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Nonlinear characteristics of a multi-degree-of-freedom wind turbine’s gear

transmission system involving friction

Qiang Zhanga, Xiaosun Wang∗, Shaobo Cheng, Fuqi Xie, Shĳing Wu

aDepartment of Mechanical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072,

P.R.China

Abstract

In this study, a 42-degree-of-freedom (42-DOF) translation-torsion coupling dynamics model of the wind

turbine’s compound gear transmission system considering time-varying meshing friction, time-varying meshing

stiffness, meshing damping, meshing error and backlash is proposed. Considering the different meshing between

internal and external teeth of planetary gear, the time-varying meshing stiffness is calculated by using the

cantilever beam theory. An improved mesh friction model takes account into the mixing of elastohydrodynamic

lubrication (EHL) and boundary lubrication to calculate the time-varying mesh friction. The bifurcation

diagram is used to analyze the bifurcation and chaos characteristics of the system under the excitation frequency

as bifurcation parameter. Meanwhile, the dynamic characteristics of the gear system are identified from the time

domain diagrams, phase diagrams, Poincare maps and amplitude-frequency spectrums of the gear system. The

results show that the system has complex bifurcation and chaotic behaviors including periodic, quasi-periodic,

chaotic motion. The bifurcation characteristics of the system become complicated and the chaotic region

increases considering the effects of friction in the high frequency region.

Keywords: Compound gear transmission system(CGTS), time-varying meshing friction(TVMF),

time-varying meshing stiffness (TMVS), mixed elastohydrodynamic lubrication (MEHL), nonlinear dynamic

characteristic.

1. Introduction

Compound gear transmission system is one of the most important transmission device in wind turbine. Due

to harsh operation environment, multi-aspect excitations and complicated structure, wind turbine’s compound

gear transmission system is considered vulnerable in most cases. Thus, it is necessary to study the nonlinear

dynamic characteristics of wind turbine’s compound gear transmission system and evolution mechanism by

establishing reliable dynamic model of compound gear transmission system to ensure the safe and stable

operation for wind turbine’s compound gear transmission system.

A number of research studies have been conducted on the dynamics modeling of planetary gear systems[1].

Ambarisha and parker[2,3] adopts analytical model and finite element model to study the nonlinear dynamics

of planetary gear, and proposes a lumped parameter analytical model. By comparing with the finite element

results in the complex nonlinear dynamics range in the system, the validity of the model is verified. Zhou et

al.[4]established multi-degree-of-freedom dynamic model considering the coupling lateral-torsional vibration.

and the coupled multi-body dynamics of the spur gear rotor bearing system was studied containing backlash,
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transmission error, eccentricity, gravity. The dynamic behaviors were investigated in different system param-

eters. Wang et al.[5] established the planetary gear transmission system considering the coupling effects of

multiple nonlinear factors. The Runge-Kutta numerical method is used to solve the system vibration equation.

Wang et al.[6] established 8-DOF gear system and applied improved meshing stiffness model to calculate the

time-varying meshing stiffness. The dynamic chaos and bifurcation behavior of translational - torsional coupled

system are analyzed. Zhu et al.[7] studied the influence of backlash on the shell differential planetary gear

system. The results show that the backlash will cause the bilateral impact of the meshing tooth, resulting in

chaotic motion of the system. The change of backlash at any transmission stage has a significant effect on gear

meshing force and dynamic characteristics of the system. It can be seen from the above literatures that the

research on the nonlinear dynamic characteristics of planetary gear transmission system mainly focuses on the

dynamic response analysis of single-stage planetary gear transmission system. Few studies have been done on

two-stage planetary gear system, especially the two-stage planetary gear coupling translation-torsion system of

wind turbine’s compound gear transmission system.

During operation of compound planetary gear transmission system, friction is a strongly nonlinear internal

excitation,which is positively correlated with the dynamic characteristics of compound gear transmission system.

He et al.[8-9]proposed a new method to consider the sliding friction and time-varying meshing stiffness into

the analysis model of spur gear, and studied the influence of its dynamic characteristics. Kahraman et al[10-13]

proposed a tribo-dynamics model for spur gear pairs. The iterative calculation scheme of lubrication and

dynamic model is proposed to make the tribological and dynamic behavior of spur gear pair fully coupled.

Huaĳu Liu et al.[14,15] proposed a single-stage spur gear modle considering starved lubrication. By studying

the dynamic coupling relationship between friction dynamics and gear system, the dynamic meshing force of

the system is predicted. A calculation method of meshing stiffness under starved lubrication is provided. The

research of gear lubrication dynamics mainly focuses on single pair of meshing gears. Hou et al.[16] proposed

to solve the different friction tooth surfaces of single stage gear by subsection, and then the friction force and

friction torque are analyzed by summation. Han et al.[17] investigated the dynamic response of a pair of

helical gears considering the interaction between friction and time-varying meshing stiffness, and analyzed the

influence of friction on the dynamic characteristics of the system. Yi et al.[18] established a fractal contact

model suitable for gear pair contact considering the influence of roughness on the normal contact stiffness of

gear, and analyzed the influence of roughness on the dynamic characteristics of the system. Lin et al.[19]

established a nonlinear dynamic model of gear considering time-varying meshing stiffness, backlash, sliding

friction and random external load. The results show that under the condition of deterministic load, friction

makes the duration of the system in the stable state longer and the periodic stability of the system better. Li et

al.[20] obtained time-varying meshing friction coefficient of tooth surface obtained by fitting the experimental

results of double disks. Chen et al.[21] studied the calculation method of friction coefficient and meshing

efficiency of plastic wire gear pair under dry friction condition, the dynamic characteristics of the system under

dry friction condition are obtained. Bae et al.[22] adopts finite element simulation method to the contact stress

between coated polymer gears considering different friction coefficients. Keller et al.[23] established a thermal

elastohydrodynamic model for the single tooth gear. the method is provided to remove the Hertz deformation

of macro-deformation tooth profile. Park et al.[24] investigated friction and Transmission error of spur gear

due to sliding friction under quasi-static condition. Ma et al.[25] proposed an improved analytical model for

time-varying meshing stiffness calculation considering friction between teeth surfaces. Ghosh Chakraborty[26]

studied a 6-DOF translation-rotation model considering friction. The influence of different friction parameters

on the system is analyzed.

It can be seen from the above studies that the research model for multi-degree-of-freedom planetary gear

is mainly the purely rotational of gear system. The study of gear friction is mostly based on single pair

2



gear. There exists close coupling relationship between the translational and torsional vibrations of gear system.

