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Abstract  

Water distribution systems (WDSs) are used to transmit and distribute water resources in 

cities. Water distribution networks (WDNs) are partitioned into district metered areas (DMAs) 

by water network partitioning (WNP), which can be used for leak control, pollution 

monitoring, and pressure optimization in WDS management. In order to overcome the 

limitations of optimal search range and the decrease of recovery ability caused by two-step 

WNP and fixed DMAs in previous studies, this study developed a new method combining a 

graph neural network to realize integrated WNP and dynamic DMAs to optimize WDS 

management and respond to emergencies. The proposed method was tested in a practical case 

study; the results showed that good hydraulic performance of the WDN was maintained and 

that dynamic DMAs demonstrated excellent stability in emergency situations, which proves 

the effectiveness of the method in WNP. 

Keywords: Water network partitioning, graph neural network, dynamic management, 

emergency situation. 

1. Introduction 

A water distribution network (WDN) is composed of demand nodes and supply pipelines and 

provides water to a city’s residents and industrial facilities. This network is controlled by a 

water distribution system (WDS). Owing to pipe bursts, connection leakages, water theft, and 

other factors, WDNs are susceptible to significant unexpected water consumption (Puust et al. 

2010). The British Water Industry Association proposed the concept of water network 

partitioning (WNP), which divides a WDN into several district metered areas (DMAs) to 

more effectively manage the WDS (W A Association and Centre 1985), an approach which 
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has proven to be of great benefit to the control of water leakage (Taililefond and Wolkenhauer 

2002; A W W Association 2003; Feng and Zhang 2006; Nicolini and Zovatto 2009; Wu et al. 

2016; Azevedo and Saurin 2018). 

Dividing a WDN into several DMAs has many benefits, including but are not limited to 

reducing leakage, reducing the flow of pollution (Grayman et al. 2009; Armando Di Nardo et 

al. 2013; Kirstein et al. 2014; Housh and Ohar 2018; Taormina and Galelli 2018; Ciaponi et 

al. 2019), optimising pressure management (Limited 1999; Gomes et al. 2011; Ferrari et al. 

2014)and helping to repair the water pipe network in emergencies (Scarpa et al. 2016). 

However, WNP has some drawbacks, primarily the associated economic cost, deterioration of 

water quality (Engineering and Committee 1994; Di Nardo and Di Natale 2011) and reduced 

capacity to respond to abnormal situations (Wright et al. 2014 ;Herrera et al. 2016). Further, 

research has shown that the disadvantages of WNP can be overcome by using methods such 

as dynamic DMAs management and other technologies (Wright et al. 2014).  

Normally, WNP is accomplished in two phases: clustering and dividing. The methods and 

concepts applied in the clustering phase include graph theory (Deuerlein 2008; Tzatchkov et 

al. 2008; Giustolisi and Savic 2010; Perelman and Ostfeld 2011; Di Nardo and Di Natale 

2011; Di Nardo et al. 2013; Di Nardo et al. 2014; Ferrari et al. 2014; Alvisi and Franchini 

2014; Campbell et al. 2015; Campbell et al. 2016; Lifshitz and Ostfeld 2018), community 

structure (Diao et al. 2013; Campbell et al. 2014; Ciaponi et al. 2016), modularity-based 

algorithms (Giustolisi and Ridolfi 2014), multi-level partitioning (Di Nardo et al. 2013; Alvisi 

2015; Saldarriaga et al. 2019), spectral graph algorithms (Herrera et al. 2010 Herrera et al. 

2012; Di Nardo et al. 2018) and multi-agent approaches (Izquierdo et al. 2009; Herrera et al. 
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2012; Hajebi et al. 2013). The methods applied in the dividing phase include single-objective 

programming (Di Nardo et al. 2013; Di Nardo et al. 2014; Ferrari et al. 2014; Gilbert et al. 

