resulted in a false high accuracy as displayed in the confusion matrices below:
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Figure 10 shows the confusion matrix when the class weighting is not changed. The class weighting
parameter penalises mistakes in samples in order to put more emphasis on a particular class. In this
case, there is a much higher frequency of ‘0’ when there is not a ‘reset’ for a data point compared to a ‘1’
when there is a ‘reset’. 

The confusion matrix in Figure 11 shows when the class weighting has been changed to be more
balanced, meaning that the smaller class, which is the ‘reset’ (or ‘1’) class, is replicated until there are as
many samples as there are in the larger class in an implicit manner. When the weighting class is more
balanced, it results in more false negatives, meaning that assigning more importance to the lower smaller
class results in less accuracy. IN both cases the true negatives, ie true predictions are relatively high,
which in turn is due to the bias inherent in the training data.

The SVM developed for binary classi�cation yielded very similar results to Logistic Regression since there
was a large imbalance in the classes being predicted. Different training-test splits were used to check if
there would be any improvements in the accuracy for both models; however this did not lead to any
further promising results. 

There was limited success using either algorithm but using them helped the authors recognise that any
future modelling must be able to support time-series data.

4.4 ANN:  LSTM Neural Network 

The use of an LSTM neural network algorithm provided the best results from the research conducted,
which can be seen from the graph in Figure 12 which shows that the predicted values follow the trend of
the validation set very closely even though there is slight under �tting in the model. This model used 200
epochs, and this means that the entire training dataset is passed forward and backwards through the
neural network 200 times. As the number of epochs for the algorithm increased, the root mean square
error (RMSE) would exponentially decrease. It was found that the RMSE decreased at a much lower rate
at approximately 200 epochs, and there was no point in running it for any longer. 

The root mean square error is a measure of the difference between the predicted value and the actual
value in the dataset, and it should be minimised as much as possible. 

One of the main drawbacks of the use of the LSTM neural network is that due to its complexity and the
number of epochs that are run, there is a high computational training time required for the algorithm to
build a model. In the future, if re-training is required of the dataset, there must be at least an hour
dedicated to doing so, which is how long it initially took to train the model. The forecast in Figure 12
shows a plausible result for the prediction over the next 30 days however, further ongoing testing will
need to be performed to check the accuracy of this prediction.

5. Conclusion
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Predictive maintenance, using Neural Networks such as LSTM as used in this study, has the potential to
help machine users to avoid unscheduled Linac downtime and unscheduled maintenance.

The authors present a prototype model (NCDA) that was developed and validated which provides a
forecast for the daily output and alerts the user when there is the potential for the output to change
beyond what is considered normal daily drift. The model provided a good �t with the validation dataset
used, meaning that trends in daily outputs were able to be identi�ed using the LSTM method. 

Although we work with a monthly output tolerance of 2% and action level of 3% anything below this falls
to the call and judgement of the Physicist on duty as to whether outputs need to be adjusted based on
individual experience and intuition. Therefore, to predict re-calibration of the LINAC was a mixture of
machine data and human behaviour, and this inconsistency in terms of what the tolerance level for re-
calibration was one of the main challenges faced. Despite this the project has a huge scope in helping
personnel make clinical decisions on whether to proceed with the more resource heavy output calibration
and can reduce unscheduled maintenance.

The NCDA as described here, using a LSTM model as its basis shows promise as a tool for detecting
changes in our daily Linac output measurements beyond that considered normal. Further work and
development could include using more features provided in the original data such as breakdown
occurrences and data available from the daily device such as �atness, symmetry and energy �uctuations.
However, we would need to account for the fact that increasing the number of features we decide to use
increases the layers in the LSTM model, making for a more complex system than the current NCDA tested
here, leading to longer calculation times. Carrying out more research into and combining CUSUM with
other change detection and time series algorithms to detect change, such as a moving average technique,
may or may not give more fruitful results than seen here, however the authors consider the results
presented by NCDA using LSTM to show promise, and will move forward in testing this using other daily
output measurements devices, namely the Machine Performance Check (MPC) by Varian. Furthermore,
automation of data processing and data storage so we don’t have to manually add data points and
making use of JSON �les for storage can be used in creating dashboards with visual representation of
the data and machine behaviour which has the potential to make for a more user-friendly experience.
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Figure 1

Daily Measurements of 6MV showing % difference from nominal
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Figure 2

6MeV electron daily output variations
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Figure 3

Monthly Output measurements for 6mv photons

Figure 4

6MeV monthly output variation
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Figure 5

Time series data with detected changes (Alarms) and Resets (Start)

Figure 6

Time series of cumulative sums of positive and negative changes.
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Figure 7

Potential for use of CUSUM to monitor daily performance processes of QA
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Figure 8

Linear Forecast of 15MeV (Dotted line) modelled from previous results (solid line).

Figure 9
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Actual daily results for 15MeV over a 7 day period

Figure 10

Confusion matrix for 15MeV with no class weighting used

Figure 11

Confusion matrix for 15 MeV with equal weighting
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Figure 12

Daily dose prediction for 15MeV
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Figure 13

30 Day forecast for 15MeV using LSTM
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