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Abstract
Background The association between cholesterol efflux capacity (CEC) with the occurrence and
prognosis of coronary artery disease (CAD) remains unrevealed. In our study, a systematic review was
performed to quantitively analyze the association between CEC and the risk of CAD and follow-up
endpoint events of the patients with CAD.

Methods A systematic search of electronic databases (PubMed, EMBASE, OVID, Web of Science and
Cochrane Library) for studies published until September 2019 was performed. Cohort, case-control
studies, and randomized controlled trials that examined the effect of CEC on risk and prognosis of CAD
were included.

Results Eighteen studies involving a total of 12615 subjects that met the inclusion criteria were included.
Among them, 14 studies reported the CEC levels in control and CAD group and 8 of them analyzed the
association of CEC with risk of CAD. Four studies reported the prognosis of CAD or acute coronary
syndrome (ACS). From the pooled analyses, significantly decreased CEC level was shown in patients with
stable CAD in comparison with the control. It was also true in subgroup analysis of the patients with ACS.
The decreased CEC was significantly associated with increased risk of CAD (OR=0.65, 95% CI: 0.55-0.75,
P<0.001). Decreased CEC level predicted higher all-cause (OR= 0.39, 95% CI: 0.20-0.77, P=0.007) and
cardiovascular related mortality (OR= 0.34, 95% CI: 0.13-0.90, P=0.03) risk in patients with CAD. However,
CEC levels failed to predict the occurrence of stroke and myocardial infraction in patients with CAD.

Conclusions Decreased cholesterol efflux capacity is an independent risk factor for the occurrence of CAD
patients, and its level predicts all-cause and cardiovascular related mortality risk in patients with CAD.
Prospective studies should further investigate whether CEC control might improve outcomes in CAD
patients.

Introduction
Coronary artery disease (CAD) represents the leading cause of death across the world and its morbidity is
persistently increasing globally. It is estimated that approximately 35~60% of deaths worldwide would be
attributed to cardiovascular diseases by 2025[1]. Generally, CVD is consisted with a wide spectrum of
heart diseases, ranging from asymptomatic ischemia to chronic stable angina pectoris, acute coronary
syndrome, unstable angina, acute myocardial infarction, ischemic cardiomyopathy and sudden death.
CAD is a multi-factorial disease, a series of risk factors, including dysregulated cholesterol, hypertension,
diabetes and smoking are accounted for its onset and progression. In addition to these traditional
identified risks, infection, inflammatory and chronic diseases are suggested to be risk factors of
cardiovascular diseases.

Multiple epidemiological studies documented that CAD patients presented reduced high density
lipoprotein-cholesterol (HDL-C) and HDL-C level negatively predicted the occurrence of CAD, which
proposed a rational for raising HDL-C for the treatment of CAD [2]. Unfortunately, the clinical trials for
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evaluating the clinical efficacy of HDL-C raising therapeutics have ceased for not observing the priority of
these drugs in reducing cardiovascular events [3]. Furthermore, it is considered that in normal healthy
states, HDL exhibits anti-inflammatory, anti-oxidative and reverse cholesterol transport effects to resist
atherosclerosis. However, the anti-atherogenic properties of HDL could be reversed in case of the
pathological conditions, such as inflammation, diabetes, and oxidative stress [4]. Therefore, given that
HDL-C content may not an independent protective factor for CVS and it is modifiable under certain
circumstance, more interest has been gradually shifted from raising HDL-C to improving HDL function.

