1.Broun P: Transcription factors as tools for metabolic engineering in plants. Current opinion in plant biology 2004, 7(2):202–209.
2.Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P et al: Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA research: an international journal for rapid publication of reports on genes and genomes 2003, 10(6):239–247.
3.Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP: Tobacco transcription factors: Novel insights into transcriptional regulation in the Solanaceae. Plant physiology 2008, 147(1):280–295.
4.Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP: Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Research 2011, 18(4):263–276.
5.Fang Y, You J, Xie K, Xie W, Xiong L: Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics 2008, 280(6):547–563.
6.Peng X, Zhao Y, Li X, Wu M, Chai W, Sheng L, Wang Y, Dong Q, Jiang H, Cheng B: Genomewide identification, classification and analysis of NAC type gene family in maize. J Genet 2015, 94(3):377–390.
7.Wang N, Zheng Y, Xin H, Fang L, Li S: Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant cell reports 2013, 32(1):61–75.
8.Liu T, Song X, Duan W, Huang Z, Liu G, Li Y, Hou X: Genome-Wide Analysis and Expression Patterns of NAC Transcription Factor Family Under Different Developmental Stages and Abiotic Stresses in Chinese Cabbage. Plant Molecular Biology Reporter 2014, 32(5):1041–1056.
9.Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G: Comprehensive Analysis of NAC Domain Transcription Factor Gene Family in Populus trichocarpa. BMC Plant Biology 2010, 10(1):145.
10.Kadier Y, Zu Y-y, Dai Q-m, Song G, Lin S-w, Sun Q-p, Pan J-b, Lu M: Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench]. Plant Growth Regulation 2017, 83(2):301–312.
11.Ling L, Song L, Wang Y, Guo C: Genome-wide analysis and expression patterns of the NAC transcription factor family in Medicago truncatula. Physiology and molecular biology of plants: an international journal of functional plant biology 2017, 23(2):343–356.
12.Zhuo X, Zheng T, Zhang Z, Zhang Y, Jiang L, Ahmad S, Sun L, Wang J, Cheng T, Zhang Q: Genome-Wide Analysis of the NAC Transcription Factor Gene Family Reveals Differential Expression Patterns and Cold-Stress Responses in the Woody Plant Prunus mume. Genes 2018, 9(10).
13.Zhang Y, Li D, Wang Y, Zhou R, Wang L, Zhang Y, Yu J, Gong H, You J, Zhang X: Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum. PloS one 2018, 13(6):e0199262.
14.Ahmad M, Yan X, Li J, Yang Q, Jamil W, Teng Y, Bai S: Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears. 2018, 18(1):214.
15.Zhang H, Kang H, Su C, Qi Y, Liu X, Pu J: Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry. PloS one 2018, 13(6):e0197892.
16.Liu M, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H: Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum). BMC genomics 2019, 20(1):113.
17.Olsen AN, Ernst HA, Leggio LL, Skriver K: NAC transcription factors: structurally distinct, functionally diverse. Trends in plant science 2005, 10(2):79–87.
18.Wang XE, Basnayake B, Zhang HJ, Li GJ, Li W, Virk N, Mengiste T, Song FM: The Arabidopsis ATAF1, a NAC Transcription Factor, Is a Negative Regulator of Defense Responses Against Necrotrophic Fungal and Bacterial Pathogens. Molecular Plant 2009, 22(10):1227–1238.
19.Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB: The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant molecular biology 2007, 65(1–2):137–150.
20.Jun Z, Kevin AF, John LVH, Rajeev G, Nick M, Jindong S, William BA, Yang W, Benjamin W, Hua M et al: Identification and characterization of a novel stay-green QTL that increases yield in maize. Plant biotechnology journal 2019.
21.Zhang L-M, Leng C-Y, Luo H, Wu X-Y, Liu Z-Q, Zhang Y-M, Zhang H, Xia Y, Shang L, Liu C-M: Sweet Sorghum Originated through Selection of Dry, a Plant-Specific NAC Transcription Factor Gene. PLANT CELL 2018, 30(10):2286–2307.
22.Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M: NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 2007, 19(1):270–280.
23.Lira BS, Gramegna G, Trench BA, Alves FRR, Silva EM, Silva GFF, Thirumalaikumar VP, Lupi ACD, Demarco D, Purgatto E et al: Manipulation of a Senescence-Associated Gene Improves Fleshy Fruit Yield. Plant physiology 2017, 175(1):77.
