

Obesity and adverse pregnancy outcomes in older patients with decreased ovarian reserve: a retrospective single-centre study

Fangxu LinZhengzhou University First Affiliated HospitalHao ShiZhengzhou University First Affiliated HospitalQiongyao ShiZhengzhou University First Affiliated HospitalYingchun SuZhengzhou University First Affiliated HospitalShanjun DaiZhengzhou University First Affiliated HospitalQingling YangZhengzhou University First Affiliated HospitalYihong Guo (♥ 13613863710@163.com)Zhengzhou University First Affiliated Hospital

Research

Keywords: diminished ovarian reserve, body mass index, miscarriage, live birth rate

Posted Date: August 9th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-779351/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

1	Title	page

- 2 **Title**: Obesity and adverse pregnancy outcomes in older patients with decreased
- 3 ovarian reserve: a retrospective single-centre study
- 4
- 5 **Authors:** Lin Fangxu1,2, Shi Hao1,2, Shi Qiongyao1,2, Su Yingchun1,2, Dai
- 6 Shanjun1,2, Yang qingling1,2, Guo Yihong1,2*
- 7 1Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou
- 8 University, Zhengzhou, China
- 9 2 Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital
- 10 of Zhengzhou University, Zhengzhou, China

- 12 **Corresponding author:** Guo Yihong 13613863710@163.com
- 13

14 Abstract

15 **Background:** In recent years, infertility has increased in older women with

16 decreased ovarian reserve (DOR). Studies have shown that women with DOR have

- 17 fewer oocytes, which are poorer in quality, and have an increased risk of adverse
- 18 pregnancy outcomes. Pre-pregnancy BMI is significantly correlated with many
- adverse pregnancy outcomes. Therefore, we conducted this study to explore the
- 20 correlation between body mass index (BMI) and abortion and live birth in older

21 patients with DOR.

22 **Methods**: The clinical data of 2052 older women with infertility and DOR

23	admitted to the Reproductive Medicine Center of the First Affiliated Hospital of
24	Zhengzhou University from August 2009 to May 2018 were analysed retrospectively.
25	Patients were divided into underweight (BMI < 18.5 kg/m²; n = 56), normal weight
26	(18.5 kg/m² ≤ BMI < 24 kg/m²; n = 1389), overweight (24 kg/m² ≤ BMI < 28 kg/m²; n =
27	527) and obese (BMI \geq 28 kg/m ² ; n = 80). We compared the pregnancy outcomes
28	of patients in each group.
29	Results: Logistic regression analysis showed that being overweight or obese
30	were independent risk factors for miscarriage (P < 0.05) and protection factors for live
31	births (P < 0.05). Being underweight was a protective factor for live births (P < 0.05).
32	Conclusions: The abortion and live birth rates in older infertile women with
33	DOR are correlated with BMI. Higher BMI was associated with higher abortion rates
34	and lower live birth rates. Being underweight also correlated with the live birth rate.
35	Therefore, to improve pregnancy outcomes, we suggest that older patients with DOR
36	may benefit from maintaining a normal weight before seeking fertility treatments.
37	
38	Keywords: diminished ovarian reserve; body mass index; miscarriage; live birth
39	rate
40	
41	Background
42	Ovarian reserve is the capacity for growth and development of follicles in the
43	female ovarian cortex and the ability to form fertilised oocytes. Diminished ovarian
44	reserve (DOR) is a common endocrine disease in women of childbearing age and

45	refers to the decline in the number and quality of oocytes, ovulation disorders,
46	endocrine disorders, and infertility due to factors such as age, metabolism, genetics,
47	autoimmunity, iatrogenicity, toxicity, and infection. In the process of assisted
48	reproductive technology (ART), DOR is characterised by poor drug response, few
49	eggs, low number of high-quality embryos, high rate of cycle cancellation, and low
50	clinical pregnancy rate [1].
51	Studies have shown that pre-pregnancy BMI is significantly correlated with many
52	adverse pregnancy outcomes, such as gestational diabetes mellitus (GDM),
53	hypertensive disorders in pregnancy, premature birth, abnormal birth weight, and
54	cesarean section [2,3]. However, there are currently insufficient data on the role of
55	BMI in pregnancy outcomes in patients with decreased ovarian reserve. Therefore,
56	we conducted this study to explore the relationship between BMI and pregnancy
57	outcomes in patients with DOR to provide a reference for clinical practice.
58	
59	Methods
60	1. Participant selection
61	We retrospectively analysed the clinical data of 2052 patients with decreased
62	ovarian reserve who were treated for infertility at the Reproductive Medicine Center
63	of the First Affiliated Hospital of Zhengzhou University from August 2009 to May
64	2018.
65	Inclusion criteria: (1) we used the 2015 U.S. Centers for Disease Control and
66	Prevention DOR diagnostic criteria [4], which define DOR as the presence of

67	menstrual cramps and follicle stimulating hormone (FSH) > 10 IU/L, and/or anti-
68	Mullerian hormone (AMH) < 1.0 ng/ml; (2) individuals above 35 years of age.
69	The exclusion criteria were as follows: (1) history of prior oocyte or sperm
70	donation; (2) chromosomal abnormalities; (3) benign and malignant ovarian
71	diseases; (4) sex hormone-dependent diseases, such as endometriosis, uterine
72	fibroids, endometrial polyps, and pituitary tumours; (5) endocrine system diseases,
73	such as diabetes, thyroid dysfunction, and hyperprolactinaemia; (6) oral
74	administration of exogenous sex hormones or vitamin D within 3 months before
75	consultation; (7) systemic diseases such as malignant tumours; (8) the absence of
76	embryos for transfer or transplantation until the end of the follow-up period.
77	2. Research methods
78	1) Grouping: patients who met inclusion criteria were divided into four groups
79	according to the Chinese Guidelines for Prevention of Overweight and Obesity in
80	Adults: underweight (BMI < 18.5 kg/m ² ; n = 56), normal weight (18.5 kg/m ² \leq BMI <
81	24 kg/m ² , n = 1389), overweight (24 kg/m ² \le BMI < 28 kg/m ² , n =527), and obese
82	(BMI ≥ 28 kg/m², n = 80).
83	2) Clinical data: clinical data were obtained from the clinical reproductive
84	medicine management system or electronic medical record database of the
85	Reproductive Medicine Center of the First Affiliated Hospital of Zhengzhou University.
86	Data included age, BMI, menstrual cycle interval, antral follicle count (AFC) defined
87	as number of antral follicles with a diameter of 2 mm-9 mm on ultrasound, infertility
88	type, and number of previous IVF/ICSI cycles.

