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Abstract 1 

 2 

Purpose 3 

Transport of secretory immunoglobulin A (sIgA) through the airway epithelial cell barrier into the mucosal lumen 4 

by the polymeric immunoglobulin receptor (pIgR) is an important mechanism of respiratory mucosal host defense. 5 

Identification of immunomodulating substances that regulate secretory immunity might have therapeutic 6 

implications with regard to an improved immune exclusion. 7 

Thus, we sought to analyze secretory immunity under homeostatic and immunomodulating conditions in different 8 

compartments of the murine upper and lower respiratory tract (URT&LRT). 9 

 10 

Methods 11 

Pigr gene expression in lung, trachea and nasal-associated lymphoid tissue (NALT) of germ-free mice, specific-12 

pathogen-free mice, mice with an undefined microbiome as well as LPS- and IFN-γ-treated mice was determined 13 

by quantitative real-time RT-PCR. IgA levels in bronchoalveolar lavage (BAL), nasal lavage (NAL) and serum 14 

were determined by ELISA. LPS- and IFN-γ-treated mice were colonized with Streptococcus pneumoniae and 15 

bacterial CFUs were determined in URT and LRT. 16 

 17 

Results 18 

Respiratory Pigr expression and IgA levels were dependent on the degree of exposure to environmental microbial 19 

stimuli. While immunostimulation with LPS and IFN-γ differentially impact respiratory Pigr expression and sIgA 20 

in URT vs. LRT, only prophylactic IFN-γ treatment reduces nasal colonization with S. pneumoniae. 21 

 22 

Conclusion 23 

Airway-associated secretory immunity can be partly modulated by exposure to microbial ligands and 24 

proinflammatory stimuli. Prophylactic IFN-γ-treatment significantly improves antibacterial immunity in the URT.  25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

Key words: secretory immunity, respiratory tract, polymeric immunoglobulin receptor, immune modulation, 39 

infection  40 
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Introduction 1 

 2 

Airway epithelial cells (AECs) constitute the first line of defense against respiratory pathogens. They express 3 

transmembrane proteins, which form tight junctions that allow only small ions or water to traverse paracellularly 4 

[1]. Claudin and occludin are vital for epithelial defense [2] and altered claudin expression affects airway epithelial 5 

barrier function [3, 4]. Furthermore, AECs constitutively secrete antimicrobial proteins, complement factors and 6 

cytokines and rapidly mount antimicrobial immune responses upon inflammatory and infectious stimuli [5-9]. 7 

Importantly, AECs have a central function in antibody-mediated mucosal immunity. Multimeric IgA and IgM are 8 

actively transported through AECs via the polymeric immunoglobulin receptor (PIGR) and are secreted into the 9 

mucosal lumen as secretory immunoglobulins (sIgs) [10]. Especially sIgA is known to prevent pathogen adhesion, 10 

thus averting microbial infiltration [11]. Moreover, sIgA plays a crucial role in the regulation of Streptococcus 11 

pneumoniae nasal colonization in mice [12]. 12 

In this context, Pigr-deficiency manifests in susceptibility to mycobacterial respiratory infections [13] and 13 

development of a COPD-like phenotype driven by an altered lung microbiome and bacterial invasion of the airway 14 

epithelium [14]. The importance of sIgA for airway homeostasis is furthermore highlighted by the findings of sIgA 15 

deficiency in small airways of COPD patients, which is associated with persistent inflammation and airway wall 16 

remodeling [15]. Moreover, chronic airway diseases reduce PIGR-expression in the bronchial epithelium resulting 17 

in increased disease severity (COPD) and impaired sIgA-mediated mucosal defense (asthma) [16, 17]. While the 18 

key role of PIGR and secretory immunity for airway homeostasis is undisputable, knowledge on their expression 19 

and regulation in the airways is still fragmentary. Since targeted modulation of secretory immunity represents an 20 

interesting option to improve immune exclusion of respiratory pathogens, we here aimed to further dissect PIGR-21 

mediated immunity in the airways with the specific focus on the applicability of exogenous and endogenous stimuli 22 

to regulate this aspect of humoral antimicrobial defense.  23 
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Methods 1 