2017), multiple-objective programming (De Paola et al. 2014; Di Nardo et al. 2015; Zhang et 

al. 2017; Brentan et al. 2017; Giudicianni et al. 2020), iterative methods (Diao et al. 2013; 

Ferrari et al. 2014) and heuristic algorithms (Pesantez et al. 2019). The above methods can 

perform WNP, simplify management, monitor sudden leakage, and control the flow rate of 

pollutants, but the following two limitations need to be addressed. 

 Using two phases and different sets of objectives reduces the search range of the 

global optimal solution. 

 The use of a fixed boundary causes a water pressure drop owing to the reduction of 

inflow in the emergency. 

Integrated WNP and dynamic DMAs are solutions to the above two problems. These 

approaches are used for the integrated establishment of DMAs and dynamic management of 

DMA boundaries, to achieve intelligent and flexible WDS management. In this study, we 

developed an integrated WNP and dynamic DMAs method, and simulating these methods in a 

network and proving the advantages of the method, which can maintain the normal operation 

of a network in an emergency. The contributions of this study are as follows: 

i. A graph neural network-based water network partitioning method is proposed. 

ii. Dynamic district metered areas are used to optimise water network management. 

iii. A simulation shows that this method is efficient and highly resilient to emergencies. 

2. Related works 

Previous studies have focused on clustering and dividing algorithms. The former refers to 
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clustering WDN into DMAs based on the attributes of demand nodes and pipeline 

connections, The International Water Association has proposed the implementation of WNP 

based on administrative boundaries, road conditions, and number of residents (1985). This 

method is quite straightforward, but it is difficult to apply to a large WDN. In addition, a 

WNP implemented by the trial-and-error method is usually unreasonable and negatively 

affects water quality. Tzatchkov et al. introduced graph theory into WNP and proposed a WNP 

method based on depth-first search (DFS) and breadth-first search (BFS) (Fig. 1(a)) (2008), 

which optimized the hydraulic performance of the formed DMAs. Giustolisi and Di Nardo 

implemented genetic algorithms to accelerate the formation of DMAs (2010; 2011). Perelman 

et al. proposed using DFS to identify tightly connected pipes and using reverse BFS to 

identify sparsely connected pipes to establish more reasonable DMA boundaries (2011). 

Morrison et al. proposed the separation of the main network of the WDN from the branch 

network (2007), and Campbell combined this idea with graph theory to achieve more 

reasonable WNP (2015; 2016).  

The core of the above methods is to use graph theory to realize WNP, but WDN is 

complicated in real-world situations, and it is usually difficult to achieve good results using 

looped WDN. Diao et al. proposed the use of a community structure algorithm to cluster 

demand nodes with similar locations (Fig. 1(b)) (2013), and finally formed DMAs with 

similar spatial locations. Giustolisi et al. found that the demand nodes’ altitude and 

consumption will also affect WNP. It is unreasonable to implement WNP based solely on 

spatial locations. Thus, they proposed implementing a community structure algorithm and 

proposed a modularity-based algorithm considering the hydraulic performance in WNP (Fig. 
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1(c)) (2014). In fact, many methods are available for implementing WNP. Diao et al. 

proposed a multilevel partition algorithm for implementing WNP (Fig. 1(d)) (2013). Herrera 

et al. proposed a WNP method based on a spectral graph algorithm (Fig. 1(e)) (2010). 

Izquierdo et al. used multiple interacting agents to cooperate and compete to achieve WNP 

and proposed a WNP method based on a multi-agent approach (Fig. 1(f)) (2009). 

 

Figure. 1. Traditional water network partitioning methods: (a) graph theory methods, 

(b) community structure algorithm, (c) modularity-based algorithm, (d) multi-level 

partition algorithm, (e) spectral graph algorithm, and (f) multi-agent approach. 

There are one or more pipe connections between any adjacent DMAs, called boundary 

pipes. By choosing to install flow meters or valves at the boundary pipes to facilitate 

subsequent water conservancy monitoring and pollution control, this process is called the 

dividing phase. Previous studies proposed some indicators to measure whether the results of 
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dividing are reasonable (Todini 2000; Farley et al. 2001; Araque and Saldarriaga 2005; 

Grayman et al. 2009; Alvisi and Franchini 2014; Brentan et al. 2018; Liu and Han 2018). 