89	3) Specimen collection and laboratory tests: In the patient's natural physiological
90	state, the second to fourth days of the menstrual cycle or menopause for more than
91	50 days (excluding early pregnancy and B-ultrasound monitoring of the ovaries and
92	endometrium are consistent with anovulatory status), 3 ml of venous blood was
93	drawn on an empty stomach, serum was collected by centrifugation, and
94	electrochemiluminescence immunoassay kit (Roche, Germany) was used to detect
95	serum basal luteinising hormone (bLH), basal follicle stimulating hormone (bFSH),
96	and anti-Mullerian hormone (AMH) levels (inter- and intra-batch detection difference:
97	< 5%).
98	4) ART protocol: a gonadotropin (Gn) releasing hormone (Gn) agonist was used
99	to prevent a premature surge in luteinising hormone (LH), and Gn was used to
100	stimulate follicular growth. When the largest follicle diameter was greater than 20
101	mm, and more than 2/3 of the total follicles were >16 mm. Human chorionic
102	gonadotropin (hCG) was administered according to the serum FSH, LH, E2 and P
103	levels. Ultrasound-guided egg retrieval was performed 36-38 hours later.
104	5) Outcome indicators: At 14 or 18 days after embryo transfer, serum β -hCG
105	levels were measured to detect early pregnancy. Ultrasonography was performed 35
106	or 45 days after embryo transfer, and we diagnosed pregnancy clinically by the
107	existence of an intrauterine pregnancy sac and a positive heartbeat. Miscarriage was
108	defined as termination of pregnancy before 28 weeks' gestation with a foetal weight
109	of less than 1000 g. Live birth was defined as at least one live birth after 24 weeks of
110	pregnancy. We defined other outcomes as follows: implantation rate = number of

gestational sacs / number of embryos transferred × 100%; clinical pregnancy rate =
number of clinical pregnancy cycles / total number of transplanted cycles × 100%;
abortion rate = number of abortion cycles / total number of pregnancy cycles × 100%;
and live birth rate = number of live birth cycles / total number of transplant cycles ×
100%.

3. Statistical analysis was performed using SPSS 22.0 (IBM Corp., Armonk, NY, 116 USA) statistical software for data analysis. Normally distributed data are expressed 117 as mean \pm standard deviation (x \pm s), one-way ANOVA was used for comparison 118 119 between groups. Continuous variables with skewed distributions are represented as medians (interguartile ranges, IQR), and were compared using the Kruskal-Wallis 120 test. Count data were expressed as rate (%), and the chi-square test was used to 121 122 compare groups (X2). The difference of proportions between groups was compared using Bonferroni correction. Binary logistics regression was used to determine the 123 124 correlation between BMI and pregnancy outcomes (abortion and live birth rates). The 125 results are presented as the adjusted odds ratios (aORs) with the 95% confidence 126 intervals (CIs). Statistical significance was set at P < 0.05. 127

128 **Results**

129 The retrospective analysis included 2052 patients, with 56 (2.7%), 1389 (67.7%),

130 527 (25.7%), and 80 (3.9%) patients classified as being underweight, normal weight,

131 overweight, and obese, respectively. (Figure 1)

132 **1. Baseline data**

133There were significant differences in male age, female age, menstrual cycle134length, bFSH levels, bLH levels, AMH levels, and AFC among the different BMI135classifications (all P < 0.05). Menstrual cycle length was directly proportionate to</td>136increased BMI. There were no significant differences in male BMI level, infertility137diagnosis, and previous in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI)138attempts (all P > 0.05) (Table 1).

139 2. Analysis of patients' transplant status and assisted pregnancy results The relationship between BMI and transplant and fertility outcomes of patients with 140 141 reduced ovarian reserve was analysed. There was no significant correlation between BMI and initial Gn dose, Gn dosage, endometrial thickness on the day of HCG 142 administration, number of retrieved oocytes, number of available embryos, number of 143 144 embryos transferred, and embryo stage at transfer (all P > 0.05). However, we did find a significant correlation between BMI and the abortion rate (P = 0.015) and live birth 145 rate (P = 0.016). There was no significant correlation between BMI and implantation 146 147 rate, clinical pregnancy rate, number of live births, Cumulative clinical pregnancy rate (CCPR) or Cumulative live birth rate (CLBR) (all P > 0.05) (Table 2). 148

149 **3**. Analysis of factors affecting miscarriage

150 Using binary logistic regression to analyse related factors, we found that before

adjusting for confounding factors, male age, female age, and being overweight were

- 152 independent risk factors for miscarriage. After adjusting for male age, female age,
- 153 menstrual cycle, bFSH, bLH, AMH, and AFC, only being overweight (adjusted odds
- 154 ratio [aOR] = 2.41; 95% confidence interval [CI]: 1.20-4.83; P = 0.013) or obese (aOR

- 155 = 6.41; 95% CI: 1.38-29.70; P = 0.018) was independently associated with
- 156 miscarriage, with the aOR value of the obesity group found to be several times that of
- 157 the overweight group (Table 3; Figure 2A).
- 158 4. Analysis of factors correlated with abortion and live birth
- 159 Using binary logistic regression analysis, we found that male age, female age,
- and being overweight were independently associated with abortion before adjusting
- 161 for confounding factors. After adjusting for male age, female age, menstrual cycle
- length, BMI, bFSH, bLH, AMH, and AFC, we found that factors such as being
- underweight (aOR = 0.15, 95% CI: 0.03-0.73; P = 0.019), overweight (aOR = 0.46,

164 95% CI: 0.23-0.91; P = 0.026), or being obese (aOR = 0.20; 95% CI: 0.04-0.91; P =

- 165 0.037) were independently protective in terms of the live birth rate. The impact of
- 166 obesity far exceeded the impact of being overweight on the live birth rate (Table 4;
- 167 Figure 2B).