Mice 2 

BALB/c and C57BL/6J mice (age: 11-46 weeks) were maintained in individually ventilated cages (IVCs) under 3 

specific pathogen-free (SPF) conditions at the Helmholtz Centre for Infection Research (HZI), Braunschweig. 4 

Germ-free mice (C57BL/6N, age: 10 weeks) were bred and maintained in isolators in a germ-free (GF) facility 5 

(HZI). C57BL/6J mice with an undefined microbiome (maintained in open cages, age: 10-18 weeks) were provided 6 

by Dirk Schlüter (Otto-von-Guericke-University [OvGU], Magdeburg). For pneumococcal colonization 7 

experiments female C57BL/6JRj mice (age: 12 weeks) were purchased from Janvier Labs (France) and maintained 8 

in IVCs under SPF conditions (OvGU).  9 

Treatment with Immunomodulating Substances 10 

BALB/c, C57BL/6J and C57BL/6JRj mice were treated intranasally (i.n.) with LPS (Sigma-Aldrich, Germany), 11 

(10µg/ 25µl PBS or solvent alone) or recombinant murine IFN-γ (Peprotech, Germany), (1µg/ 20µl ddH2O with 12 

5% BSA or solvent alone). BALB/c and C57BL/6J mice were sacrificed 1 or 2 days post treatment. Lung, trachea, 13 

NALT, BAL, NAL and serum were collected. Organs were used for RNA isolation and qPCR. Fluids were used 14 

for ELISA analysis. Blood was collected by cardiac puncture. BAL fluid was collected by flushing the lungs with 15 

1ml PBS via the trachea. The nasopharynx was flushed with 1ml PBS via the trachea, NAL fluid was collected at 16 

the nostrils. 17 

Pneumococcal Infection 18 

Streptococcus pneumoniae serotype 19F (strain BHN100) [18] was provided by Birgitta Henriques-Normark 19 

(Karolinska Institutet, Stockholm). Bacteria were grown in Todd-Hewitt yeast (THY) medium as previously 20 

described [19]. LPS- and IFN-γ-treated C57BL/6JRj mice and control groups were infected i.n. with 108 S. 21 

pneumoniae 19F in 10µl PBS 48h after the first treatment. Mice were sacrificed 18h post infection and lung, 22 

trachea, NALT and nasopharynx were homogenized using a tissue homogenizer (KINEMATICA AG, 23 

Switzerland). Samples were plated onto Columbia blood agar plates (BD Diagnostic Systems, Germany) and 24 

incubated over night at 37°C, 5% CO2. CFU were counted to determine the bacterial burden. 25 

Quantitative Real-Time RT-PCR (qPCR) 26 

RNA was isolated from lung, trachea, NALT and MLE-15 cells using RNeasy Plus Mini Kit (QIAGEN, Germany). 27 

cDNA was synthesized from 1µg of RNA using Oligo dT Primers (Thermo Fisher Scientific, USA), Random-28 

Primers (Thermo Fisher Scientific, USA), dNTP-Mix (10 mM) and SuperScriptTM III Reverse Transcriptase 29 

(Thermo Fisher Scientific, USA). QPCR was performed using the SensiFASTTM SYBR® No-ROX Kit (Bioline, 30 

USA). Temperature profile: 95°C for 2min, 40 cycles at 95°C for 5s, 60°C for 10s and 72°C for 5s. ß-Actin (Actb) 31 

served as reference gene. Primer sequences: Pigr forward: 5‘-GTGCCCGAAACTGGATCACC-3‘, Pigr reverse: 32 

5‘-TGGAGACCCCTGAAAAGACAGT-3‘, Actb forward: 5‘-ACACCCGCCACCAGTTCG-3‘, Actb reverse: 5‘-33 