The motivation of this paper is to established multi-degree-of-freedom translation-torsion coupling dynamics

planetary gear model to accurately describe the dynamic behavior of wind turbine’s compound gear transmission

system. The consideration of TVMS is implemented by the cantilever beam theory. Another main research

content is the calculation of time-varying meshing friction (TVMF). In this paper, a 42-DOF translation-torsion

coupling dynamics model of the wind turbine’s gear transmission system considering TVMF, TVMS, meshing

damping, meshing error and backlash is established. The system dimensionless equation is solved by Runge-

Kutta numerical method. The dynamic characteristics of the gear system are identified from the bifurcation

diagram, time domain diagrams, phase diagrams, Poincare maps and amplitude-frequency spectrums of the gear

system. The research can provide some useful information for the operation of wind turbine’s gear transmission

system.

2. Dynamic modelling of gear system

Taking the time-varying meshing friction and time-varying meshing stiffness into account, a 42-DOF

translation-torsion coupling lumped parameter dynamics model is established, as shown in Fig. 1. Fig. 1(a)

presents wind turbine gear’s transmission system consists of two planetary gear transmission operating at

the low-speed stage and intermediate stage and one fixed-axis gear transmissions operating at the high-speed

stage, respectively, which have large transmission ratio in relatively compact structures. The parameters of the

planetary gear transmission system (I and II) is shown in Fig.1(b). In this model, the meshing tooth surfaces of

involute spur gears are simplified as spring-damping system. The planetary gear transmission system consists

components such as carrier (𝑐), ring (𝑟), sun (𝑠), planet (𝑝𝑛(n=1,2,...,N)). The stiffness of springs 𝑘𝑠𝑡 , 𝑘𝑟𝑡 , 𝑘𝑐𝑡 can

be defined according to the power distribution of the system. Each spur gears 𝑖(𝑖 = 𝑠, 𝑟, 𝑐, 𝑝𝑛 (𝑛 = 1, 2, ..., 𝑁))

is simplified as a rigid disc of base radius 𝑟𝑖, mass moment of inertia 𝐼𝑖, and angular displacement 𝜃𝑖. The

torsional displacements are represented by 𝑢𝑐, 𝑢𝑟 , 𝑢𝑠, 𝑢𝑃𝑛
, respectively. Fig. 1(c) shows the translation-torsion

coupling dynamics model of the fixed-axis gear system including the gear(𝑔1) and pinion(𝑔2). The carrier (𝑐1)

and the pinion(𝑔2) are identified as input(𝑇𝑐1
) and output(𝑇𝑔2

) components of the system. Two coordinates

(𝑂𝑋𝑌, 𝑜𝑥𝑦) are created in an effort to establish the dynamic equations of the system easily. The center of the

fixed coordinate system (𝑂𝑋𝑌 ) is located in the center of the sun gear. The motion coordinate system (𝑜𝑥𝑦) is

fixed with the planetary carrier and rotates with its theoretical angular velocity (𝜔𝑐). The relationship between

the two coordinates system is shown in Fig.1(b). In terms of the analysis above, the relationship could be

obtained as follows,

{
𝑥 = 𝑋 cos𝜔𝑐𝑡 + 𝑌 sin𝜔𝑐𝑡

𝑦 = −𝑋 sin𝜔𝑐𝑡 + 𝑌 cos𝜔𝑐𝑡
(1)

Then, the absolute velocity can be represented in the rotational coordinate system as follows,

{
¤𝑋 = ( ¤𝑥 − 𝜔𝑐𝑦) cos𝜔𝑐𝑡 − ( ¤𝑦 + 𝜔𝑐𝑥) sin𝜔𝑐𝑡

¤𝑌 = ( ¤𝑦 + 𝜔𝑐𝑥) cos𝜔𝑐𝑡 + ( ¤𝑥 − 𝜔𝑐𝑦) sin𝜔𝑐𝑡
(2)

2.1. Equivalent displacements

Define 𝜃𝑖 (𝑖 = 𝑠1, 𝑟1, 𝑐1, 𝑝1,𝑛 (𝑛 = 1, 2, ..., 𝑁), 𝑔1, 𝑠2, 𝑟2, 𝑐2, 𝑝2,𝑛 (𝑛 = 1, 2, ..., 𝑁), 𝑔1, 𝑔2) as the angular

displacement of each gear body, which is measured in the fixed coordinate system𝑂𝑋𝑌 . So the equivalent gear

meshing displacements 𝑢𝑖 in the meshing line direction are defines as

3



Fig. 1. The dynamic model of the wind turbine’s gear system
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𝑢𝑠1 = 𝑟𝑝1,𝑛𝑠1𝜃𝑠1 , 𝑢𝑟1 = 𝑟𝑝1,𝑛𝑟1𝜃𝑟1 , 𝑢𝑐1
= 𝑟𝑝1,𝑛𝑐1

𝜃𝑐1
, 𝑢𝑝1,𝑛

= 𝑟𝑝𝑖,𝑛𝜃𝑝1,𝑛

𝑢𝑠2 = 𝑟𝑝2,𝑛𝑠2𝜃𝑠2 , 𝑢𝑟2 = 𝑟𝑝2,𝑛𝑟2𝜃𝑟2 , 𝑢𝑐2
= 𝑟𝑝2,𝑛𝑐2

𝜃𝑐2
, 𝑢𝑝2,𝑛

= 𝑟𝑝2,𝑛
𝜃𝑝2,𝑛

𝑢𝑔1
= 𝑟𝑔1

𝜃𝑔1
, 𝑢𝑔2

= 𝑟𝑔2
𝜃𝑔2

(3)

In order to ensure the contact of teeth surface on meshing performance, it is assumed that the rela-

tive deformation of gears is completely changed into elastic deformation on teeth surface along with the

meshing line-direction. According to the geometrical relationships, the relative gear mesh displacements