168 **Discussion**

169 **1.** Reproductive difficulties in older patients with DOR

170 With the change in women's social roles and improved education levels, the

- 171 global childbearing age has increased [5]. With the introduction of China's fertility
- policy, the proportion of older couples having children has increased significantly [6].
- 173 These factors have led to an increasing DOR detection rate. Patients with DOR have
- decreased fertility, by definition, and the incidence of infertility is increasing. In vitro
- 175 fertilization/Intracytoplasmic sperm injection- embryo transplantation (IVF/ICSI-ET) has
- become an important method in the treatment of DOR-related infertility. Due to the

177	depletion of the ovarian pool in patients with DOR, the number and quality of oocytes
178	decreases, resulting in hormone secretion disorders [7]. In older patients with DOR
179	especially, cycle cancellation rates are high, pregnancy rates are low [8], and fertility
180	outcomes are poor. Nowadays, obesity is becoming a serious health problem [9]. The
181	proportion of obese women of childbearing age is increasing; this adversely affects
182	reproductive health and may lead to adverse pregnancy outcomes. Many studies
183	have shown that obesity significantly increases the risk of infertility and may cause
184	increased complications during pregnancy [10]. Therefore, it is necessary to
185	determine whether there is a correlation between BMI and pregnancy outcomes in
186	IVF/ICSI-ET in older patients with DOR in order to reduce their reproductive risk.
187	2. BMI and reproductive outcomes in older patients with DOR
188	Miscarriage is a common complication of pregnancy, and miscarriage after IVF
189	brings great pain to patients, especially DOR patients [11]. Previous studies have
190	described an increased rate of early miscarriage in obese patients, including
191	spontaneous and recurrent miscarriages [12-14]. Moreover, obese women have a
	spontaneous and recurrent miscamages [12-14]. Moreover, obese women have a
192	higher risk of pregnancy loss than overweight women, resulting in a lower live birth
192 193	
	higher risk of pregnancy loss than overweight women, resulting in a lower live birth
193	higher risk of pregnancy loss than overweight women, resulting in a lower live birth rate among obese pregnant women [12,15]. However, some studies have not found a
193 194	higher risk of pregnancy loss than overweight women, resulting in a lower live birth rate among obese pregnant women [12,15]. However, some studies have not found a clear correlation between increased BMI and abortion after in vitro fertilisation
193 194 195	higher risk of pregnancy loss than overweight women, resulting in a lower live birth rate among obese pregnant women [12,15]. However, some studies have not found a clear correlation between increased BMI and abortion after in vitro fertilisation [16,17]. According to literature reports, the incidence of spontaneous abortion is

199	BMI was an independent risk factor for miscarriage in older patients with DOR;
200	moreover, we found that the higher the BMI, the greater the risk of miscarriage
201	(overweight [aOR = 2.41; 95% CI: 1.20-4.83] vs obesity [aOR = 6.41; 95% CI: 1.38-
202	29.70]; both $P < 0.05$). Studies have found that compared to women with normal BMI,
203	the live birth rate of women with increased BMI is significantly decreased [19,20].
204	Some scholars believe that there is no significant correlation between high BMI and
205	live birth rate [21,22]. This study showed that there were significant differences in live
206	birth rates among the different BMI groups. Our statistical analysis of factors affecting
207	the live birth rate found that BMI was an independent factor in the live birth rate, that
208	BMI affected the live birth rate of older women with DOR, and that the live birth rate
209	decreased exponentially with an increase in BMI.
210	
210	Many studies have confirmed that BMI affects embryo quality. Abnormal
210	Many studies have confirmed that BMI affects embryo quality. Abnormal endocrine function and impaired mitochondrial function caused by abnormal fat
211	endocrine function and impaired mitochondrial function caused by abnormal fat
211 212	endocrine function and impaired mitochondrial function caused by abnormal fat content in obese patients, which reduces the quality of eggs and embryos [9,23],
211 212 213	endocrine function and impaired mitochondrial function caused by abnormal fat content in obese patients, which reduces the quality of eggs and embryos [9,23], thus increasing the early abortion rate and reducing the live birth rate. In addition,
211 212 213 214	endocrine function and impaired mitochondrial function caused by abnormal fat content in obese patients, which reduces the quality of eggs and embryos [9,23], thus increasing the early abortion rate and reducing the live birth rate. In addition, synthetic leptin is a protein hormone secreted by adipose tissue that participates in
211212213214215	endocrine function and impaired mitochondrial function caused by abnormal fat content in obese patients, which reduces the quality of eggs and embryos [9,23], thus increasing the early abortion rate and reducing the live birth rate. In addition, synthetic leptin is a protein hormone secreted by adipose tissue that participates in the regulation of glucose, lipid, and energy metabolism [24]. Studies have shown that
 211 212 213 214 215 216 	endocrine function and impaired mitochondrial function caused by abnormal fat content in obese patients, which reduces the quality of eggs and embryos [9,23], thus increasing the early abortion rate and reducing the live birth rate. In addition, synthetic leptin is a protein hormone secreted by adipose tissue that participates in the regulation of glucose, lipid, and energy metabolism [24]. Studies have shown that BMI can affect leptin receptor expression on endometrium during the secretory
 211 212 213 214 215 216 217 	endocrine function and impaired mitochondrial function caused by abnormal fat content in obese patients, which reduces the quality of eggs and embryos [9,23], thus increasing the early abortion rate and reducing the live birth rate. In addition, synthetic leptin is a protein hormone secreted by adipose tissue that participates in the regulation of glucose, lipid, and energy metabolism [24]. Studies have shown that BMI can affect leptin receptor expression on endometrium during the secretory period, regulate uterine angiogenesis and implantation, and affect the pregnancy