GTCACCCACATAGGAGTCCTTC-3‘, Cldn-7 forward: 5‘-AGCGAAGAAGGCCCGAATAG-3‘, Cldn-7 34 

reverse: 5‘-AGGTCCAAACTCGTACTTAACG-3‘, Cldn-18 forward: 5‘-GACACCAGATGACAGCAACTTC-35 

3‘, Cldn-18 reverse: 5‘-TTCATCGTCTTCTGTGCGGG-3‘, IgJ forward: 5‘-GCATGTGTACCCGAGTTACC-36 

3‘, IgJ reverse: 5‘-TTCAAAGGGACAACAATTCGG-3‘, CD19 forward: 5‘-CCTGGGCATCTTGCTAGTGA-37 

3‘, CD19 reverse: 5‘-CGGAACATCTCCCCACTATCC-3‘. Expression of target genes in relation to reference 38 

gene was determined using the 2-∆∆CT method.   39 
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Enzyme-Linked Immunosorbent Assay (ELISA) 1 

Relative IgA levels in BAL, NAL and serum were determined by ELISA using a monoclonal rat anti-mouse IgA 2 

capture antibody (Southern Biotech, USA) in combination with a polyclonal rabbit anti-mouse IgA secondary 3 

antibody (Abcam, UK) and a polyclonal swine anti-rabbit, HRPO-linked detection antibody (Dako, UK). 4 

In Vitro Stimulation 5 

MLE-15 cells were cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, USA) supplemented with 6 

4.5g/l glucose, 10% FBS (Biowest, USA) and 1% penicillin/streptomycin (Gibco, USA). 3x105 cells were seeded 7 

in 12-well plates and incubated in 1ml medium over night at 37°C, 5% CO2. Cells were washed using 1ml DMEM 8 

(4.5g/l glucose, no additives). Recombinant murine IFN-γ (Peprotech, Germany) was diluted in DMEM (w/o 9 

additives) and added to the cells. After 24h supernatants were removed, RNA was isolated from the cells and used 10 

for qPCR. 11 

Statistical Analysis 12 

Statistical analyses were performed either by two-tailed, unpaired t-test (Gaussian distribution, two groups), Mann-13 

Whitney test (no Gaussian distribution, two groups), one-way ANOVA (Gaussian distribution, more than two 14 

groups) or Kruskal-Wallis test (no Gaussian distribution, more than two groups) using GraphPad Prism software 15 

(GraphPad Software Inc., USA, Version 5.04).  16 
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Results 1 

In order to determine differences in Pigr gene expression in the upper (URT) and lower respiratory tract (LRT) 2 

and its dependency on genetic background and sex, we initially compared Pigr expression patterns in commonly 3 

used mouse strains and different sexes. BALB/c (Fig. 1a) as well as C57BL/6J mice (Fig. 1b) exhibit highest Pigr 4 

expression in the trachea, followed by nasal-associated lymphoid tissue (NALT) and lung. While pulmonary Pigr 5 

expression levels were relatively constant, higher variations were detected in trachea and NALT. Moreover, 6 

comparative analyses of Pigr expression in BALB/c vs. C57BL/6J mice (Fig. S1a) and male vs. female C57BL/6J 7 

mice (Fig. S1b) revealed no significant differences. Together, these data demonstrate marked tissue-specific 8 

differences in Pigr gene expression, which were however independent of genetic background and sex.  9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

Fig. 1 Basal Pigr expression in the airways RNA from lung tissue, trachea and nasal-associated lymphoid tissue (NALT) of 17 

(a) BALB/c mice and (b) C57BL/6J mice was isolated and reversely transcribed into cDNA. Pigr expression was assessed by 18 

qPCR. Actb served as reference gene (data for individual mice are graphed; mean is indicated by horizontal line; ** for p ≤ 19 