Recent studies demonstrate that HDL function may serve as a better predictor of atherosclerotic risk than
HDL-C concentrations[5]. Among the functions exerted by HDL, promoting reverse cholesterol transport
from the periphery to the liver for further use is one of key anti-atherogenic function of HDL, and
cholesterol efflux from macrophages to HDL act the first crucial step for reverse cholesterol transport.
Macrophage-specific cholesterol efflux capacity (CEC) has been reported to be directly associated with
the alleviation of murine atherosclerosis[6]. Meanwhile, CEC was confirmed to be reduced in patients with
CAD and heart failure [7, 8]. CEC is inversely associated with carotid intima-media thickness in patients
with end-stage renal disease, independent of HDL-C concentrations[9]. A prospective cohort study showed
that CEC may serve as an independent measure for predicting all-cause and cardiovascular mortality in
patients with coronary artery disease[10]. However, not all studies investigating the association between
CEC and CVD reached a consensus. Li et al found that higher cholesterol efflux capacity was
paradoxically associated with increased risk of non-fatal MI or stroke and major adverse cardiovascular
events[11]. Study by Ormseth et al showed that net cholesterol efflux capacity is not significantly altered
in patients with relatively well-controlled RA nor is it significantly associated with coronary artery calcium
score[5]. Therefore, whether CEC is independent of HDL-C as a biomarker for CAD risk and prediction of
prognosis are unanswered. To comprehensively analyze the association between CEC and CAD, we
summarized the data and performed a systematic review to explore the indicative importance of CEC in
the risk prediction and prognosis of CAD.

Materials And Methods

Databases and search strategy
Published studies were retrieved by two independent authors from the electronic databases (Medline,
PubMed, EMBASE, OVID, Web of Science, The Cochrane Library) from Jan 1970 to Sep 2019. The
following key words in combination as both MeSH terms and text words were used: “cholesterol efflux
capacity” AND “coronary artery disease” OR “coronary heart disease” OR “myocardial infarction” OR
“acute coronary syndrome” OR “unstable angina”. Only publications in English were included. In addition,
bibliographies of included articles and pertinent reviews were also manually performed to identify any
additional relevant studies. Reporting of this meta-analysis is adhere to the PRISMA statement as
described [12]. Titles and abstracts were screened by two independent reviewers and full articles were
retrieved in cases of missing abstracts.
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Study selection
Eligible studies were enrolled based on the following inclusion and exclusion criteria. Inclusion criteria: (1)
case-control, cohort and randomized controlled trails as study design; (2) cholesterol efflux capacity
detection method and baseline level of CEC were described; (3) patients with CAD and aged over 18 years;
(4) reporting the risk of CAD in low and high CEC groups; (5) reporting the follow-up occurrence of MACE
(death, myocardial infarction, and cerebrovascular events including stroke and transient ischemic
attacks) or restenosis. Exclusion criteria: (1) Detecting the CEC level using unreported method; (2) heart
failure not directly preceded by a CAD diagnosis; (3) conference abstract, reviews or letter to editor as
study design. Full text data extraction was conducted by two independent evaluators.

Data abstraction and study quality assessment
Two authors independently screened the titles or abstracts, and got access to full-text of eligible articles.
Following information were extracted from the included studies: (1) publication information: name of the
first author, year of publication, geographical location; (2) baseline characteristics: type of CAD diseases,
number of patients, mean age of patients, gender; CEC detection method, absolute level, cut-off point of
CEC (3) follow-up information: definition of cardiac event, number of each event, follow-up time, fully
adjusted risk estimate, adjustment for confounders, and study quality score. A nine-star Newcastle-
Ottawa Scale (NOS) was applied to assess the quality and risk of bias of the included publications
involving selection of study groups, comparability of groups, and ascertainment of outcomes. Studies
that scored ≥7 stars are considered of high quality. Two independent evaluators executed the NOS
assessment and any discrepancies were resolved by discussion with a third reviewer and reached an
agreement.

Statistical analyses
All analyses were performed using Review Manager (RevMan) 5.3 (Cochrane Collection, Copenhagen,
Denmark) or STATA 12.0 (StataCorp, TX, USA). CEC levels were compared between patients with or
without CAD either as absolute values or dichotomized as high vs. low. The multivariate-adjusted RR and
95% CI for all-cause mortality, cardiac death, and cardiac events were pooled by comparing the high with
the low CEC level group. Heterogeneity among the included studies was indicated by the I2 statistic and
Cochrane Q test. In case of I2 statistic> 50% or p-value of Cochrane Q test< 0.1, a random effect model
was applied. Otherwise, a fixed-effect model was selected. Subgroup analyses were conducted by the
type of CAD (stable CAD or ACS). Sensitivity analysis was performed by a leave-one-out study approach
in order to observe the reliability of the pooling risk summary. A visual funnel plot and the Egger’s linear
regression test were performed to examine the publication bias when the outcomes included at least 5
studies.
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Results