221	Other studies have shown that obesity can cause ascending bacterial infections in
222	the reproductive tract [27], change the susceptibility of pathogenic bacteria [19, 28],
223	increase uterine cavity infections, increase the risk of miscarriage in older patients
224	with DOR, and reduce the live birth rate. In addition, miscarriage in women with high
225	BMI (\geq 25 kg/m ²) is not mainly caused by chromosomal abnormalities in embryos
226	[29]; BMI affects embryo quality and the maternal intrauterine environment through
227	different mechanisms.
228	Being underweight is associated with negative pregnancy outcomes in patients
229	receiving in vitro fertilisation through frozen-thawed embryo transfer [30]. In the
230	present study, low BMI was correlated with live birth rate, which is consistent with
231	previous findings. Decreased fertility in underweight women may be related to
232	decreased leptin levels [30].
233	3. Lifestyle changes and pregnancy outcomes
234	Maternal obesity increases the risk of pregnancy complications such as GDM,
235	gestational hypertension, and preeclampsia [31]. In addition, more than half of
236	overweight and obese women gain more weight than recommended during
237	pregnancy, which leads to an increased risk of perinatal complications and poor
238	neonatal outcomes, and affects the health of the mother and future generations [32].

- 239 Studies have shown that female obesity is an independent risk factor in the
- 240 cumulative live birth rate in the first complete ovarian stimulation cycle [33]. When the
- 241 parents' BMI is high, the ratio of normal birth weight to macrosomia in single births
- increases [34]. In addition, maternal obesity is related to macrosomia, stillbirth, and

congenital abnormalities [31].

244	Lifestyle interventions can reduce BMI in obese women with infertility, including
245	older patients with DOR [35]. Therefore, for overweight and obese women who want
246	to conceive, it is strongly recommended that they implement lifestyle changes and
247	lose weight before starting infertility treatments. A decrease in body weight by 5%-
248	10% compared with baseline has been found to improve reproductive function
249	[36,37]. Studies have shown that infertile women can lose weight by changing their
250	lifestyle before conception and thus reduce the rate of spontaneous abortion [38, 39].
251	However, a disadvantage of losing weight through lifestyle changes is weight
252	rebound. Long-term behavioural counselling that provides diet or activity advice is
253	uncommon [36]. In addition, the impact of weight management on the outcome of
254	assisted reproduction remains uncertain [40].
255	The present study findings suggest that female obesity is an independent risk
256	factor for abortion in older patients with DOR, with greater risk in obese women than
257	in overweight women. In women with normal weight, BMI is an independent
258	protective factor in the live birth rate. Considering the difficulty experienced by
259	women with DOR in conceiving and remaining pregnant, and the high obesity rate in
260	older women, we recommend that women reduce their pre-pregnancy weight through
261	lifestyle changes.
262	4. Advantages and limitations

263 Our study presents a novel correlation of pregnancy outcomes in IVF/ICSI-ET 264 with BMI. We have attempted to control for confounding factors that affect pregnancy

265	outcomes as much as possible to improve the reliability of our results. Although we
266	have reduced selection and confounding biases as much as possible, the present
267	study is a retrospective study with inherent limitations. Our sample size for the
268	underweight and obese patients is small. The study should be repeated with a larger
269	sample size. In addition, this study is a single-centre study, and we only used the
270	clinical data from recent transplant cycles of all older patients DOR in the same
271	centre. Our study lacks some advantages of multi-centre research; however, single-
272	centre research can arguably provide more consistent results by avoiding
273	inconsistencies in surgical methods and laboratory conditions. Finally, we did not
274	evaluate cumulative pregnancy outcomes or neonatal and obstetric outcomes, which
275	may present opportunities for future research.
276	

277 Conclusion

For infertile women > 35 years old with reduced ovarian reserve, pregnancy 278 279 outcomes of IVF/ICSI-ET were correlated with BMI. We found that BMI above the normal range was correlated with an increased risk of miscarriage. Being 280 underweight or overweight was also associated with the live birth rate. Obesity was 281 more strongly associated with abortion and reduced live birth rate than being 282 overweight. Our findings suggest that older patients with DOR who wish to conceive 283 may benefit from maintaining a normal BMI to improve pregnancy outcomes during 284 fertility treatment. 285

286

- 288 List of abbreviations
- AFC, Antral follicular count
- AMH, anti-Mullerian hormone
- AOR, adjusted odds ratio
- ART, assisted reproductive technology
- 293 bFSH, basal follicle stimulating hormone
- 294 bLH, basal luteinising hormone
- BMI, body mass index
- 296 CCPR, Cumulative clinical pregnancy rate
- 297 CI, confidence interval
- 298 CLBR, Cumulative live birth rate
- 299 DOR, decreased ovarian reserve
- 300 FSH, Follicle-stimulating hormone
- 301 GDM, gestational diabetes mellitus
- 302 Gn, gonadotropin
- 303 hCG, human chorionic gonadotropin
- 304 ICSI, Intracytoplasmic sperm injection
- 305 IVF, In vitro fertilization
- 306 LH, luteinising hormone
- 307 OR, Odds ratio

309 **Declarations**

- 310 Ethics approval and consent to participate:
- 311 This research was approved by the Institutional Ethics Committee of the First
- 312 Hospital of Zhengzhou University, and all patients signed an informed consent form.
- 313 All methods were conducted in accordance with relevant guidelines and regulations.
- 314 Consent for publication
- 315 Not applicable.
- 316 Availability of data and materials
- 317 The datasets used in the current study are available from the corresponding
- 318 author on reasonable request.
- 319 Competing interests
- 320 The authors declare that they have no competing interests
- 321 Funding
- 322 Not applicable.
- 323 Authors' contributions
- 324 LFX: study design, analysis and interpretation of data, and drafting and revision
- of the manuscript; LJ: data collection; SH, SYC, DSJ, YQL: assessed the article;
- 326 GYH: study conception and design. All authors approved the final article.
- 327 Acknowledgements
- 328 Not applicable.