0.01; *** for p ≤ 0.001).  20 

To determine, whether Pigr expression and secretory immunity in the airways were influenced by microbial 21 

exposure we compared germ-free (GF) mice (no microbial exposition), SPF mice (IVCs, exposition to a limited 22 

microbial flora) and mice with an undefined microbiome (open cage maintenance, highest degree of exposition to 23 

airborne microorganisms). While similar Pigr expression levels were observed in the LRT of all three experimental 24 

groups, we detected significantly lower Pigr expression in the NALT of mice with an undefined microbiome 25 

compared to SPF mice (Fig. 2a). In contrast to the unaltered (lung, trachea) or even reduced (NALT) Pigr 26 

expression levels in mice with an undefined microbiome, we detected significantly increased IgA concentration in 27 

the LRT (Fig. 2b) and URT (Fig. 2c) in this group, which was associated with a systemic IgA increase (Fig. 2d). 28 

b 
Pigr gene expression C57BL/6J  

a 
Pigr gene expression BALB/c  



 

7 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

Fig. 2 Pigr expression and secretory immunity in differentially colonized mice RNA from lung tissue, trachea and NALT 10 

of specific pathogen-free (SPF), germ-free (GF) and mice with an undefined microbiome was isolated, reversely transcribed 11 

into cDNA and qPCR analysis was performed (● indicates female, ○ indicates male). (a) Pigr expression normalized to Actb. 12 

Normalized gene expression values of each organ were divided by the mean gene expression of the GF mice for the respective 13 

organ (mean expression values ± SD are graphed). IgA levels were determined in (b) bronchoalveolar lavage (BAL), (c) nasal 14 

lavage (NAL) and (d) serum by semi-quantitative ELISA (data for individual mice are graphed; mean is indicated by horizontal 15 

line; * for p ≤ 0.05; ** for p ≤ 0.01).      16 

Since in the intestine IgA production and Pigr expression are induced by microbial components [20-22] we 17 

investigated whether intranasal (i.n.) treatment of mice with LPS would affect airway Pigr expression and IgA 18 

levels. While Pigr expression in nose and trachea was not affected, we detected significantly increased expression 19 

in lung tissue 48h after LPS treatment (Fig. 3a). Interestingly and in discordance with the increased pulmonary 20 

Pigr expression IgA levels in BAL and NAL fluid significantly decreased after LPS treatment. The amount of IgA 21 

in serum was however not affected (Fig. 3b). We thus speculated that LPS altered the barrier function of AECs, 22 

resulting in a decreased epithelial leakage. Therefore, we analyzed Cldn gene expression in lung and NALT. 23 

However, no significant differences in lung or NALT became apparent upon LPS treatment (Fig. 3c, 3d). 24 

b BAL IgA NAL IgA Serum IgA 

a 
Pigr gene expression 

d c 
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 17 

 18 

Fig. 3 Effect of LPS treatment on airway secretory immunity and epithelial barrier function BALB/c mice were treated 19 

i.n. with 10µg of LPS or solvent alone. 48h post treatment RNA from lung tissue, trachea and NALT was isolated, reversely 20 

transcribed into cDNA and qPCR analysis was performed (● indicates female, ○ indicates male). (a) Pigr expression normalized 21 

to Actb. Normalized Pigr expression values of each organ were divided by the mean Pigr expression of the PBS-treated mice 22 

for the respective organ (mean expression values ± SD are graphed). (b) IgA levels were determined in BAL, NAL and serum 23 

by semi-quantitative ELISA. (c) Cldn18 expression normalized to Actb and (d) Cldn7 expression normalized to Actb 24 

(cumulative data from two experiments; data for individual mice are graphed; mean is indicated by horizontal line; * for p ≤ 25 

0.05; *** for p ≤ 0.001). 26 

Next to LPS, Interferon-γ (IFN-γ) was shown to regulate human PIGR gene expression [23] and we confirmed the 27 

Pigr-inducing potential of this cytokine in murine AECs (Fig. S2). To assess possible effects of IFN-γ on PIGR-28 

mediated secretory immunity in vivo, we analyzed airway secretory immunity in IFN-γ treated mice. While IFN-29 