They also recommended the following steps: 

 Maintain the emergency recovery capability of the WDN. 

 Maintain the water age in the WDN at an appropriate level. 

 Improve uniformity between DMAs. 

 Maintain the water pressure of the WDN. 

The first goal helps the WDN remain stable under abnormal conditions, the second goal 

helps maintain the chlorine content in the WDN at an appropriate level, the third goal is 

conducive to the daily operation and management of WNP, and the fourth goal can ensure that 

the WNP does not affect residents' daily water use. By optimising one or more targets and 

using a heuristic algorithm to speed up the optimisation process, the position of the flow 

meters in the boundary can be determined (Di Nardo et al. 2013; Diao et al. 2013; Ferrari et 

al. 2014; Di Nardo et al. 2014; De Paola et al. 2014; Di Nardo et al. 2015; Gilbert et al. 2017; 

Zhang et al. 2017; Brentan et al. 2017; Pesantez et al. 2019; Giudicianni et al. 2020). 

In recent years, some research has provided possibilities for new WNP methods. Inspired 

by word2vec (Ding 2004), Perozzi et al. proposed a deep walk (Perozzi et al. 2014), which 

opened the door to the era of deep learning of using graph neural networks (GNNs). 

Subsequently, Kip F et al. proposed the use of graph convolutional networks (GCN) (Kip F 

and Welling 2016) and Velickovic et al. proposed the use of graph attention networks (GAT) 

(Velickovic et al. 2017), which greatly improved the effectiveness of GNN use. At present, 

GNNs have been effectively used in the fields of recommendation systems, financial risk 
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control, molecular chemistry, traffic prediction, etc. They can also be used for the feature 

extraction, aggregation, and node classification of WNP. The process of using a GNN for 

WNP and dynamic boundary management is mainly composed of three logical steps: 

aggregate node information, integrated WNP, and dynamic boundary management. 

3. Integrated WNP and dynamic DMAs 

This section discusses the feasibility of integrated WNP and dynamic DMAs using a GNN. A 

WDN can be integrally partitioned through this method and can realize dynamic boundary 

management to cope with emergencies. The steps of this method for the WDN are shown in 

Fig. 2.  

 

Figure. 2. Flowchart of the process for integrated WNP and dynamic DMAs 

3.1 Aggregate node information 

The WDN can be regarded as a graph 𝐺 that is composed of 𝑁𝑛 demand nodes and  𝑁𝑝 pipes. 

The WNP needs to classify demand nodes with the same attributes as a DMA. These 

attributes include the longitude, latitude, and altitude of the demand nodes. At the same time, 

it is necessary to maintain the balance of water consumption and water pressure of each 

DMA, which is conducive to the daily monitoring and maintenance of the WDS.  

The process of aggregate node information involves adding the attributes of the node 

itself and its neighbouring nodes in the original graph 𝐺𝑜  according to the connection 
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relationship of the nodes, then using the sum of the addition as the attribute of the node in the 

next graph 𝐺1, and finally forming the new node attribute graph 𝐺1, 𝐺2 … 𝐺𝑘. 

When using the process of 𝑘 iterations of aggregation, each demand node contains the 

attributes of its neighbouring nodes of order 𝑘. If 𝑘 is too small, the range of aggregation will 

shrink excessively, and consequently, the neighbouring information cannot be extracted 

effectively. If 𝑘 is too large, the attributes of nodes tend to be more similar, and consequently, 

these nodes cannot be perfectly distinguished. According to related research (Hamilton et al. 

2017), 𝑘 is usually 2, 3 or 4. The aggregation process at 𝑘 = 2 is illustrated in Fig. 3. 

 

Figure. 3. Schematic of aggregate node information when 𝑘 = 2. 

3.2 Integrated WNP using GNN 

According to the results obtained from aggregate node information in Section 3.1, the 

following steps must be performed to classify nodes by using unsupervised learning and 

forming several DMAs.  