329 **References**

1. Bleil ME, Gregorich SE, McConnell D, Rosen MP, Cedars MI. Does accelerated

- reproductive aging underlie premenopausal risk for cardiovascular disease?
 Menopause. Nov 2013;20(11):1139-1146.
- Savitri AI, Zuithoff P, Browne JL, et al. Does pre-pregnancy BMI determine blood
 pressure during pregnancy? A prospective cohort study. BMJ Open. Aug 11
- 335 **2016;6(8):e011626**.
- 336 3. Schummers L, Hutcheon JA, Bodnar LM, Lieberman E, Himes KP. Risk of
- 337 adverse pregnancy outcomes by prepregnancy body mass index: a population-
- based study to inform prepregnancy weight loss counseling. Obstet Gynecol.
- 339 Jan 2015;125(1):133-143.
- 340 4. Erlandsson L, Lindgren R, Naav A, et al. Exposure to wood smoke particles
- 341 leads to inflammation, disrupted proliferation and damage to cellular structures in
- a human first trimester trophoblast cell line. Environ Pollut. Sep
- **2020;264:114790**.
- 5. Dviri M, Madjunkova S, Koziarz A, et al. Is there an association between paternal
- 345 age and aneuploidy? Evidence from young donor oocyte-derived embryos: a
- 346 systematic review and individual patient data meta-analysis. Hum Reprod
- 347 Update. Apr 21 2021;27(3):486-500.
- 348 6. Li Yue, Zhang Xuying. The Influence of Marriage Delay and Birth within Marriage
- 349 on Fertility Level in China: Based on Decomposition Model of Total Fertility Rate.
- 350 **Population Journal. 2021;43(04):1-11**.
- 351 7. Cohen J, Chabbert-Buffet N, Darai E. Diminished ovarian reserve, premature
- 352 ovarian failure, poor ovarian responder--a plea for universal definitions. J Assist

- 353 **Reprod Genet. Dec 2015;32(12):1709-1712.**
- 354 8. De Geyter C, Fehr P, Moffat R, Gruber IM, von Wolff M. Twenty years'
- 355 experience with the Swiss data registry for assisted reproductive medicine:
- 356 outcomes, key trends and recommendations for improved practice. Swiss Med
- 357 Wkly. 2015;145:w14087.
- 358 9. Si C, Wang N, Wang M, Liu Y, Niu Z, Ding Z. TMT-based proteomic and
- bioinformatic analyses of human granulosa cells from obese and normal-weight
- 360 female subjects. Reprod Biol Endocrinol. May 20 2021;19(1):75.
- 10. Khaskheli MN, Baloch S, Baloch AS. Infertility and weight reduction: influence
- and outcome. J Coll Physicians Surg Pak. Nov 2013;23(10):798-801.
- 11. Hu L, Du J, Lv H, et al. Influencing factors of pregnancy loss and survival
- 364 probability of clinical pregnancies conceived through assisted reproductive

365 technology. Reprod Biol Endocrinol. Aug 7 2018;16(1):74.

- 12. Cavalcante MB, Sarno M, Peixoto AB, Araujo Junior E, Barini R. Obesity and
- 367 recurrent miscarriage: A systematic review and meta-analysis. J Obstet
- 368 Gynaecol Res. Jan 2019;45(1):30-38.
- 13. Matjila MJ, Hoffman A, van der Spuy ZM. Medical conditions associated with
- 370 recurrent miscarriage-Is BMI the tip of the iceberg? Eur J Obstet Gynecol
- 371 Reprod Biol. Jul 2017;214:91-96.
- 14. Rittenberg V, Seshadri S, Sunkara SK, Sobaleva S, Oteng-Ntim E, El-Toukhy T.
- 373 Effect of body mass index on IVF treatment outcome: an updated systematic
- 374 review and meta-analysis. Reprod Biomed Online. Oct 2011;23(4):421-439.

375	15.	Romanski PA, Bortoletto P, Magaoay B, Chung A, Rosenwaks Z, Spandorfer SD.
376		Live birth outcomes in infertile patients with class III and class IV obesity
377		following fresh embryo transfer. J Assist Reprod Genet. Feb 2021;38(2):347-355.
378	16.	Metwally M, Ong KJ, Ledger WL, Li TC. Does high body mass index increase the
379		risk of miscarriage after spontaneous and assisted conception? A meta-analysis
380		of the evidence. Fertil Steril. Sep 2008;90(3):714-726.
381	17.	Setton R, Chung A, Zimmerman L, Melnick A, Rosenwaks Z, Spandorfer SD.
382		Body mass index is not associated with donor oocyte recipient success: an ideal
383		study using a paired analysis of sibling-oocytes. F S Rep. Jun 2020;1(1):25-29.
384	18.	Sunkara SK, Khalaf Y, Maheshwari A, Seed P, Coomarasamy A. Association
385		between response to ovarian stimulation and miscarriage following IVF: an
386		analysis of 124 351 IVF pregnancies. Hum Reprod. Jun 2014;29(6):1218-1224.
387	19.	Supramaniam PR, Mittal M, McVeigh E, Lim LN. The correlation between raised
388		body mass index and assisted reproductive treatment outcomes: a systematic
389		review and meta-analysis of the evidence. Reprod Health. Feb 27 2018;15(1):34.
390	20.	Sermondade N, Huberlant S, Bourhis-Lefebvre V, et al. Female obesity is
391		negatively associated with live birth rate following IVF: a systematic review and
392		meta-analysis. Hum Reprod Update. Jul 1 2019;25(4):439-451.
393	21.	Sarais V, Pagliardini L, Rebonato G, Papaleo E, Candiani M, Vigano P. A
394		Comprehensive Analysis of Body Mass Index Effect on in Vitro Fertilization
395		Outcomes. Nutrients. Feb 23 2016;8(3):109.
396	22.	Whynott RM, Summers KM, Van Voorhis BJ, Mejia RB. Effect of body mass