γ did not affect Pigr expression after 48h (Fig. 4a), the amount of pulmonary IgA increased after IFN-γ treatment. 30 

IgA levels in NAL and serum were however unaffected (Fig. 4b). We tested whether epithelial leakage might 31 

underlie the increased IgA levels by measuring Cldn gene expression in lung and NALT. Cldn gene expression 32 

was however not affected by single IFN-γ treatment (Fig. 4c, 4d). To investigate whether increased pulmonary 33 

IgA might arise from sIg-producing B cells which were induced by IFN-γ, we determined gene expression of the 34 

joining chain (IgJ) of multimeric IgA and IgM in lung and NALT. Nevertheless, airway IgJ expression was 35 

unaltered upon cytokine treatment (Fig. 4e, 4f), indicating that increased airway IgA levels are most likely not due 36 

to an IFN-γ-mediated increase of sIg-producing B cells.  37 

c 
Lung Cldn18 gene expression NALT Cldn7 gene expression 

b 
BAL IgA NAL IgA Serum IgA 

a 

d 

Pigr gene expression 
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 14 

 15 

 16 

 17 

 18 

 19 

Fig. 4 Effect of IFN-γ treatment on secretory immunity, epithelial barrier function and B cells BALB/c and C57BL/6J 20 

mice were treated i.n. with 1µg of IFN-γ or solvent alone. Lung, trachea and NALT were removed on d1 or d2 post treatment, 21 

RNA was isolated, reversely transcribed into cDNA and qPCR analysis was performed. (a) Pigr expression normalized to Actb. 22 

Normalized Pigr expression values of each organ were divided by the mean Pigr expression of the PBS-treated group for the 23 

respective organ (mean expression values ± SD are graphed). (b) IgA levels were determined in BAL, NAL and serum by semi-24 

quantitative ELISA. (c) Cldn18 expression normalized to Actb, (d) Cldn7 expression normalized to Actb and (e) + (f) IgJ gene 25 

expression normalized to Actb and CD19 (cumulative data from two experiments; data for individual mice are graphed; mean 26 

is indicated by horizontal line; ** for p ≤ 0.01).    27 

We finally tested whether modulation of airway secretory immunity by LPS- and IFN-γ-treatment would 28 

ultimately affect antimicrobial defense. To this end, mice were i.n. treated with a single dose of LPS or IFN-γ. 29 

Two days post treatment mice were inoculated with a colonizing strain of S. pneumoniae serotype 19F and airway 30 

bacterial burden was assessed (Fig. 5a). As expected, no pneumococci were detected in the lung tissue. While LPS 31 

treatment did not affect pneumococcal colonization (Fig. 5b), IFN-γ treatment led to significantly decreased nasal 32 

bacterial burden (Fig. 5c). These results demonstrate that at least in the URT mucosal immunity can be augmented 33 

by prophylactic IFN-γ treatment.  34 

c 
Lung Cldn18 gene expression NALT Cldn7 gene expression 

e 
Lung IgJ gene expression NALT IgJ gene expression 

b 
BAL IgA NAL IgA Serum IgA 

a 

d 

Pigr gene expression 
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 10 

 11 

Fig. 5 Effect of LPS or IFN-γ treatment on pneumococcal colonization in vivo (a) Schematic representation of the 12 

experimental setup. (b) C57BL/6JRj mice were treated i.n. with 10µg of LPS, control mice received PBS only. (c) C57BL/6JRj 13 

mice were treated i.n. with 1µg of IFN-γ, control mice received PBS only. 2 days post treatment all mice were i.n. infected 14 

with 108 CFU of S. pneumoniae 19F and airway bacterial burden was assessed 18h post infection (individual data from one 15 

experiment are graphed; mean is indicated by horizontal line; * for p ≤ 0.05).    16 