𝛿 𝑗 ( 𝑗 = 𝑠1𝑝1,𝑛, 𝑟1𝑝1,𝑛, 𝑠2𝑝2,𝑛, 𝑟2𝑝2,𝑛, 𝑐2𝑝2,𝑛, 𝑔1𝑔2, (𝑛 = 1, 2, ..., 𝑁)) in the rotational coordinate system, and the

line displacements 𝛿 𝑗 ( 𝑗 = 𝑐1𝑝1,𝑛, 𝑐2𝑝2,𝑛) of planet gears relative to the planet carrier on the 𝑥-axis and 𝑦-axis

of the planet carrier can be represented as,




𝛿𝑠1𝑝1,𝑛
= (𝑥𝑝1,𝑛

− 𝑥𝑠1) sin(𝜑𝑠1𝑝1,𝑛
) + (𝑦𝑠1 − 𝑦𝑝1,𝑛

) cos(𝜑𝑠1𝑝1,𝑛
) + 𝑢𝑠1 + 𝑢𝑝1,𝑛

− 𝑢𝑐
𝑟𝑠1+𝑟𝑝1,𝑛

𝑟𝑐1

− 𝐸𝑠1𝑝1,𝑛

𝛿𝑟1𝑝1,𝑛
= (𝑥𝑝1,𝑛

− 𝑥𝑟1) sin(𝜑𝑟1𝑝1,𝑛
) + (𝑦𝑟1 − 𝑦𝑝1,𝑛

) cos(𝜑𝑟1𝑝1,𝑛
) + 𝑢𝑟1 − 𝑢𝑝1,𝑛

− 𝑢𝑐1

𝑟𝑠1+𝑟𝑝1,𝑛

𝑟𝑐1

− 𝐸𝑟1𝑝1,𝑛

𝛿𝑐1𝑝1,𝑛𝑥 = 𝑥𝑝1,𝑛
− 𝑥𝑐1

𝛿𝑐1𝑝1,𝑛𝑦 = 𝑥𝑝1,𝑛
− 𝑥𝑐1

𝛿𝑠2𝑝2,𝑛
= (𝑥𝑝2,𝑛

− 𝑥𝑠2) sin(𝜑𝑠2𝑝2,𝑛
) + (𝑦𝑠2 − 𝑦𝑝2,𝑛

) cos(𝜑𝑠2𝑝2,𝑛
) + 𝑢𝑠2 + 𝑢𝑝2,𝑛

− 𝑢𝑐
𝑟𝑠2+𝑟𝑝2,𝑛

𝑟𝑐2

− 𝐸𝑠2𝑝2,𝑛

𝛿𝑟2𝑝2,𝑛
= (𝑥𝑝2,𝑛

− 𝑥𝑟2) sin(𝜑𝑟2𝑝2,𝑛
) + (𝑦𝑟2 − 𝑦𝑝2,𝑛

) cos(𝜑𝑟2𝑝2,𝑛
) + 𝑢𝑟2 − 𝑢𝑝2,𝑛

− 𝑢𝑐2

𝑟𝑠2+𝑟𝑝2,𝑛

𝑟𝑐2

− 𝐸𝑟2𝑝2,𝑛

𝛿𝑐2𝑝2,𝑛𝑥 = 𝑥𝑝2,𝑛
− 𝑥𝑐2

𝛿𝑐2𝑝2,𝑛𝑦 = 𝑥𝑝2,𝑛
− 𝑥𝑐2

𝛿𝑔1𝑔2
= 𝑢𝑔1

+ 𝑢𝑔2
− 𝐸𝑔1𝑔2

(4)

where 𝐸 𝑗 are the transmission errors, and 𝜑 𝑗 is the relative engagement angle.

The vibration of the system is mainly caused by errors existing inevitably during the manufacturing and

assembly process. The position of the planet gear is changed as a function of gear position error. 𝑂𝑃𝑛
is the

ideal location of center of the planet gear. The gear position error of magnitude 𝐴𝑃𝑛
makes the ideal location

point 𝑂𝑃𝑛
move to 𝑂′

𝑃𝑛
. The tangential magnitude of the position error of planet gear can be expressed as,




�̄�𝑝1,𝑛−𝑠1𝑝1,𝑛
= −𝐴𝑝1,𝑛

sin(𝛼𝑠1 + 𝜑𝑝1,𝑛
)

�̄�𝑝1,𝑛−𝑟1𝑝1,𝑛
= −𝐴𝑝1,𝑛

sin(𝜑𝑝1,𝑛
− 𝛼𝑟1)

�̄�𝑝2,𝑛−𝑠2𝑝2,𝑛
= −𝐴𝑝2,𝑛

sin(𝛼𝑠2 + 𝜑𝑝2,𝑛
)

�̄�𝑝2,𝑛−𝑟2𝑝2,𝑛
= −𝐴𝑝2,𝑛

sin(𝜑𝑝2,𝑛
− 𝛼𝑟2)

(5)

where 𝛼𝑠, 𝛼𝑟 , 𝜑𝑝𝑛 are the pressure angle of the sun gear, the pressure angle of the ring gear and the initial angle

of position error and the planet spacing angles, respectively.

Similarly, the run-out error on the reference circle of the gear can be expressed as,




𝑒𝑠1−𝑠1𝑝1,𝑛
= 𝑒𝑠1 sin((𝜔𝑠1 − 𝜔𝑐1

)𝑡 + 𝛼𝑠1 + 𝜑𝑒𝑠1 − 𝜑𝑝1,𝑛
)

𝑒𝑝1,𝑛−𝑠1𝑝1,𝑛
= −𝑒𝑝1,𝑛

sin((𝜔𝑝1,𝑛
− 𝜔𝑐1

)𝑡 + 𝛼𝑠1 + 𝜑𝑒𝑝1,𝑛
)

𝑒𝑝1,𝑛−𝑟1𝑝1,𝑛
= −𝑒𝑝1,𝑛

sin((𝜔𝑝1,𝑛
− 𝜔𝑐1

)𝑡 + 𝜑𝑒𝑝1,𝑛
− 𝛼𝑟1)

𝑒𝑟1−𝑟1𝑝1,𝑛
= 𝑒𝑟1 sin((𝜔𝑟1 − 𝜔𝑐1

)𝑡 + 𝛼𝑟1 + 𝜑𝑒𝑟1
− 𝜑𝑝1,𝑛

)

(6)

5



where 𝜔𝑖, 𝜑𝑒𝑖, 𝜑𝑝𝑛 are the theoretical angular velocity of the component, the initial angle of the run-out error

on the reference circle and the planet spacing angles, respectively. here, 𝜑𝑝𝑛 = 2𝜋 𝑛−1
𝑁

. The transmission errors

on the line of action can be represented as,




𝐸𝑠1𝑝𝑛 = �̄�𝑝𝑛−𝑠1𝑝𝑛 + 𝑒𝑠1−𝑠1𝑝𝑛 + 𝑒𝑝𝑛−𝑠1𝑝𝑛

𝐸𝑟1𝑝𝑛 = �̄�𝑝𝑛−𝑟1𝑝𝑛 + 𝑒𝑟1−𝑟𝑝𝑛 + 𝑒𝑝𝑛−𝑟1𝑝𝑛

𝐸𝑠2𝑝2𝑛
= �̄�𝑝2𝑛−𝑠2𝑝2𝑛

+ 𝑒𝑠2−𝑠2𝑝2𝑛
+ 𝑒𝑝2𝑛−𝑠2𝑝2𝑛

𝐸𝑟2𝑝2𝑛
= �̄�𝑝2𝑛−𝑟2𝑝2𝑛

+ 𝑒𝑟2−𝑟2𝑝2𝑛
+ 𝑒𝑝2𝑛−𝑟2𝑝2𝑛

(7)