- 397 index on intrauterine insemination cycle success. Fertil Steril. Jan
- **2021;115(1):221-228**.
- 399 23. Metwally M, Cutting R, Tipton A, Skull J, Ledger WL, Li TC. Effect of increased
- 400 body mass index on oocyte and embryo quality in IVF patients. Reprod Biomed
- 401 Online. Nov 2007;15(5):532-538.
- 402 24. Ding X, Kou X, Zhang Y, Zhang X, Cheng G, Jia T. Leptin siRNA promotes
- 403 ovarian granulosa cell apoptosis and affects steroidogenesis by increasing NPY2
- 404 receptor expression. Gene. Oct 30 2017;633:28-34.
- 405 **25.** Mitchell M, Armstrong DT, Robker RL, Norman RJ. Adipokines: implications for
- 406 female fertility and obesity. Reproduction. Nov 2005;130(5):583-597.
- 407 26. Samy N, Hashim M, Sayed M, Said M. Clinical significance of inflammatory
- 408 markers in polycystic ovary syndrome: their relationship to insulin resistance and
- 409 body mass index. Dis Markers. 2009;26(4):163-170.
- 410 27. Ovalle A, Martinez MA, Fuentes A, et al. [Obesity, a risk factor for ascending
- 411 bacterial infection during pregnancy]. Rev Med Chil. Apr 2016;144(4):476-482.
- 412 28. Wessels JM, Felker AM, Dupont HA, Kaushic C. The relationship between sex
- 413 hormones, the vaginal microbiome and immunity in HIV-1 susceptibility in
- 414 women. Dis Model Mech. Aug 28 2018;11(9).
- 415 29. Wang L, Xu J, Niu W, Hu L, Zhang Y, Sun Y. Genetic testing on products of
- 416 conception and its relationship with body mass index. J Assist Reprod Genet.
- 417 Aug 2020;37(8):1853-1860.
- 418 **30.** Tang S, Huang J, Lin J, Kuang Y. Adverse effects of pre-pregnancy maternal

- 419 underweight on pregnancy and perinatal outcomes in a freeze-all policy. BMC
- 420 Pregnancy Childbirth. Jan 7 2021;21(1):32.
- 421 31. Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with
- 422 obesity in pregnancy, for the mother and baby: a systematic review of reviews.
- 423 Obes Rev. Aug 2015;16(8):621-638.
- 424 32. Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term
- 425 and long term adverse consequences for mother and child. BMJ. Feb 8
- 426 **2017;356:j1**.
- 427 33. Ding W, Zhang FL, Liu XC, et al. Impact of Female Obesity on Cumulative Live
- 428 Birth Rates in the First Complete Ovarian Stimulation Cycle. Front Endocrinol
 429 (Lausanne). 2019;10:516.
- 430 34. Wang X, Hao J, Zhang F, Li J, Kong H, Guo Y. Effects of female and male body
- 431 mass indices on the treatment outcomes and neonatal birth weights associated
- 432 with in vitro fertilization/intracytoplasmic sperm injection treatment in China. Fertil
- 433 Steril. Aug 2016;106(2):460-466.
- 434 35. Taghavi SA, van Wely M, Jahanfar S, Bazarganipour F. Pharmacological and
- 435 non-pharmacological strategies for obese women with subfertility. Cochrane
- 436 Database Syst Rev. Mar 25 2021;3:CD012650.
- 437 36. Heymsfield SB, Wadden TA. Mechanisms, Pathophysiology, and Management of
 438 Obesity. N Engl J Med. Jan 19 2017;376(3):254-266.
- 439 37. Hoeger KM. Role of lifestyle modification in the management of polycystic ovary
- syndrome. Best Pract Res Clin Endocrinol Metab. Jun 2006;20(2):293-310.

441	38.	Legro RS, Dodson WC, Kunselman AR, et al. Benefit of Delayed Fertility
442		Therapy With Preconception Weight Loss Over Immediate Therapy in Obese
443		Women With PCOS. J Clin Endocrinol Metab. Jul 2016;101(7):2658-2666.
444	39.	Sun YF, Zhang J, Xu YM, et al. High BMI and Insulin Resistance Are Risk
445		Factors for Spontaneous Abortion in Patients With Polycystic Ovary Syndrome
446		Undergoing Assisted Reproductive Treatment: A Systematic Review and Meta-
447		Analysis. Front Endocrinol (Lausanne). 2020;11:592495.
448	40.	Tziomalos K, Dinas K. Obesity and Outcome of Assisted Reproduction in
449		Patients With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne).
450		2018;9:149.
451		
452		
453		
454		
455		
456		
457		
458		
459		
460		
461		
462		

463	
464	
465	
466	
467 468	Table 1: Baseline characteristics of women older than 35 years old with DOR
469	Table 2: Treatment and pregnancy outcomes of DOR patients older than 35 years old
470 471	Table 3: Logistic regression analysis of miscarriage related factors
472 473	Table 4: Logistic regression analysis of live birth related factors
474	
475 476	Figure1: Flow chart of the patients enrolled and the grouping
477 478	Figure2: Key factors affecting the miscarriage rate and the live birth rate
479	
480 481	
482 483	
484	
485 486	
487	
488 489	
490	
491 492	
493 494	
495	
496 497	
498	
499 500	
501 502	
00L	

