Adegbeye MJ, Reddy PRK, Obaisi, AI, Elghandour M, Oyebamiji KJ, Salem AZM, Morakinyo-Fasipe OT, Cipriano-Salazar M, Camacho-Díaz LM (2020). Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations-An overview. J Clean Prod 242, p.118319. https://doi.org/10.1016/j.jclepro.2019.118319.
Aebi H (1974) Catalase in vitro. Methods of enzymatic analysis. Elsevier, pp 673-684. https://doi.org/10.1016/S0076-6879(84)05016-3.
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. J Plant Physiol 24, 1. https://doi.org/10.1104/pp.24.1.1.
Assaad N, Fadel D, Argyraki A, Kypritidou Z, Bakir A, Awad, E (2020) Heavy metals Accumulation in the Edible Vegetables of Lebanese Tabbouli Salad. J Agric Sci 12: 155. https://doi.org/10.5539/jas.v12n7p155.
Bali AS, Sidhu GPS, Kumar V, Bhardwaj R (2019) Mitigating cadmium toxicity in plants by phytohormones, Cadmium Toxicity and Tolerance in Plants. Elsevier, pp 375-396. https://doi.org/ 10.1016/B978-0-12-814864-8.00015-2.
Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17: 21-34. https://doi.org/ 10.1590/S1677-04202005000100003.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 248-254. https://doi.org/10.1006/abio.1976.9999.
Chi K, Zou R, Wang L, Huo W, Fan H (2019) Cellular distribution of cadmium in two amaranth (Amaranthus mangostanus L.) cultivars differing in cadmium accumulation. Environ Sci Pollut. Res 26: 22147-22158. https://doi.org/10.1007/s11356-019-05390-w.
Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32: 93-101. https//doi.org/10.1093/jxb/32.1.93.
Fadel D, Assaad N, Hachem A, Argyraki A, Kypritidou Z (2020) Heavy Metals Interaction in Soil-Plant System of Carmagnola cannabis Strain. J Agric Sci 12(7). https//doi.org/ 10.5539/jas.v12n7p163.
Fancy NN, Bahlmann AK, Loake GJ (2016) Nitric oxide function in plant abiotic stress. Plant, Cell & Environment. 40, 462-472. https//doi.org/10.1111/pce.12707.
Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73: 627-650. https://doi.org/10.1021/ac60128a025.
Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int j environ res public health 17: 679. https://doi.org/ 10.3390/ijerph17030679.
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189-198. https://doi.org/ 10.1016/0003-9861(68)90654-1.
Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55: 184-185. https://doi.org/10.1111/j.1365-2621.1990.tb06048.x.
Hossain MA, Bhattacharjee S, Armin S.-M, Qian P, Xin W, Li H-Y, Burritt DJ, Fujita M, Tran LSP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6: 420. https://doi.org/ 10.3389/fpls.2015.00420.
Huang Y, Xi Y, Gan L, Johnson D, Wu Y, Ren D, Liu H (2019) Effects of lead and cadmium on photosynthesis in Amaranthus spinosus and assessment of phytoremediation potential. Int J Phytromedetion 21: 1041-1049.
https://doi.org/ 10.1080/15226514.2019.1594686.
Hussain, A., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Yasmeen, T., Hayat, M.T., Hussain. I., Ali Hussain A, Rizwan M, Rehman Z, Yasmeen T, Hayat MT, Hussain I, Ali Q, Hussain SM (2019) Morphological and physiological responses of plants to cadmium toxicity. In Cadmium Toxicity and Tolerance in Plants, pp. 47-72. Academic Press. https://doi.org/10.1016/S1002-0160(17)60339-4.
Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11: 255-277. https://doi.org/ 10.1039/c8mt00247a.
Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer Science and Business Media. https://doi.org/10.1007/978-3-540-32714-1.
Kaya C, Akram NA, Sürücü A, Ashraf M (2019) Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Sci Hortic 255: 52-60. https://doi.org/10.1016/j.scienta.2019.05.029.
Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiol Plant 168: 345-360. https://doi.org/10.1111/ppl.13012.
Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, Bach Q-V, Kamyab H, Khan SA, Yadav S (2019) Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches-A review. Environ Res 179: 108792. https://doi.org/ 10.1016/j.envres.2019.108792.
Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1.
Marques DN, Carvalho MEA, Piotto FA, Batagin-Piotto KD, Nogueira ML, Gaziola SA, Azevedo RA ( 2019) Antioxidant defense response in plants to cadmium stress. In Cadmium Tolerance in Plants, pp. 423-461. Academic Press. https://doi.org/ 10.1016/B978-0-12-815794-7.00016-3.
Munawar A, Akram NA, Ahmad A, Ashraf M (2019) Nitric oxide regulates oxidative defense system, key metabolites and growth of broccoli (Brassica oleracea L.) plants under water limited conditions. Sci Hortic 254: 7-13. https://doi.org/10.1016/j.scienta.2019.04.072.
Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126: 245-255.
https://doi.org/10.1016/j.ecoenv.2015.12.026.
Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ (2019) Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environ Exp Bot 161: 41-49. https://doi.org/10.1016/j.envexpbot.2018.10.033.
Rai PK, Lee SS, Zhang M, Tsang YF, Kim K-H (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 125: 365-385. https://doi.org/10.1016/j.envint.2019.01.067.
Riasat M, Kiani S, Saed-Mouchehsi A, Pessarakli M (2019) Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition. J Plant Nutr 42: 111-126. https://doi.org/10.1080/01904167.2018.1549675.
Rizwan M, Mostofa MG, Ahmad MZ, Imtiaz M, Mehmood S, Adeel M, Dai Z, Li Z, Aziz O, Zhang Y (2018) Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression. Chemosphere 191: 23-35. https://doi.org/10.1016/j.chemosphere.2017.09.068.
Saed-Moucheshi A, Pakniyat H, Pirasteh-Anosheh H, Azooz MM (2014) Role of ROS as signaling molecules in plants, Oxidative damage to plants. Elsevier, pp 585-620. https://doi.org/ 10.3389/fpls.2019.00800.
Shanmugaraj, B.M., Malla, A., Ramalingam, S (2019) Cadmium stress and toxicity in plants: an overview, Cadmium toxicity and tolerance in plants. Elsevier, pp 1-17.https://doi.org/ 10.1016/B978-0-12-814864-8.00001-2.
Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B, Sidhu GPS, Bali AS, Asgher M, Bhardwaj R (2020) Nitric oxide‐mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiol Plant 168: 318-344. https://doi.org/10.1111/ppl.13004.
Subiramani S, Sundararajan S, Sivakumar HP, Rajendran V, Ramalingam S (2019) Sodium nitroprusside enhances callus induction and shoot regeneration in high value medicinal plant Canscora diffusa. Plant Cell, Tissue and Organ Culture 139: 65-75. https://doi.org/ 10.1007%2Fs11240-019-01663-x.
Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151: 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1.
Villafort Carvalho MT, Amaral DC, Guilherme LRG, Aarts MGM (2013) Gomphrena claussenii, the first South-American metallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance. Front Plant Sci 4: 180. https://doi.org/10.3389/fpls.2013.00180.
Watanabe T, Murata Y, Osaki M (2009) Amaranthus tricolor has the potential for phytoremediation of cadmium‐contaminated soils. Commun Soil Sci Plant Ana 40: 3158-3169. https://doi.org/ 10.1080/00103620903261676.
Zhong Q, Ma C, Chu J, Wang X, Liu X, Ouyang W, Lin C, He M (2020) Toxicity and bioavailability of antimony in edible amaranth (Amaranthus tricolor Linn.) cultivated in two agricultural soil types. Environ. Pollut 257: 113642.
https://doi.org/10.1016/j.envpol.2019.113642.
Zhu H, Ai H, Hu Z, Du D, Sun J, Chen K, Chen L (2020) Comparative transcriptome combined with metabolome analyses revealed key factors involved in nitric oxide (NO)-regulated cadmium stress adaptation in tall fescue. BMC Genomics 21: 1-13. https://doi.org/ 10.1186/s12864-020-07017-82.
Zou R, Wang L, Li YC, Tong Z, Huo W, Chi K, Fan H (2020) Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency. Environ Pollut 256: 113410. httpsoi.org/ 10.1016/j.envpol.2019.113410.