 Build neural networks 

 Establish the evaluation index 

 Train neural networks 
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The proposed structure of the GNN and the training process are shown in Fig. 4. 

 

Figure. 4. Schematic of integrated WNP using GNN. 

i. Build neural networks 

The classification neural network of the WNP is composed of three parts: the input layer, 

hidden layer, and output layer. The input layer contains the information of the nodes, 

including information regarding the node characteristics and quantities. The hidden layer is 

composed of several layers, each of which is composed of several neurons, and the node 

parameters are iteratively optimized through training. The output layer is the WNP result 

under the ultimate network, and the evaluation index is used to evaluate the results of the 

classification. 

ii. Establish the evaluation index 

The evaluation index 𝐼𝑒 is an indicator measuring the pros and cons of the WNP. It is 

used to evaluate whether the WNP results are suitable for subsequent practical application, 

and the evaluation index directly affects the results of the WNP through the neural network. 

WNP is evaluated based on the following indices: 
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 Resilience index 𝐼𝑟 

 Water quality index 𝐼𝑞 

 Aggregation index 𝐼𝑎 

 Balance index 𝐼𝑏 

The resilience index 𝐼𝑟  was proposed by Todini to evaluate the resilience of a WDS 

under abnormal conditions (Todini 2000).  

𝐼𝑟 = ∑ 𝑄𝑖(ℎ𝑖 − ℎ∗)𝑛𝑛𝑖=1∑ 𝑄𝑟𝐻𝑟𝑛𝑟𝑟=1 − ∑ 𝑄𝑖ℎ∗𝑛𝑛𝑖=1     (1) 

where 𝑛𝑛  and 𝑛𝑟  are the numbers of demand nodes and reservoirs, 𝑄𝑖  and ℎ𝑖  are the water 

demand and pressure head of node 𝑖, 𝑄𝑟  and ℎ𝑟  are the water discharge and total head of 

source point 𝑟, and ℎ∗ is the design minimum pressure head of the network. 

The water quality index is used to evaluate the age of the water in the WDN. Water age 

affects the content of chlorine in WDNs and thus affects the quality of water. Further research 

shows that the installation of valves at the boundary pipes to close water will increase the 

water age at the boundary, but the impact on the overall water quality is not significant 

(Grayman et al. 2009; Di Nardo et al. 2015). 

The aggregation index 𝐼𝑎  is used to evaluate the daily operating performance of the 

DMAs. Similar spatial locations of demand nodes in the same DMA indicate that the total 

length of the internal pipe sections of the DMA is shorter and the difference between nodes in 

the DMAs is smaller.  

𝐼𝑎 = ∑ 𝑄𝑗√(𝑥𝑗−𝑥∗)2+(𝑦𝑗−𝑦∗)2
∑ 𝑄𝑖√(𝑥𝑖−𝑥𝑗)2+(𝑦𝑖−𝑥𝑗)2𝑛𝑛𝑖=1

𝑛𝑎𝑗=1      (2)  

where 𝑛𝑛 and 𝑛𝑎 are the numbers of demand nodes and DMAs, 𝑥𝑖 , 𝑦𝑖, and 𝑄𝑖 are the lateral 
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position, vertical position, and water demand of node 𝑖, 𝑥𝑗 , 𝑦𝑗, and 𝑄𝑗 are the mean lateral 

position, mean vertical position, and total water demand of the 𝑗th DMA; and 𝑥∗ and 𝑦∗ are 

the mean lateral position and mean vertical position of all nodes. 