 17 

Supplement 18 

 19 

 20 

 21 

 22 

 23 

 24 

Fig. S1 Influence of genetic background and sex on Pigr expression (a) BALB/c vs. C57BL/6J mice and (b) male vs. female 25 

C57BL/6J mice. RNA from lung tissue, trachea and NALT of BALB/c and C57BL/6J mice was isolated and reversely 26 

transcribed into cDNA. Pigr expression was assessed by qPCR. Actb served as reference gene (data for individual mice are 27 

graphed; mean is indicated by horizontal line; n.s.: not significant). 28 

 29 

 30 

 31 

 32 

 33 

c b 
CFU 

d2 d3 

LPS/IFN-γ treatment  

(i.n., PBS control group) 

colonization S. pneumoniae 

19F (i.n., 108 CFU) 

assessment of airway 

bacterial burden 

d0 

a 

CFU 

Pigr gene expression C57BL/6J  
b a 

Pigr gene expression 
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 8 

Fig. S2 Pigr expression in IFN-γ treated MLE-15 cells Murine lung epithelial (MLE-15) cells were treated with 1, 10, 100 9 

or 1000ng of IFN-γ in 1ml medium or medium alone for 24h. RNA was isolated and reversely transcribed into cDNA. Pigr 10 

expression was assessed by qPCR analysis. Actb was used as reference gene (cumulative data from two experiments; data for 11 

individual cell culture wells are graphed and mean is indicated by horizontal line; *** for p ≤ 0.001).  12 

Pigr gene expression 
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Discussion 1 

 2 

Previous studies on airway Pigr gene and PIGR protein expression mainly employed in vitro approaches [24, 25] 3 

or utilized tissue from patients with chronic respiratory diseases [16, 26-28]. Murine studies were either analyzing 4 

respiratory Pigr expression in the context of interleukin treatment [29, 30] or exposition to pathogen-associated 5 

molecules (Cholera toxin, amoeba lysates) [31]. These studies revealed that PIGR/Pigr expression is considerably 6 

influenced by exogenous and endogenous stimuli present in the airway microenvironment. 7 

To our knowledge, we are first to report compartment-specific and sex-independent differences in basal airway 8 

Pigr gene expression levels in vivo. We observed that BALB/c as well as C57BL/6J mice showed highest Pigr 9 

expression in trachea, followed by NALT and lung. We speculate, that this originates from inherent differences in 10 

microbial density. Due to their anatomical localization, trachea and nasal cavities are more frequently exposed to 11 

microbial stimuli compared to the lung [32]. Most likely, a higher abundance of microbial ligands in the murine 12 

URT provides more signals triggering Pigr gene expression compared to the LRT, as well.  13 

This in turn might prevent bacterial spread from URT to LRT contributing to the relatively low bacterial density 14 

in the lung. However, as we assessed whole-tissue Pigr gene expression, we cannot fully exclude the possibility 15 

that signal dilution effects (e.g. from leukocytes) affect compartment-specific Pigr expression in our analyses. 16 

Commensal intestinal bacteria induce the production of IgA in mice [20]. Furthermore, it is known that lymphocyte 17 

numbers in nasal mucosa are dependent on housing conditions and exposure to microbial stimuli [33]. While those 18 

findings clearly highlight the impact of the microbiota on lymphocyte-associated mucosal immunity, the 19 

relationship between airway-associated secretory immunity and the level of microbial exposition is largely 20 

unknown. Our experiments revealed that Pigr expression was significantly lower in NALT of mice with an 21 

undefined microbiome (highest microbial exposure) compared to mice maintained under SPF conditions. 22 

Interestingly, this finding was linked to higher airway and systemic IgA levels in these mice. As fecal IgA levels 23 

depend on the composition of the intestinal microflora [34], it is conceivable that a similar effect might be present 24 

in murine airways. 25 

The fact that Pigr expression in NALT is reduced while IgA levels are increased seems to be contradictory. 26 