The gear backlash exists in the meshing gear teeth due to the need of lubrication, the errors caused by

manufacturing and installing, and the wear during operation. And the piecewise-linear backlash functions

𝑓 (𝛿 𝑗 ) can be defined as,

𝑓 (𝛿 𝑗 ) =




𝛿 𝑗 − 𝑏 𝑗 𝛿 𝑗 > 𝑏 𝑗

0
��𝛿 𝑗

�� ≤ 𝑏 𝑗

𝛿 𝑗 + 𝑏 𝑗 𝛿 𝑗 < −𝑏 𝑗

(8)

where 𝑏 𝑗 is the gear backlash, and 𝛿 𝑗 is the relative gear mesh displacement. The dimension tolerance must be

considered that the translational vibration is taken into consideration for the components. The radial support

force 𝑓𝑥𝑖 and 𝑓𝑦𝑖 are changed because of the radial clearance (Δ𝑏) caused by dimension tolerance of the shaft

and the hole. The principle of the relationship between the force and the clearance which can be expressed as,

{
𝑓𝑥𝑖 = 𝛾𝑖𝑘𝑖𝛿𝑥𝑖

𝑓𝑦𝑖 = 𝛾𝑖𝑘𝑖𝛿𝑦𝑖
(9)

where 𝑘𝑖,𝛿𝑥𝑖, 𝛿𝑦𝑖 are the radial support stiffness and radial vibrational displacement. And 𝛾𝑖 determines whether

the shaft and the hole are in contact, according to,

𝛾𝑖 =





1 − Δ𝑏√
𝛿2
𝑥𝑖
+𝛿2

𝑦𝑖

Δ𝑏 <
√
𝛿2
𝑥𝑖
+ 𝛿2

𝑦𝑖

0 Δ𝑏 ≥
√
𝛿2
𝑥𝑖
+ 𝛿2

𝑦𝑖

(10)

2.2. System differential equation of motion

The general coordinate 𝑞 is introduced in order to establish the motion differential equations of the gear

system.

𝑞 =

{
𝑥𝑠1 , 𝑦𝑠1 , 𝜃𝑠1 , 𝑥𝑐1

, 𝑦𝑐1
, 𝜃𝑐1

, 𝑥𝑟1 , 𝑦𝑟1 , 𝜃𝑟1 , 𝑥𝑝1,𝑛
, 𝑦𝑝1,𝑛

, 𝜃𝑝1,𝑛
, 𝑥𝑠2 , 𝑦𝑠2 , 𝜃𝑠2 ,

𝑥𝑐2
, 𝑦𝑐2

, 𝜃𝑐2
, 𝑥𝑟2 , 𝑦𝑟2 , 𝜃𝑟2 , 𝑥𝑝2,𝑛

, 𝑦𝑝2,𝑛
, 𝜃𝑝2,𝑛

, 𝑥𝑔1
, 𝑦𝑔1

, 𝜃𝑔1
, 𝑥𝑔2

, 𝑦𝑔2
, 𝜃𝑔2

}𝑇
(11)

Lagrange function of planetary transmission system(𝐿1), fixed-axis transmissions(𝐿2) and coupling relations

between levels(𝐿3) are expressed as,

6






𝐿1 =
1

2
𝐼𝑠𝑖

¤𝜃2
𝑠𝑖
+

1

2
𝐼𝑐𝑖

¤𝜃2
𝑐𝑖
+

1

2
𝐼𝑟𝑖

¤𝜃2
𝑟𝑖
+

1

2

𝑁∑

𝑛=1

[𝑚𝑝 · (𝑟𝑠 + 𝑟𝑝)
2 · ¤𝜃2

𝑐 + 𝐼𝑝𝑛
¤𝜃2
𝑝𝑛
]

+
1

2
𝑚𝑠𝑖 · (

¤𝑋2
𝑠𝑖
+ ¤𝑌2

𝑠𝑖
) +

1

2
𝑚𝑐𝑖 · (

¤𝑋2
𝑐𝑖
+ ¤𝑌2

𝑐𝑖
) +

1

2
𝑚𝑟𝑖 · (

¤𝑋2
𝑟𝑖
+ ¤𝑌2

𝑟𝑖
) +

1

2

𝑁∑

𝑛=1

𝑚𝑝𝑖 · (
¤𝑋2
𝑝𝑖
+ ¤𝑌2

𝑝𝑖
)

−
1

2

𝑁∑

𝑛=1

𝑘𝑠𝑖 𝑝𝑖, 𝑛 · 𝛿
2
𝑠𝑖 𝑝𝑖, 𝑛

−
1

2

𝑁∑

𝑛=1

𝑘𝑐𝑖 𝑝𝑖, 𝑛 · (𝛿
2
𝑝𝑖, 𝑛𝑐𝑖𝑥

+ 𝛿2
𝑝𝑖, 𝑛𝑐𝑖𝑦

) −
1

2

𝑁∑

𝑛=1

𝑘𝑟𝑖 𝑝𝑖, 𝑛 · 𝛿
2
𝑟𝑖 𝑝𝑖, 𝑛

−
1

2
𝑘𝑠𝑖 · (𝑥

2
𝑠𝑖
+ 𝑦2

𝑠𝑖
) −

1

2
𝑘𝑐𝑖 · (𝑥

2
𝑐𝑖
+ 𝑦2

𝑐𝑖
) −

1

2
𝑘𝑟𝑖 · (𝑥

2
𝑟𝑖
+ 𝑦2

𝑟𝑖
)

−
1

2
𝑘𝑠𝑖𝑡 · (𝜃𝑠𝑖𝑟𝑏𝑠𝑖 )

2 −
1

2
𝑘𝑐𝑖𝑡 · (𝜃𝑐𝑖𝑟𝑏𝑐𝑖 )

2 −
1

2
𝑘𝑟𝑖𝑡 · (𝜃𝑟𝑖𝑟𝑏𝑟𝑖 )