Another indicator used to evaluate the daily operating performance of DMAs is the 

balance index 𝐼𝑏. Similar pressure and water demand values between different DMAs indicate 

that the daily monitoring and maintenance costs of DMAs are lower.  𝐼𝑏 = √ 𝑛𝑎−1∑ (𝑄𝑗−𝑄̅)𝑛𝑎𝑗=1        (3)  

where 𝑛𝑎 is the number of DMAs, 𝑄𝑗 is the total water demand of the j-th DMA, and 𝑄̅ is the 

mean water demand of all DMAs. The WDN evaluation index 𝐼𝑒 is established based on 𝐼𝑟, 𝐼𝑎, and 𝐼𝑏: 𝐼𝑒 = 𝛼𝐼𝑟 + 𝛽𝐼𝑎 + 𝛾𝐼𝑏         (4) 

where 𝛼, 𝛽 and 𝛾 are the weights of 𝐼𝑟, 𝐼𝑎 and 𝐼𝑏. This function is used to evaluate the training 

results of the GNN and indicate the update direction of the neural network parameters. 

iii. Train neural networks 

In the neural network training stage, the model parameters are iteratively optimized until 

the expected result is obtained or 𝐼𝑒 converges. In each iteration of the optimisation process, 

the changes in the hidden layer node parameters lead to different WNP results and thus affect 𝐼𝑒. The partial derivative of 𝐼𝑒 is obtained by the compound function chain derivation rule, 

and the iteration direction and the step size of the parameter of the nodes at each hidden layer 

are calculated by back propagation. 

Integrated WNP takes the 𝐼𝑒  values of the WNP targets and minimizes the negative 

impact of the WNP on the WDS. Compared with traditional two-step WNP, integrated WNP is 
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more reasonable in terms of boundary pipes positions, and boundary closure has less impact 

on the WDN. Thus, it is more suitable for subsequent dynamic DMA boundary management. 

3.3 Dynamic DMA boundary management 

In the traditional WNP, boundary pipes no longer change state once the division is complete. 

This causes an overall water pressure drop in the DMAs when a sudden situation occurs that 

consumes a large amount of water. Giudicianni et al. proposed the creation of a dynamic WNP 

method that allows a fixed DMA boundary to be opened in emergencies (Giudicianni et al. 

2020); that is, multiple DMAs are combined into a large DMA, which overcomes the 

shortcomings caused by WNP. 

When a node in the DMAs bursts with a large amount of water, the optimal strategy is to 

open some boundary pipes near the node. In contrast opening a pipe that is far away from the 

abnormal node costs more energy and may not obtain good results. This means that each 

boundary pipe needs to be analysed and classified into three categories: normally open, 

normally closed, and dynamic.  

This paper proposes a dynamic method of managing the boundary pipes of DMAs. By 

calculating the influence factor 𝐼𝐹 of the boundary pipes, we set the threshold values and 

boundary pipe states. Furthermore, dynamic pipes with higher impact factors are 

preferentially opened during emergencies. 

𝐼𝐹 = ∑ 𝑄𝑖𝐿𝑖
𝑘

𝑖=1  

where 𝑚 is the statistical range (for any point, the 𝑚 vertices near it are considered in the 𝐼𝐹 

calculation), 𝑄𝑖  is the water demand of node 𝑖, and 𝐿𝑖  is the shortest pipe length from the 

statistical point to node 𝑖. 
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4. Experimental study  

This method was tested on a medium-sized WDS in “C-town”, which was used as a real water 

network in "The Battle of the Water Calibration Network" (Ostfeld et al. 2012), containing 

388 nodes, 429 pipes, one reservoir, and seven tanks, as shown in Fig. 5(a). The model used 

the PyTorch framework to implement an improved form of WNP and simulated the hydraulic 

performance using EPANET 2. 

 

Figure. 5. (a) C-Town's water network (b) C-Town's water network partitioning 

results. 

4.1 Case study on integrated WNP 

To partition the water network of C-town to facilitate management and leakage control, we 

compared the differences in the number of boundary pipes 𝑁𝑏 , boundary pipes with flow 

meters 𝑁𝑓, boundary pipelines with valves 𝑁𝑣, and the minimum pressure head ℎ𝑚𝑖𝑛, mean 

pressure head ℎ𝑚𝑒𝑎𝑛, and other indicators between the WDS before and after the partition. 