Study selection and characteristics of the included studies
The study selection process is delineated in a flow chart of Fig.1. A total of 665 studies were potentially
identified from the electronic database search and reference lists checking using our search strategy, and
458 studies were excluded because of their repetition after an overall review of the titles and abstracts.
After excluding 166 other studies designed as case reports, letters to editor, review articles, in vitro studies,
animal studies, 41 articles in full-text article were assessed for eligibility. Finally, 18 articles reporting
outcomes of interest were included in the meta-analysis[2, 3, 7, 8, 10, 13–25]. Of them, 12 studies were
designed as case-control studies and 6 were cohort studies. Thirteen studies reported the CEC levels in
control and case group[3, 7, 8, 13–16, 18, 20–24]. Eight of them analyzed the association between CEC
and the risk of stable CAD or ACS [7, 8, 16, 18, 19, 21–23]. Four studies reported the prognosis of stable
CAD or ACS [2, 10, 17, 25].

A total number of 12,685 subjects were included, with sample sizes varying from 40 to 3,494 in individual
study. Five studies enrolled ACS patients and eleven studies enrolled patients with stable CAD. An ex vivo
detection system using J774 cells for measuring the CEC levels was applied in 11 of the included studies,
and a THP–1 macrophage/monocyte system was use in 5 studies. Total NOS score of individual studies
ranged from 6 to 8 stars. The main characteristics of the selected studies for comparing CEC levels and
estimating the effect of CEC on the occurrence of heart diseases are summarized in Table 1. The
characteristics of the studies reported the prognosis of CAD or ACS are summarized in Table 2.

Comparison of cholesterol efflux capacity level between
CAD and non-CAD subjects
Thirteen studies presented data and comparison of the CEC levels in control and case group. As shown in
Fig.2, a total of 3,334 patients with CAD or ACS were included with 3,336 control subjects. Twelve studies
showed decreased CEC in CAD or ACS patients. A pooled mean difference between case and control
group was –0.44 [95% CI: –0.63- –0.25] and a significant difference was indicated between the two
groups with regarding to the comparison on CEC levels (Z = 4.58, P< 0.001). We then performed a
subgroup analysis on stable CAD patients and ACS patients, and the results showed that CEC levels were
significantly lower either in stable CAD (Z = 3.50, P = 0.0005) or ACS (Z = 8.90, P<0.001) patients
comparing to the control (Fig.2a and 2b). Furthermore, we performed subgroup analysis considering the
difference in presenting the values of CEC level. The data revealed the substantial difference between the
case and groups, either expressed in arbitrary units (Fig.3a) or as a percentage of change (Fig.3b).

Baseline cholesterol efflux capacity and the occurrence risk
of CAD
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The association between baseline CEC levels with the risk of CAD or ACS were evaluated in 8 of the
included studies. As shown in Fig.4a, the pooled odds ratios of the included studies were 0.65 [95% CI:
0.55–0.75]. When removing one study on ACS, the pooled odds ratio had no substantial changes [0.70,
95% CI: 0.64–0.76] (Fig.4b). We found there were significant associations between baseline CEC level and
risk of CAD/ACS (Z = 5.56, P<0.001) or stable CAD (Z = 7.84, P<0.001).

Baseline cholesterol efflux capacity and the prognosis of
CAD
Four cohort studies reporting the long-term follow up outcome of the CAD and ACS were included. The
media follow-up time ranged from 3 years to 10.8 years. The pooled ORs of all-cause mortality were 0.39
[95%CI:0.20–0.77], and increase of CEC levels was significantly associated with the decrease of risk of
death in these patients (Z = 2.72, P = 0.007) (Fig.5a). Besides, the combined ORs for cardiovascular
mortality between higher and lower CEC groups were 0.34 [95% CI: 0.13–0.90], and significant
association was suggested (Z = 2.17, P = 0.03) (Fig.5b). No significant associations between CEC levels
with the risk of stroke or myocardial infarction were indicated in the pooled studies (Fig.5c and 5d).