2 −
1

2

𝑁∑

𝑛=1

𝑘 𝑝𝑖𝑡 · (𝜃𝑝𝑖, 𝑛𝑟𝑏𝑝𝑖 )
2

𝐿2 =

2∑
𝑖=1

[
1

2
𝑚𝑠𝑖 (

¤𝑋2
𝑔1
+ ¤𝑌2

𝑔2𝑥
) +

1

2
𝐼𝑔𝑖

¤𝜃2
𝑔𝑖
−

1

2
𝑘𝑔𝑖 · ( ¤𝑥

2
𝑔𝑖
+ 𝑦2

𝑔𝑖
) −

1

2
𝑘𝑔𝑖𝑡 · (𝜃𝑔𝑖𝑟𝑏𝑔𝑖 )

2] −
1

2
𝑘𝑔1𝑔2

𝛿2
𝑔1𝑔1

𝐿3 = −
1

2
𝑘𝑠1𝑐2

(𝜃𝑐2
𝑟𝑐2

− 𝜃𝑠1𝑟𝑠1)
2 −

1

2
𝑘𝑠2𝑔1

(𝜃𝑔1
𝑟𝑔1

− 𝜃𝑠2𝑟𝑠2)
2

𝐿 = 𝐿1 + 𝐿2 + 𝐿3

(12)

According to lagrange equation and substituting absolute acceleration,

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑞
−
𝜕𝐿

𝜕𝑞
= 𝑄 (13)

where 𝑄 is generalized force of the system.

Taking into account the meshing damping, gear backlash, TVMS and TVMF, the translation-torsion coupling

dynamic equation of 42-DOF wind turbine’s compound gear transmission system is obtained follows. The

translation-torsion dynamic equations of the low speed stage’s sun gear can be expressed as,




𝑚𝑠1 ( ¥𝑥𝑠1 − 2
𝜔𝑐

𝜔𝑑
¤𝑦𝑠1 −

𝜔2
𝑐

𝜔2
𝑑

𝑥𝑠1) −
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑠1𝑝𝑛 𝑓 (𝛿𝑠1𝑝𝑛) sin(𝜑𝑠1𝑝𝑛) −
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑠1𝑝𝑛
¤𝛿𝑠1𝑝𝑛 sin(𝜑𝑠1𝑝𝑛)

−
1

𝜔2
𝑑

·

𝑁∑

𝑛=1

𝜆𝑠1𝑛 · 𝜇𝑠1𝑛 · 𝐹𝑠1𝑛 · cos(𝜑𝑠1𝑝𝑛) +
1

𝜔2
𝑑

· 𝑘𝑠1 · 𝑥𝑠1 = 0

𝑚𝑠1 ( ¥𝑦𝑠1 + 2
𝜔𝑐

𝜔𝑑
¤𝑥𝑠1 −

𝜔2
𝑐

𝜔2
𝑑

𝑦𝑠1) +
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑠1𝑝𝑛 𝑓 (𝛿𝑠1𝑝𝑛) cos(𝜑𝑠1𝑝𝑛) +
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑠1𝑝𝑛
¤𝛿𝑠1𝑝𝑛 cos(𝜑𝑠1𝑝𝑛)

−
1

𝜔2
𝑑

·

𝑁∑

𝑛=1

𝜆𝑠1𝑛𝜇𝑠1𝑛𝐹𝑠1𝑛 sin(𝜑𝑠1𝑝𝑛) +
1

𝜔2
𝑑

𝑘𝑠1𝑦𝑠1 = 0

𝑀𝑠1 ¥𝑢𝑠1 +
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑠1𝑝𝑛𝛿𝑠1𝑝𝑛 +
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑠1𝑝𝑛
¤𝛿𝑠1𝑝𝑛 +

1

𝜔2
𝑑

𝑘𝑠1𝑡𝑢𝑠1 −
1

𝜔2
𝑑

·

𝑁∑

𝑛=1

𝜆𝑠1𝑛𝜇𝑠1𝑛𝐹𝑠1𝑛

𝑋𝑠𝑝
𝑛,𝑖

𝑟𝑠

−
1

𝜔2
𝑑

𝑘𝑠1𝑐2
(𝑢𝑐2

− 𝑢𝑠1) = 0

(14)
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The translation-torsion dynamic equations of the low speed stage’s planet carrier expressed as,




𝑚𝑐1
( ¥𝑥𝑐1

− 2
𝜔𝑐

𝜔𝑑

¤𝑦𝑐1
−
𝜔2
𝑐

𝜔2
𝑑

𝑥𝑐1
) −

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑐1𝑝𝑛𝛿𝑝𝑛𝑐1𝑥 −
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑐1𝑝𝑛
¤𝛿𝑝𝑛𝑐1𝑥 +

1

𝜔2
𝑑

𝑘𝑐1
𝑥𝑐1

= 0

𝑚𝑐1
( ¥𝑦𝑐1

+ 2
𝜔𝑐

𝜔𝑑

¤𝑥𝑐1
−
𝜔2
𝑐

𝜔2
𝑑

𝑦𝑐1
) −

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑐1𝑝𝑛𝛿𝑝𝑛𝑐1𝑦 −
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑐1𝑝𝑛
¤𝛿𝑝𝑛𝑐1𝑦 +

1

𝜔2
𝑑

𝑘𝑐1
𝑦𝑐1

= 0

𝑀𝑐1
¥𝑢𝑐1

−
1

𝜔2
𝑑

[
𝑁∑

𝑛=1

(
𝑘𝑠1𝑝𝑛 𝑓𝑠1𝑝𝑛 + 𝑘𝑟1𝑝𝑛 𝑓𝑟1𝑝𝑛

)
− 𝑘𝑐1

𝑢𝑐1

]

−
1

𝜔𝑑

𝑁∑

𝑛=1

(
𝑐𝑠1𝑝𝑛

¤𝛿𝑠1𝑝𝑛 + 𝑐𝑟1𝑝𝑛
¤𝛿𝑟1𝑝𝑛

)
=

𝑇𝑐1

𝜔2
𝑑
𝑏𝑐𝑟𝑏𝑐1

(15)

The translation-torsion dynamic equations of the low speed stage’s ring gear expressed as,




𝑚𝑟1 ( ¥𝑥𝑟1 − 2
𝜔𝑐

𝜔𝑑
¤𝑦𝑟1 −

𝜔2
𝑐

𝜔2
𝑑

𝑥𝑟1) −
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑟1𝑝𝑛 𝑓 (𝛿𝑟1𝑝𝑛) sin(𝜑𝑟1𝑝𝑛) −
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑟1𝑝𝑛
¤𝛿𝑟1𝑝𝑛 sin(𝜑𝑟1𝑝𝑛)