The simulation results of WNP are shown in Table 1 to illustrate its impact on the hydraulic 

performance of the WDS. 
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Table 1. Main characteristics and hydraulic performance after creating 5, 7, and 9 DMAs 

 𝑁𝑏 𝑁𝑓 𝑁𝑣 ℎ𝑚𝑖𝑛[m] ℎ𝑚𝑒𝑎𝑛 [m] 𝐼𝑟 𝐼𝑒 

Unpartitioned - - - 22.07 57.69 0.73 - 

7 DMA (k = 3) 10 6 4 21.78 56.58 0.69 1.64 

7 DMA (k = 5) 10 6 4 21.74 56. 04 0.68 1.62 

5 DMA (k = 3) 7 4 3 21.79 56.93 0.71 1.48 

9 DMA (k = 3) 16 8 8 19.51 54.95 0.66 1.54 

GT-WNP 13 9 4 16.12 56.55 0.67 1.07 

According to Fig. 5(b), the WDN is divided into seven DMAs. We calculated the 𝐼𝐹 of 

each boundary pipe, installed flow meters on the boundary pipes with 𝐼𝐹 values greater than 

0.12, and installed valves on the remaining boundary pipes. The simulation shows that all 

nodes meet the ℎ∗ = 20 m  and the partitioned water network met the daily needs where ℎ𝑚𝑖𝑛 = 21.78 m, ℎ𝑚𝑒𝑎𝑛 = 56.58 m, 𝐼𝑟 = 0.69, and 𝐼𝑒 = 1.64. These values show that the 

water network after partitioning with GNN-WNP had good resilience and evaluation indices 

than WNP based on graph theory (GT-WNP) (Pesantez et al. 2019), and DMAs based on 

GNN-WNP had less boundary pipes, which means using this method to set up DMAs requires 

less cost; compared with the 𝐼𝑟 of the water network without partitioning, that of this network 

is only 5.5% lower. 

Next, the experiment focused on the influence of the aggregate node information process 

on WNP. The aggregate node information parameter 𝑘 = 3 was the most suitable for WNP 

(Fig. 6(a) and (b)). This is because the 3-order attribute balanced the antagonistic relationship 

between the aggregation of attributes in each DMA and the separation of attributes between 

different DMAs. 
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Figure 6. (a) The effect of 𝑘 on 𝐼𝑟 (b) The effect of 𝑘 on 𝐼𝑒  

(c) The effect of the number of DMAs on 𝐼𝑟 (d) The effect of the number of DMAs 

on 𝐼𝑒. 

In addition, the experiment focused on the influence of the number of DMAs on WNP. 

Using more DMAs is conducive to locating the leak location. However, in this case, more 

boundary pipelines were closed, which affected the hydraulic performance. Comparing the 𝐼𝑟 

and 𝐼𝑒 values of different numbers of DMAs (Fig. 6(c) and (d)), the hydraulic performance of 

the WDN dropped sharply when there were more than seven DMAs, meaning that using 

seven DMAs was a suitable choice. 

The main disadvantage of fixed DMAs is that the emergency capability of the WDN is 

reduced because of the closure of boundary pipes. When an emergency occurs (such as a large 

amount of water being used by fire-fighting equipment), regional water inflow restrictions 

lead to a decrease in overall water pressure and affect regional water use. Therefore, this study 
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explores the possibility of using dynamic DMA boundary management to overcome the 

disadvantages of fixed WNP. 

4.2 Case study on integrated WNP and dynamic DMAs 

The dynamic DMAs evaluate the daily status and emergency response status of the boundary 

pipes by calculating 𝐼𝐹, and the 𝐼𝐹 of the boundary pipes of C-town are shown in Fig. 7. 𝐼𝐹 

mainly refers to the impact of the pipes on the capacity of the WDS to recover from abnormal 

situations during the opening or closing conversion process. Different measures were taken 

for different pipes, divided into the following three categories: 

 Install flowmeters in boundary pipes with high 𝐼𝐹 values. 

 Install fixed valves in boundary pipes with low 𝐼𝐹 values. 

 Install dynamic valves in boundary pipes with medium 𝐼𝐹 values. 

 

Figure. 7. Weights of C-Town's pipes. 