Table 1: Baseline characteristics of women older than 35 years old with DOR

	Total	Underweight	Normal weight	Overweight	Obesity	<i>P</i> -value
Number of cycles	2052	56(2.7%)	1389(67.7%)	527(25.7%)	80(3.9%)	-
Male parameters						
Age(y) ^{ab}	40.6±4.3	40.0±4.3	40.6±4.3	41.1±4.4	40.2±4.0	0.001
BMI(kg/m ²)	25.4±3.0	24.7±3.2	25.3±3.0	25.4±3.1	26.0±3.1	0.187
Female parameters						
Age(y) ^{bcd}	39.9±3.0	38.7±2.5	39.7±2.9	40.5±3.2	40.3±3.3	< 0.001
Menstrual cycle(day) ^e	28.8±8.6	27.8±1.6	28.4±7.2	29.6±12.0	30.8±7.9	0.002
BMI ^{abcdef}	23.0±2.7	17.7±0.7	21.8±1.4	25.6±1.1	29.5±1.7	< 0.001
Baseline FSH(IU/L) bcef	11.4(10.1-13.9)	12.0(10.2-14.4)	11.6(10.2-14.3)	11.1(9.5-13.2)	10.4(8.1-14.3)	< 0.001
Baseline LH(IU/L) ^{cde}	5.3(3.8-6.9)	6.1(4.3-7.0)	5.5(4.0-7.2)	4.9(3.5-6.2)	4.2(2.9-5.9)	< 0.001
AMH (ng/mL)	0.7(0.5-0.9)	0.8(0.7-1.0)	0.7(0.5-0.9)	0.6(0.4-0.8)	0.6(0.4-0.9)	0.033
AFC(n) ^b	4.0(3.0-7.0)	6.0(3.0-7.0)	4.0(3.0-7.0)	4.0(2.0-6.0)	4.0(2.0-7.0)	0.010
Infertility diagnosis, n(%)						0.271 ^α
Primary infertility	342(16.7%)	14(25.0%)	230(16.6%)	82(15.6%)	16(20.0%)	
Secondary infertility	1710(83.3%)	42(75.0%)	1159(83.4%)	445(84.4%)	64(80.0%)	
Previous IVF/ICSI attempts(n)	0.0(0.0-1.0)	0.0(0.0-1.0)	0.0(0.0-1.0)	0.0(0.0-1.0)	0.0(0.0-1.0)	0.411

514 " α " means chi-square test. Statistical significance is defined as P < 0.05.

515 Abbreviations: BMI=body mass index; FSH =follicle stimulating hormone;

516 LH=luteinizing hormone; AMH=anti-Mullerian hormone; AFC=antral follicle count;

517 IVF=in vitro fertilization; ICSI=intracytoplasmic sperm

518 Letter a, b, c, d, e, f indicated significant difference between groups.

⁵¹⁹ ^a*P*: Comparison between Underweight and Normal weight patients.

⁵²⁰ ^b*P*: Comparison between Underweight and Overweight patients.

521 °P: Comparison between Underweight and Obese patients.

522 ^d*P*: Comparison between Normal weight and Overweight patients.

⁵²³ ^e*P*: Comparison between Normal weight and Obese patients.

⁵²⁴ ^f*P*: Comparison between Overweight and Obese patients.

Table 2: Treatment and pregnancy outcomes of DOR patients older than 35 years old

	Total	Underweight	Normal weight	Overweight	Obesity	P-value
Number of cycles	2052	56(2.7%)	1389(67.7%)	527(25.7%)	80(3.9%)	-
Gn initial dose(IU)	270.8±65.2	273.2±54.5	268.3±68.2	276.2±58.9	277.5±53.6	0.071
Gn dosage(IU)	3386.4±1210.2	3309.6±848.7	3338.2±1218.3	3484.8±1236.8	3631.1±1044.4	0.097
Endometrial thickness on HCG day(mm)	11.3±3.6	11.6±2.6	11.3±3.9	11.4±2.8	11.4±2.5	0.530
No. of retrieved oocytes(n)	4.0(2.0-6.0)	4.0(3.0-6.0)	4.0(2.0-6.0)	4.0(2.0-6.0)	4.0(2.3-6.0)	0.389
No. of available embryos(n)	4.0(2.0-6.0)	4.0(3.0-6.0)	4.0(2.0-6.0)	4.0(2.0-6.0)	4.0(2.3-6.0)	0.427
No. of embryos transferred(n)	2.0(1.0-2.0)	2.0(2.0-2.0)	2.0(1.0-2.0)	2.0(1.0-2.0)	2.0(1.0-2.0)	0.068
Embryo stage at transfer,n(%)						0.646 ^β
Cleavage stage	2024(98.6%)	55(98.2%)	1368(98.5%)	522(99.1%)	79(98.8%)	
Blastocyst stage	28(1.4%)	1(1.8%)	21(1.5%)	5(0.9%)	1(1.3%)	
Implantation rate, [%(n/N)]	16.3%(590/3613)	13.6%(15/110)	16.4%(402/2454)	16.1%(147/912)	19.0%(26/137)	0.644
Clinical pregnancy rate, [%(n/N)]	25.5%(524/2052)	25.0%(14/56)	25.8%(358/1389)	24.9%(131/527)	26.3%(21/80)	0.978
Miscarriage rate, [%(n/N)] ^{bcde}	35.5%(186/524)	50%(7/14)	31.0%(111/358)	44.3%(58/131)	47.6%(10/21)	0.015 ^β
No. of live births(n)	1.0(0.0-1.0)	1.0(0.0-1.5)	1.0(1.0-1.0)	1.0(0.0-1.0)	1.0(0.8-1.3)	0.674
Live birth rate, [%(n/N)] ^{cef}	61.5%(322/524)	35.7%(5/14)	65.6%(235/358)	54.2%(71/131)	52.4%(11/21)	0.016 ^α
CCPR, [%(n/N)]	36.7%(753/2052)	35.7%(20/56)	37.3%(518/1389)	34.3%(181/527)	42.5%(34/80)	0.449 ^α
CLBR, [%(n/N)]	57.6%(434/753)	45.0%(9/20)	59.7%(309/518)	54.1%(98/181)	52.9%(18/34)	0.336α

" α "means chi-square test. " β "means Fisher test. Statistical significance is defined as P < 0.05. Abbreviations: Gn=gonadotropin; IU=international unit; HCG= human chorionic gonadotropin; CCPR=Cumulative clinical pregnancy rate; CLBR=Cumulative live birth rate. ^b*P*: Comparison between Underweight and Overweight patients. ^c*P*: Comparison between Underweight and Obese patients. ^d*P*: Comparison between Normal weight and Overweight patients. ^e*P*: Comparison between Normal weight and Obese patients. ^f*P*: Comparison between Overweight and Obese patients.