−
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑟1𝑛𝜇𝑟1𝑛𝐹𝑟𝑖𝑛 cos(𝜑𝑟1𝑝𝑛) +
1

𝜔2
𝑑

𝑘𝑟1𝑥𝑟1 = 0

𝑚𝑟1 ( ¥𝑦𝑟1 + 2
𝜔𝑐

𝜔𝑑
¤𝑥𝑟1 −

𝜔2
𝑐

𝜔2
𝑑

𝑦𝑟1) +
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑟1𝑝𝑛 𝑓 (𝛿𝑟1𝑝𝑛) cos(𝜑𝑟1𝑝𝑛) +
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑟1𝑝𝑛
¤𝛿𝑟1𝑝𝑛 cos(𝜑𝑟1𝑝𝑛)

−
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑟1𝑛𝜇𝑟1𝑛𝐹𝑟1𝑛 sin(𝜑𝑟1𝑝𝑛) +
1

𝜔2
𝑑

𝑘𝑟1𝑦𝑟1 = 0

𝑀𝑟1 ¥𝑢𝑟1 +
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑟1𝑝𝑛 𝑓𝑟1𝑝𝑛 +
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑟1𝑝𝑛
¤𝛿𝑟1𝑝𝑛 +

1

𝜔2
𝑑

𝑘𝑟1𝑡𝑢𝑟1 −
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑟1𝑛𝜇𝑟1𝑛𝐹𝑟1𝑛
𝑋𝑟1𝑝𝑛

𝑟𝑟1
= 0

(16)

The translation-torsion dynamic equations of the intermediate stage’s sun gear is expressed as,





𝑚𝑠2 ( ¥𝑥𝑠2 − 2
𝜔𝑐

𝜔𝑑
¤𝑦𝑠2 −

𝜔2
𝑐

𝜔2
𝑑

𝑥𝑠2) −
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑠2𝑝𝑛 𝑓 (𝛿𝑠2𝑝𝑛) sin(𝜑𝑠2𝑝𝑛) −
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑠2𝑝𝑛
¤𝛿𝑠2𝑝𝑛 sin(𝜑𝑠2𝑝𝑛)

−
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑠2𝑛𝜇𝑠2𝑛𝐹𝑠2𝑛 cos(𝜑𝑠2𝑝𝑛) +
1

𝜔2
𝑑

𝑘𝑠2𝑥𝑠2 = 0

𝑚𝑠2 ( ¥𝑦𝑠2 + 2
𝜔𝑐

𝜔𝑑
¤𝑥𝑠2 −

𝜔2
𝑐

𝜔2
𝑑

𝑦𝑠2) +
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑠2𝑝𝑛 𝑓 (𝛿𝑠2𝑝𝑛) cos(𝜑𝑠2𝑝𝑛) +
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑠2𝑝𝑛
¤𝛿𝑠2𝑝𝑛 cos(𝜑𝑠2𝑝𝑛)

−
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑠2𝑛𝜇𝑠2𝑛𝐹𝑠2𝑛 sin(𝜑𝑠2𝑝𝑛) +
1

𝜔2
𝑑

𝑘𝑠2𝑦𝑠2 = 0

𝑀𝑠2 ¥𝑢𝑠2 +
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑠2𝑝𝑛𝛿𝑠2𝑝𝑛 +
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑠2𝑝𝑛
¤𝛿𝑠2𝑝𝑛 +

1

𝜔2
𝑑

𝑘𝑠2𝑡𝑢𝑠2 −
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑠2𝑛𝜇𝑠2𝑛𝐹𝑠2𝑛

𝑋𝑠2𝑝𝑛,𝑖

𝑟𝑠2

−
1

𝜔2
𝑑

𝑘𝑠2𝑔2
(𝑢𝑔2

− 𝑢𝑠2) = 0

(17)
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The translation-torsion dynamic equations of the low speed stage’s planet gear expressed as,




𝑚𝑝1
( ¥𝑥𝑝1, 𝑛

− 2
𝜔𝑐

𝜔𝑑
¤𝑦𝑝1, 𝑛

−
𝜔2
𝑐

𝜔2
𝑑

𝑥𝑝1, 𝑛
) +

1

𝜔2
𝑑

𝑘𝑠1𝑝1, 𝑛
𝑓 (𝛿𝑠1𝑝1, 𝑛

) sin(𝜑𝑠1𝑝1, 𝑛
) +

1

𝜔𝑑
𝑐𝑠1𝑝1, 𝑛

¤𝛿𝑠1𝑝1, 𝑛
sin(𝜑𝑠1𝑝1, 𝑛

)

+
1

𝜔2
𝑑

𝑘𝑟1𝑝1, 𝑛
𝑓 (𝛿𝑟1𝑝1, 𝑛

) sin(𝜑𝑟1𝑝1, 𝑛
) +

1

𝜔𝑑
𝑐𝑟1𝑝1, 𝑛

¤𝛿𝑟1𝑝1, 𝑛
sin(𝜑𝑟1𝑝1, 𝑛

)

+
1

𝜔2
𝑑

∑

𝑗=𝑠,𝑟

𝑁∑

𝑛=1

𝜆 𝑗 𝑝1,𝑛
𝜇 𝑗 𝑝1,𝑛

𝐹𝑗 𝑝1,𝑛
cos(𝜑 𝑗 𝑝1,𝑛

) +
1

𝜔2
𝑑

𝑘𝑐1𝑝1, 𝑛
𝛿𝑝1, 𝑛𝑐1𝑥 +

1

𝜔2
𝑑

𝑐𝑐1𝑝1, 𝑛
¤𝛿𝑝1, 𝑛𝑐1𝑥 = 0

𝑚𝑝1
( ¥𝑦𝑝1, 𝑛

+ 2
𝜔𝑐

𝜔𝑑
¤𝑥𝑝1, 𝑛

−
𝜔2
𝑐

𝜔2
𝑑

𝑦𝑝1, 𝑛
) −

1

𝜔2
𝑑

𝑘𝑠1𝑝1, 𝑛
𝑓 (𝛿𝑠1𝑝1, 𝑛

) cos(𝜑𝑠1𝑝1, 𝑛
) −

1

𝜔𝑑
𝑐𝑠1𝑝1, 𝑛

¤𝛿𝑠1𝑝1, 𝑛
cos(𝜑𝑠1𝑝1, 𝑛

)

−
1

𝜔2
𝑑

𝑘𝑟1𝑝1, 𝑛
𝑓 (𝛿𝑟1𝑝1, 𝑛

) cos(𝜑𝑟1𝑝1, 𝑛
) −

1

𝜔𝑑
𝑐𝑟1𝑝1, 𝑛

¤𝛿𝑟1𝑝1, 𝑛
cos(𝜑𝑟1𝑝1, 𝑛

)