Evaluation for publication bias
Funnel plot to evaluate publication bias is shown in Figure 6. The graph is fairly symmetric and only mild
publication bias is suggested.

Discussion
Cardiovascular diseases rank the leading cause of death and global medical burden a in both developed
and developing countries. However, the exact mechanisms for the occurrence and development of
cardiovascular diseases are unrevealed. In this systematic review and meta-analysis, we pooled the
cholesterol efflux capacity data for 12,685 subjects from 18 eligible published studies. The pooled data
suggested that CEC levels were largely decreased in patients with stable CAD or ACS, and the decreased
CEC levels were associated the poor prognosis of all-cause mortality and cardiovascular mortality in
these patients. However, no exact correlation was found between CEC levels with the occurrence of stable
CAD.

Numerous epidemiological studies revealed that decreased levels of high-density lipoprotein cholesterol
(HDL-C) was associated with increased cardiovascular risk. However, pharmacological intervention
aiming to raise serum HDL-C levels failed to reduce the incidence of cardiovascular disease events as
assessed in several randomized controlled trials. Study by Hafiane et al. supposed that HDL-C mass did
not reflect HDL functionality and macrophage-specific cholesterol efflux to apo A-I particles binding to the
ABCA1 is considered the most relevant to atherosclerosis [26]. Cholesterol efflux from macrophages is
considered a crucial step of reverse cholesterol transport that is responsible for maintaining normal
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cholesterol balance. Previous study revealed that RCT had a strong inverse association with carotid
intima-media thickness and CAD likelihood independent of HDL-C level [3]. Therefore, cholesterol efflux
capacity reflects the global ability of cholesterol efflux from macrophages.

Our meta study included 11 case-control studies and 2 cohort studies for comparing the levels of CEC
between non-CAD subjects and patients with stable CAD or ACS. The pooled data showed that almost all
studies reported decrease of CEC in CAD patients except that described in study by Asztalos [14]. The
controversy was explained by the authors for the influence of preβ–1 concentration and differences in the
study populations or in lipid-modifying interventions. We further divided the whole sample into stable
CAD and ACS, and significant decrease of CEC was found in these two subgroups. Besides, we noticed
that the values of CEC were expressed either in percentage or activity in arbitrary units. It was also true for
the significant lower levels of CEC in patient group in spite of the difference in data presentation.

Emerging evidence demonstrated that CEC had an inverse relationship with incidence of cardiovascular
events in population-based studies and CEC improve cardiovascular disease risk prediction beyond
conventional risk factors [26]. It was also concluded that measures of HDL function might be a better
marker of cardiovascular risk and, possibly, of recurrent events than are HDL cholesterol levels [27]. In this
meta-analysis, 8 studies detailed the association between CEC levels and occurrence risk of
cardiovascular diseases. The combined studies showed that decreased CEC was significantly associated
with the risk of coronary heart disease, and this association also existed in stable CAD. However, whether
CEC level correlated with the occurrence of ACS was unexamined because only one study fulfilled this
analysis.

Finally, we explored the relations between baseline CEC levels with the prognosis of CAD, and endpoints
events including all-cause mortality, cardiovascular mortality, stroke and myocardial infarction were
extracted and analyzed. A large-scale prospective cohort study by Liu et al [10] demonstrated a
relationship between cholesterol efflux capacity and risk of all-cause and cardiovascular mortality in
patients with CAD. Meanwhile, adding CEC to a model containing traditional cardiovascular risk factors
significantly increased discriminatory power and predictive value of all cause and cardiovascular
mortality in patients with CAD. Rohatgi et al. did not find an association between cholesterol efflux
capacity and cardiovascular death because of small numbers of events [2]. In this pooled study, CEC was
confirmed to be a predictor for all-cause and cardiovascular mortality for patients with CAD. However, no
association was indicated between CEC and stroke or myocardial infarction.