24.Ma X, Zhang Y, Turečková V, Xue G-P, Fernie AR, Mueller-Roeber B, Balazadeh S: The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato. Plant physiology 2018, 177(3):1286.
25.Nogueira FTS, Schlögl PS, Camargo SR, Fernandez JH, De Rosa VE, Pompermayer P, Arruda P: SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Science 2005, 169(1):93–106.
26.Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J et al: Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature genetics 2018, 50(11):1565–1573.
27.Holub EB: The arms race is ancient history in Arabidopsis, the wildflower. Nature reviews Genetics 2001, 2(7):516–527.
28.Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A: Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. The Plant journal: for cell and molecular biology 2007, 50(4):574–585.
29.Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR et al: The developmental dynamics of the maize leaf transcriptome. Nature genetics 2010, 42(12):1060–1067.
30.Lu P-L, Chen N-Z, An R, Su Z, Qi B-S, Ren F, Chen J, Wang X-C: A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant molecular biology 2007, 63(2):289–305.
31.Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA: SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biology 2011, 11(1):173.
32.Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M: The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 2005, 17(11):2993–3006.
33.Zhong R, Demura T, Ye ZH: SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 2006, 18(11):3158–3170.
34.Sanjari S, Shirzadian-Khorramabad R, Shobbar Z-S, Shahbazi M: Systematic analysis of NAC transcription factors’ gene family and identification of post-flowering drought stress responsive members in sorghum. Plant cell reports 2019, 38(3):361–376.
35.Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S: Genome-wide analysis of NAC transcription factor family in rice. Gene 2010, 465(1):30–44.
36.Ning Y-Q, Ma Z-Y, Huang H-W, Mo H, Zhao T-t, Li L, Cai T, Chen S, Ma L, He X-J: Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic acids research 2015, 43(3):1469–1484.
37.Lee S, Seo PJ, Lee HJ, Park CM: A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. The Plant journal: for cell and molecular biology 2012, 70(5):831–844.
38.Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R: The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant Journal 2005, 43(5):745–757.
39.Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P: The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 2006, 18(11):2929–2945.
40.Agata B, Magdalena Rs-S, Dorota B-W, Agnieszka P, Mitsuhiro A, Dorota K: The CUP-SHAPED COTYLEDON2 and 3 genes have a post-meristematic effect on Arabidopsis thaliana phyllotaxis. Annals of botany 2015, 115(5):807–820.
41.Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M: Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell 1997, 9(6):841–857.
42.Souer E, vanHouwelingen A, Kloos D, Mol J, Koes R: The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 1996, 85(2):159–170.
43.Zhong R, Richardson EA, Ye ZH: Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 2007, 225(6):1603–1611.
44.Hont AD, Grivet L, Feldmann P, Glaszmann JC, Rao S, Berding N: Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Molecular and General Genetics 1996, 250(4):405–413.
45.Raman S, Greb T, Peaucelle A, Blein T, Laufs P, Theres K: Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant Journal 2008, 55(1):65–76.
46.Podzimska-Sroka D, O’Shea C, Gregersen PL, Skriver K: NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops. Plants (Basel) 2015, 4(3).
47.Mohammed N, Akhter Most S, Kouji S, Ali M, Ramiah V, Rachid S, Arvind K, Hei L, Kotb A, Shoshi K: Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64. Molecular genetics and genomics 2012, 287(5):389–410.
48.Chuan-yuan. L, Huai-qing. H, Hai-chun. J: Research Progress on the Stem Juiciness of Sweet Sorghum. Biotechnology Bulletin 2019, 35(5):9–14.
49.Zhang J, Arro J, Chen Y, Ming R: Haplotype analysis of sucrose synthase gene family in three Saccharum species. BMC genomics 2013, 14:314.
50.Hu W, Hua X, Zhang Q, Wang J, Shen Q, Zhang X, Wang K, Yu Q, Lin YR, Ming R et al: New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. 2018, 18(1):270.
51.Wang Y, Hua X, Xu J, Chen Z, Fan T, Zeng Z, Wang H, Hour AL, Yu Q, Ming R et al: Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum. 2019, 20(1):83.
52.Chen C, Xia R, Chen H, He Y: TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv 2018:289660.
53.Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic acids research 2009, 37:W202-W208.
54.Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H et al: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic acids research 2012, 40(7):e49.
55.Ling H, Wu Q, Guo J, Xu L, Que Y: Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative rt-PCR. PloS one 2014, 9(5):e97469.