+
1

𝜔2
𝑑

∑

𝑗=𝑠,𝑟

𝑁∑

𝑛=1

𝜆 𝑗 𝑝1,𝑛
𝜇 𝑗 𝑝1,𝑛

𝐹𝑗 𝑝1,𝑛
sin(𝜑 𝑗 𝑝1,𝑛

) +
1

𝜔2
𝑑

𝑘𝑐1𝑝1, 𝑛
𝛿𝑝1, 𝑛𝑐𝑦

+
1

𝜔2
𝑑

𝑐𝑐1𝑝1, 𝑛

¤𝛿𝑝1, 𝑛𝑐1𝑦 = 0

𝑀𝑝1
¥𝑢𝑝1, 𝑛

+
1

𝜔2
𝑑

𝑘𝑠1𝑝1, 𝑛
𝛿𝑠𝑝1, 𝑛

+
1

𝜔𝑑
𝑐𝑠1𝑝1, 𝑛

¤𝛿𝑠1𝑝1, 𝑛
−

1

𝜔2
𝑑

𝑘𝑟1𝑝1, 𝑛
𝛿𝑟1𝑝1, 𝑛

−
1

𝜔𝑑
𝑐𝑟1𝑝1, 𝑛

¤𝛿𝑟1𝑝1, 𝑛

+
1

𝜔2
𝑑

𝑘 𝑝1, 𝑛𝑡
𝑢𝑝1, 𝑛

+
1

𝜔2
𝑑

∑

𝑗=𝑠,𝑟

𝑁∑

𝑛=1

𝜆 𝑗 𝑝1,𝑛
𝜇 𝑗 𝑝1,𝑛

𝐹𝑗 𝑝1,𝑛

𝑋 𝑗 𝑝
1,𝑛

𝑟𝑝1,𝑛

= 0

(18)

The translation-torsion dynamic equations of the intermediate stage’s planet gear is expressed as,




𝑚𝑝2
( ¥𝑥𝑝2, 𝑛

− 2
𝜔𝑐

𝜔𝑑
¤𝑦𝑝2, 𝑛

−
𝜔2
𝑐

𝜔2
𝑑

𝑥𝑝2, 𝑛
) +

1

𝜔2
𝑑

𝑘𝑠2𝑝2, 𝑛
𝑓 (𝛿𝑠2𝑝2, 𝑛

) sin(𝜑𝑠2𝑝2, 𝑛
) +

1

𝜔𝑑
𝑐𝑠2𝑝2, 𝑛

¤𝛿𝑠2𝑝2, 𝑛
sin(𝜑𝑠2𝑝2, 𝑛

)

+
1

𝜔2
𝑑

𝑘𝑟2𝑝2, 𝑛
𝑓 (𝛿𝑟2𝑝2, 𝑛

) sin(𝜑𝑟2𝑝2, 𝑛
) +

1

𝜔𝑑
𝑐𝑟2𝑝2, 𝑛

¤𝛿𝑟2𝑝2, 𝑛
sin(𝜑𝑟2𝑝2, 𝑛

)

+
1

𝜔2
𝑑

∑

𝑗=𝑠,𝑟

𝑁∑

𝑛=1

𝜆 𝑗 𝑝2,𝑛
𝜇 𝑗 𝑝2,𝑛

𝐹𝑗 𝑝2,𝑛
cos(𝜑 𝑗 𝑝2,𝑛

) +
1

𝜔2
𝑑

𝑘𝑐2𝑝2, 𝑛
𝛿𝑝2, 𝑛𝑐2𝑥 +

1

𝜔2
𝑑

𝑐𝑐2𝑝2, 𝑛
¤𝛿𝑝2, 𝑛𝑐2𝑥 = 0

𝑚𝑝2
( ¥𝑦𝑝2, 𝑛

+ 2
𝜔𝑐

𝜔𝑑
¤𝑥𝑝2, 𝑛

−
𝜔2
𝑐

𝜔2
𝑑

𝑦𝑝2, 𝑛
) −

1

𝜔2
𝑑

𝑘𝑠2𝑝2, 𝑛
𝑓 (𝛿𝑠2𝑝2, 𝑛

) cos(𝜑𝑠2𝑝2, 𝑛
) −

1

𝜔𝑑
𝑐𝑠2𝑝2, 𝑛

¤𝛿𝑠2𝑝2, 𝑛
cos(𝜑𝑠2𝑝2, 𝑛

)

−
1

𝜔2
𝑑

𝑘𝑟2𝑝2, 𝑛
𝑓 (𝛿𝑟2𝑝2, 𝑛

) cos(𝜑𝑟2𝑝2, 𝑛
) −

1

𝜔𝑑
𝑐𝑟2𝑝2, 𝑛

¤𝛿𝑟2𝑝2, 𝑛
cos(𝜑𝑟2𝑝2, 𝑛

)

+
1

𝜔2
𝑑

∑

𝑗=𝑠,𝑟

𝑁∑

𝑛=1

𝜆 𝑗 𝑝2,𝑛
𝜇 𝑗 𝑝2,𝑛

𝐹𝑗 𝑝2,𝑛
sin(𝜑 𝑗 𝑝2,𝑛

) +
1

𝜔2
𝑑

𝑘𝑐2𝑝2, 𝑛
𝛿𝑝2, 𝑛𝑐𝑦

+
1

𝜔2
𝑑

𝑐𝑐2𝑝2, 𝑛

¤𝛿𝑝2, 𝑛𝑐2𝑦 = 0

𝑀𝑝2
¥𝑢𝑝2, 𝑛

+
1

𝜔2
𝑑

𝑘𝑠2𝑝2, 𝑛
𝛿𝑠2𝑝2, 𝑛

+
1

𝜔𝑑
𝑐𝑠2𝑝2, 𝑛

¤𝛿𝑠2𝑝2, 𝑛
−

1

𝜔2
𝑑

𝑘𝑟2𝑝2, 𝑛
𝛿𝑟2𝑝2, 𝑛

−
1

𝜔𝑑
𝑐𝑟2𝑝2, 𝑛

¤𝛿𝑟2𝑝2, 𝑛

+
1

𝜔2
𝑑

𝑘 𝑝2, 𝑛𝑡
𝑢𝑝2, 𝑛

+
1

𝜔2
𝑑

∑

𝑗=𝑠,𝑟

𝑁∑

𝑛=1

𝜆 𝑗 𝑝2,𝑛
𝜇 𝑗 𝑝2,𝑛

𝐹𝑗 𝑝2,𝑛

𝑋 𝑗 𝑝
2,𝑛

𝑟𝑝2,𝑛

= 0

(19)
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The translation-torsion dynamic equations of the intermediate stage’s carrier gear is expressed as,