In conclusion, our study revealed that cholesterol efflux capacity was significantly lower in patients with
stable coronary artery diseases and acute coronary syndrome compared with the control subjects.
Cholesterol efflux capacity levels was associated with the incidence of CAD and could serve as a
predictor for all-cause and cardiovascular mortality. These findings support implementation of
cholesterol efflux capacity into clinical practice and stress the need to establish reference values.
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Table 1 Summary of the characteristics of the included studies for cholesterol efflux capacity level comparison
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Author Region Study design Control Case Sample
size

Ages(years) CHD types Ex vivo cells

Agarwala,
2015[13]

USA case-control 120 55 175 69 ± 12 vs.
64 ±11

CAD J774

Asztalos,
2018[14]

USA case-control 100 100 200 55±16
vs.61±7

stable CAD J774

Attia,
2007[15]

Tunisia case-control 35 35 70 52.74 ±
7.81 vs.
56.75 ±
5.83

CAD Fu5AH cells

Ebtehaj,
2019[16]

Sweden case-control 354 351 705 59.0 ±10.9
vs. 59.1 ±
10.7

incident
cardiovascular
event

THP-1
macrophages

Ishikawa,
2015[18]

Japan case-control 72 182 254 64.3 ± 9.8
vs. 66.2 ±
10.3

CAD J774

Khera,
2011[19]

USA nested case-
control

314 314 628 51±8 vs.‐
62±9

CAD J774

Luo,
2018[20]

China case-control 90 120 210 63.09±8.25
vs. 63.96±
7.85

ACS THP-1
monocytes

Luo,
2017[3]

China case-control 99 140 239 62.81 ±
8.01 vs.
63.10 ±
8.42

ACS THP-1
monocytes

Norimatsu,
2017[7]

Japan prospective
cohort

146 58 204 65(59-72) stable angina J774

Patel,
2013[8]

USA nested case–
control

46 23 69 57.8± 8 vs.
58.2± 10

angiographic
CAD

J774

Saleheen,
2015[21]

UK case-control
study

1749 1745 3494 65±7.8 vs.
66·1 ±7·48

CAD J774

Shao,
2014[22]

China case-control 20 20 40   ACS BHK cells

Stein,
2019 [23]

USA cohort 465 465 930 45-85 baseline
healthy

THP-1
monocytes

Wang,
2018[24]

China cross-
sectional
case-control
study

40 40 80 NA CAD J774

 

 

 

 

Table 2 Summary of the characteristics of the included studies for prognosis analysis
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Author Region Study design Sample
size

Ages(years) CHD
types

Methods

Guerin,
2018[17]

France-
Europe

prospective
cohort

1609 63.4±14.1 acute MI THP-1
macrophages

Liu, 2016[10] China prospective
cohort

1737 40-75 CAD J774

Rohatgi,
2014[2]

USA cohort 2416 42 (36-51) CAD J774

Zhang,
2016[25]

China prospective
cohort

330 65±11 ACS J774

 

 

Figures
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Figure 1

Flow chart of the included cholesterol efflux capacity studies for meta-analysis.

Figure 2

Comparison of mean cholesterol efflux capacity in patients with coronary heart diseases and control
patients. (a) Mean cholesterol efflux capacity in patients with stable coronary artery diseases (b) Mean
cholesterol efflux capacity in patients with acute coronary syndrome. Data are expressed as a mean
difference and analyzed using a random effects model.
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Figure 3

Subgroup analysis of mean cholesterol efflux capacity in patients and control patients. Data is expressed
as a mean difference and analyzed using a random effects model. (a) Comparison of cholesterol efflux
capacity expressed in arbitrary units. (b) Comparison of cholesterol efflux capacity expressed as a
percentage.
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Figure 4

Effects of cholesterol efflux capacity on the risk of cardiovascular heart diseases. Data is expressed as a
risk ratio and analyzed using a random effects model. (a) stable CAD and ACS; (b) ACS.
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Figure 5

The predictive efficiency of cholesterol efflux capacity on the prognosis of CAD. (a) all-cause mortality; (b)
cardiovascular mortality; (c) stroke and (d) myocardial infarction.
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Figure 6

Funnel plot of the publication bias for studies involving the comparison of cholesterol efflux capacity