Table 3: Logistic regression analysis of miscarriage related factors

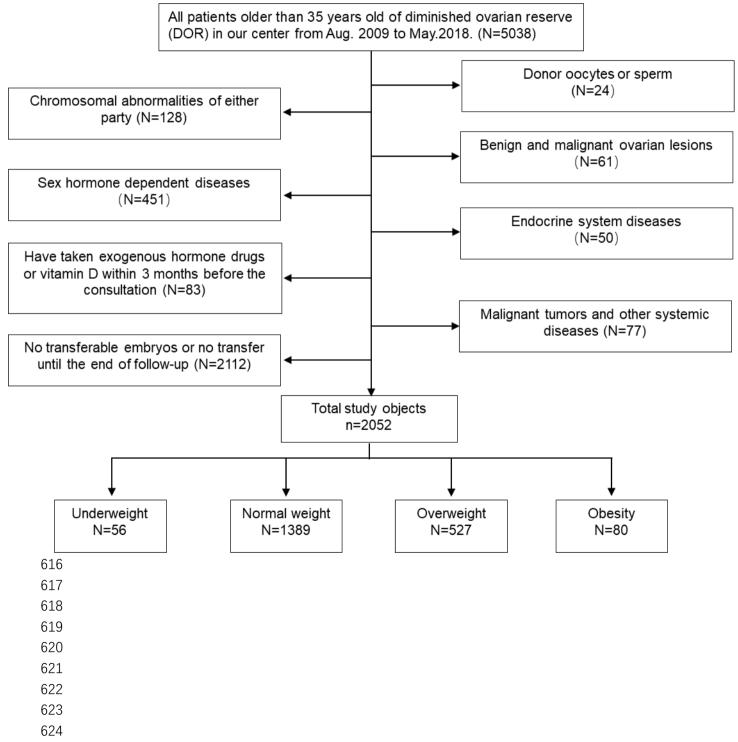
	Univariable ana	lysis	Multivariable analysis		
	Crude OR(95%CI)	<i>P</i> -value	Adjusted OR(95%CI)	P-value	
Male age	1.05(1.01-1.09)	0.022	1.08(0.99-1.19)	0.097	
Female age	1.19(1.10-1.29)	< 0.001	1.13(0.97-1.32)	0.115	
Menstrual cycle	1.00(0.99-1.01)	0.924	1.00(0.98-1.02)	0.945	
BMI					
Underweight	2.22(0.76-6.47)	0.145	2.67(0.53-13.47)	0.234	
Normal weight	1*		1*		
Overweight	1.76(1.17-2.66)	0.007	2.41(1.20-4.83)	0.013	
Obesity	2.02(0.83-4.88)	0.121	6.41(1.38-29.70)	0.018	
Baseline FSH	1.03(0.99-1.07)	0.156	1.01(0.94-1.10)	0.729	
Baseline LH	1.01(0.98-1.05)	0.422	1.03(0.99-1.07)	0.207	
АМН	0.92(0.60-1.43)	0.718	0.91(0.46-1.80)	0.789	
AFC	0.96(0.91-1.01)	0.142	0.99(0.87-1.13)	0.893	

⁵⁶⁶ *This variable functions as an indicator. Other categories of the same variable were

567 compared with it. Abbreviations: OR, odds ratio; aOR, adjusted odds ratio; CI,

568 confidence interval. Statistical significance is defined as P < 0.05.

584	
585	
586	
587	
588	
589	
590	


Table 4: Logistic regression analysis of live birth related factors

	Univariable analysis		Multivariable and	lysis
	Crude OR (95%CI)	P-value	Adjusted OR(95%CI)	<i>P</i> -value
Male age	1.05(1.01-1.09)	0.022	0.94(0.86-1.03)	0.153
Female age	1.19(1.10-1.29)	< 0.001	0.88(0.76-1.03)	0.106
Menstrual cycle	1.00(0.99-1.01)	0.924	1.00(0.98-1.02)	0.911
BMI				
Underweight	2.22(0.76-6.47)	0.145	0.15(0.03-0.73)	0.019
Normal weight	1*		1*	
Overweight	1.76(1.17-2.66)	0.007	0.46(0.23-0.91)	0.026
Obesity	2.02(0.83-4.88)	0.121	0.20(0.04-0.91)	0.037
Baseline FSH	1.03(0.99-1.07)	0.156	0.98(0.91-1.06)	0.682
Baseline LH	1.01(0.98-1.05)	0.422	0.97 (0.93-1.01)	0.179
АМН	0.92(0.60-1.43)	0.718	1.30(0.66-2.56)	0.453
AFC	0.96(0.91-1.01)	0.142	0.99(0.88-1.13)	0.928

*This variable functions as an indicator. Other categories of the same variable were
compared with it. Abbreviations: OR, odds ratio; aOR, adjusted odds ratio; CI,
confidence interval. Statistical significance is defined as P < 0.05.

594	
595	
596	
597	
598	

615 Figure 1: Flow chart of the patients enrolled and the grouping

626
627
628
629
630
631
632 Figure2: Key factors affecting the miscarriage rate and the live birth rate