However, we did not analyze Pigr expression exclusively in stromal cells but in whole tissue. Since it was shown 27 

that the microbial environment shapes cell composition in the mucosa, it is possible that an accumulation of 28 

leukocytes in mice with a high microbial exposure reduces the overall Pigr signal.  29 

Previous studies revealed that human and murine intestinal epithelial cells exhibit increased Pigr/PIGR gene 30 

expression after LPS stimulation in vitro [22, 35, 36]. In line with this, we detected significantly increased 31 

pulmonary Pigr expression after LPS treatment. However, we also found that LPS did not alter overall Pigr 32 

expression in trachea or NALT. This might arise from the fact that bacterial colonization - and therefore exposure 33 

to e.g. LPS - is more pronounced in the URT [32], resulting in a lower sensitivity of URT airway stromal cells to 34 

LPS. In contrast to this result, airway IgA levels were decreased in LPS-treated mice, while systemic IgA levels 35 

were unaffected. We hypothesized that decreased IgA levels resulted from decreased epithelial leakage and tested 36 

this by determining Cldn18 and Cldn7 expression. Claudins are major proteins that maintain epithelial barrier 37 

function and altered claudin expression results in altered AEC barrier function in the LRT (Cldn18) and URT 38 

(Cldn7) [2-4]. However, Cldn18 and Cldn7 expression was not affected by LPS, which disconfirmed our 39 

hypothesis. Since IgA binds LPS [37], it is possible that the administered LPS was already bound to IgA in the 40 

mucosal lumen. This might reduce the amount of detectable IgA, as the ELISA detects free IgA molecules with 41 

the highest functionality. 42 

As LPS, IFN-γ induces PIGR expression in human epithelial cells [23, 38, 39], however its effect on Pigr and 43 

secretory immunity in vivo has not been addressed before. Despite no effect on airway Pigr expression, IFN-γ 44 

treatment increased pulmonary IgA levels. As Cldn expression was unaltered, we hypothesized that increased IgA 45 

concentrations after IFN-γ treatment might arise from mucosal B cells. Yet, airway IgJ expression was not affected, 46 

which suggests that activated B cells are most likely not the cause of increased airway IgA levels following IFN-47 

γ stimulation. As mentioned before, we analyzed Pigr gene expression in tissues and not exclusively in stromal 48 

cells. It is known that intradermal IFN-γ injection stimulates intradermal lymphocyte migration in rats [40]. Thus, 49 

it is conceivable that i.n. IFN-γ treatment leads to the accumulation (and activation) of lymphocytes in the airways 50 

as well, which might reduce net Pigr expression. 51 

As IgA is crucial for antimicrobial defense [15, 41-43], we investigated whether altered IgA levels upon LPS- and 52 

IFN-γ-treatment correlated with altered antimicrobial immunity. We have chosen S. pneumoniae for experimental 53 

colonization of mice as it is one of the most relevant respiratory pathogens [44] and IgA is vital for antagonizing 54 

pneumococcal colonization and infection in vivo and in vitro [12, 45-47]. Indeed, prophylactic IFN-γ-treatment 55 

significantly reduced nasal pneumococcal counts indicating improved antibacterial immunity. Since IFN-γ triggers 56 

antibacterial activity in pulmonary macrophages [48] and macrophages are present in the murine NALT [49], it is 57 

conceivable that IFN-γ induces antibacterial activity in these cells as well. IFN-γ triggers the production of 58 

antibacterial molecules (e.g. β-defensins) [50]. Future studies will clarify whether IFN-γ-stimulated production of 59 

these antibacterial factors underlies the improved mucosal immunity in the URT.  60 
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In conclusion, our study demonstrates that Pigr and secretory immunity in URT and LRT are regulated by 1 

endogenous as well as exogenous stimuli. Further studies are needed to elucidate the underlying molecular 2 

frameworks as well as possible avenues for e.g. prophylactic enhancement of airway mucosal immunity in 3 

infection-prone individuals. 4 

 5 
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