We performed a simulation of the WDS of C-town to determine the boundaries of DMAs 

and the opening or closing schemes of dynamic boundary pipes under different conditions. 

The 𝐼𝐹 values of the DMA boundary pipes changed most rapidly between 0.07 and 0.12. 
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Therefore, flow meters were installed in the boundary pipes with 𝐼𝐹 values higher than 0.12, 

fixed valves were installed in the boundary pipes with 𝐼𝐹  values lower than 0.07, and 

dynamic valves were installed in the boundary pipes with 𝐼𝐹 values between 0.07 and 0.12. 

The dynamic DMA configuration scheme for three emergencies (small, medium, and 

large fires) simulated in the WDS of C-town is shown in Table 2. Comparing the dynamic 

DMAs and the fixed DMAs, both networks maintained effective operation in the case of the 

small fire without opening the boundary dynamic pipes; ℎ𝑚𝑒𝑎𝑛  = 54.21 m and 𝐼𝑟  were 

reduced by 6.9% compared to the unpartitioned layout. 

In the case of the medium fire, the dynamic WNP maintained normal operation and the 

fixed WNP fell into an abnormal situation. Compared with the unpartitioned water network, 

the 𝐼𝑟 values of the dynamic and fixed DMAs decreased by 9.6% and 12.3%, respectively, and 

the ℎ𝑚𝑒𝑎𝑛 values of the dynamic and fixed WNP were 52.37 m and 51.72 m, respectively.  

In the case of the large fire, the resilience of the dynamic DMAs was much stronger than 

that of the fixed DMAs. Compared with the unpartitioned water network, the 𝐼𝑟 values of the 

dynamic DMAs and the fixed DMAs decreased by 13.7% and 26%, respectively, and the ℎ𝑚𝑒𝑎𝑛 values of the dynamic and fixed WNP were 50.15 m and 42.56 m. 

Table 2. Main characteristics and hydraulic performance of fixed DMAs and dynamic DMAs 

in different emergency situations 

 𝑁𝑓 𝑁𝑣 ℎ𝑚𝑒𝑎𝑛 ℎ𝑚𝑖𝑛 𝐼𝑟 

Unpartitioned - - 57.69 22.07 0.73 

Small fire 
Fixed 6 4 54.21 21.29 0.68 

Dynamic 6 4 54.21 21.29 0.68 

Medium fire 
Fixed 6 4 51.72 15.98 0.65 

Dynamic 7 3 52.37 15.54 0.67 

Large fire 
Fixed 6 4 42.56 9.52 0.54 

Dynamic 7 3 50.15 13.23 0.63 
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Thus, the dynamic DMAs were shown to have significantly stronger resilience under 

emergency conditions than fixed DMAs. 

5. Conclusion 

This paper presents a new method which can realize integrated WNP using dynamic DMAs. 

This method is based on graph neural network technology, which is often used for the 

classification of graph data; influence evaluation technology, which is often used for data 

importance ranking; and hydraulic simulation, which is often used for the rationality 

assessment of water network partitioning. We developed a framework of integrated WNP and 

dynamic DMAs based on PyTorch to apply the described method to a simulated medium-

sized water distribution network called C-town, and used general indicators (such as 𝐼𝑟) to 

verify the rationality of the partition. Through the simulation, we compared the impact of 

different model parameters on water network partitioning and compared the hydraulic 

performance of dynamic DMAs with that of fixed DMAs. The simulation results show that 

partitioning the water network using a graph neural network can provide an excellent, 

interpretable, and fast solution. Furthermore, this method provides a reliable basis for 

dynamic DMA boundary management and proves that dynamic DMAs have far better 

hydraulic performance than fixed DMAs in emergencies. 

Future work will focus on solving the problem of DMA interactivity. Specifically, DMAs 

in the water network are connected in a loop. Therefore, a single boundary pipe does not only 

affect the two DMAs connected to it. Evaluating the hydraulic impact of the boundary pipes 

on the overall network will help to determine the optimal plan under emergency conditions 

and improve the efficiency of boundary dynamic operations. 
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