𝑚𝑐2
( ¥𝑥𝑐2

− 2
𝜔𝑐

𝜔𝑑
¤𝑦𝑐2

−
𝜔2
𝑐

𝜔2
𝑑

𝑥𝑐2
) −

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑐2𝑝𝑛𝛿𝑝𝑛𝑐2𝑥 −
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑐2𝑝𝑛
¤𝛿𝑝𝑛𝑐2𝑥 +

1

𝜔2
𝑑

𝑘𝑐2
𝑥𝑐2

= 0

𝑚𝑐2
( ¥𝑦𝑐2

+ 2
𝜔𝑐

𝜔𝑑
¤𝑥𝑐2

−
𝜔2
𝑐

𝜔2
𝑑

𝑦𝑐2
) −

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑐2𝑝𝑛𝛿𝑝𝑛𝑐2𝑦 −
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑐2𝑝𝑛
¤𝛿𝑝𝑛𝑐2𝑦 +

1

𝜔2
𝑑

𝑘𝑐2
𝑦𝑐2

= 0

𝑀𝑐2
¥𝑢𝑐2

−
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑠2𝑝𝑛 𝑓𝑠2𝑝𝑛 −
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑠2𝑝𝑛
¤𝛿𝑠2𝑝𝑛 −

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑟2𝑝𝑛 𝑓𝑟2𝑝𝑛 −
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑟2𝑝𝑛
¤𝛿𝑟2𝑝𝑛

+
1

𝜔2
𝑑

𝑘𝑐2𝑡𝑢𝑐2
+

1

𝜔2
𝑑

𝑘𝑠1𝑐2
(𝑢𝑐2

− 𝑢𝑠1) = 0

(20)

The translation-torsion dynamic equations of fixed-axis gear are expressed as,




𝑚𝑔1
( ¥𝑥𝑔1

− 2
𝜔𝑐

𝜔𝑑
¤𝑦𝑔1

−
𝜔2
𝑐

𝜔2
𝑑

𝑥𝑔1
) −

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑔1𝑔2
𝑓 (𝛿𝑔1𝑔1

) sin(𝜑𝑔1𝑔2
) −

1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑔1𝑔2
¤𝛿𝑔1𝑔2

sin(𝜑𝑔1𝑔2
)

−
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑔1𝑔2
𝜇𝑔1𝑔2

𝐹𝑔1𝑔2
cos(𝜑𝑔1𝑔2

) +
1

𝜔2
𝑑

𝑘𝑔1
𝑥𝑔1

= 0

𝑚𝑔1
( ¥𝑦𝑔1

+ 2
𝜔𝑐

𝜔𝑑
¤𝑥𝑔1

−
𝜔2
𝑐

𝜔2
𝑑

𝑦𝑔1
) +

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑔1𝑔2
𝑓 (𝛿𝑔1𝑔2

) cos(𝜑𝑔1𝑔2
) +

1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑔1𝑔2
¤𝛿𝑔1𝑔2

cos(𝜑𝑔1𝑔2
)

−
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑔1𝑔2
𝜇𝑔1𝑔2

𝐹𝑔1𝑔2
sin(𝜑𝑔1𝑔2

) +
1

𝜔2
𝑑

𝑘𝑔1
𝑦𝑔1

= 0

𝑀𝑔1
¥𝑢𝑔1

+
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑔1𝑔2
𝛿𝑔1𝑔2

+
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑔1𝑔2
¤𝛿𝑔1𝑔2

+
1

𝜔2
𝑑

𝑘𝑔1𝑡𝑢𝑔1
−

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑔1𝑔2
𝜇𝑔1𝑔2

𝐹𝑔1𝑔2

𝑋𝑔1𝑔2

𝑟𝑔1

= 0

𝑚𝑔2
( ¥𝑥𝑔2

− 2
𝜔𝑐

𝜔𝑑
¤𝑦𝑔2

−
𝜔2
𝑐

𝜔2
𝑑

𝑥𝑔2
) +

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑔1𝑔2
𝑓 (𝛿𝑔1𝑔1

) sin(𝜑𝑔1𝑔2
) +

1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑔1𝑔2
¤𝛿𝑔1𝑔2

sin(𝜑𝑔1𝑔2
)

+
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑔1𝑔2
𝜇𝑔1𝑔2

𝐹𝑔1𝑔2
cos(𝜑𝑔1𝑔2

) +
1

𝜔2
𝑑

𝑘𝑔2
𝑥𝑔2

= 0

𝑚𝑔2
( ¥𝑦𝑔2

+ 2
𝜔𝑐

𝜔𝑑
¤𝑥𝑔2

−
𝜔2
𝑐

𝜔2
𝑑

𝑦𝑔2
) −

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑔1𝑔2
𝑓 (𝛿𝑔1𝑔2

) cos(𝜑𝑔1𝑔2
) −

1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑔1𝑔2
¤𝛿𝑔1𝑔2

cos(𝜑𝑔1𝑔2
)

+
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑔1𝑔2
𝜇𝑔1𝑔2

𝐹𝑔1𝑔2
sin(𝜑𝑔1𝑔2

) +
1

𝜔2
𝑑

𝑘𝑔2
𝑦𝑔2

= 0

𝑀𝑔2
¥𝑢𝑔2

+
1

𝜔2
𝑑

𝑁∑

𝑛=1

𝑘𝑔1𝑔2
𝛿𝑔1𝑔2

+
1

𝜔𝑑

𝑁∑

𝑛=1

𝑐𝑔1𝑔2
¤𝛿𝑔1𝑔2

+
1

𝜔2
𝑑

𝑘𝑔2𝑡𝑢𝑔1
+

1

𝜔2
𝑑

𝑁∑

𝑛=1

𝜆𝑔1𝑔2
𝜇𝑔1𝑔2

𝐹𝑔1𝑔2

𝑋𝑔1𝑔2

𝑟𝑔2

=
𝑇𝑔2

𝜔2
𝑑
𝑏𝑐𝑟𝑏𝑔2

(21)
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where 𝑀𝑖 = 𝐼𝑖/𝑟
2
𝑖 is the equivalent mass. And 𝑐𝑝𝑔 = 2𝜉

√
𝑘 𝑝𝑔/(1/𝑀𝑝 + 1/𝑀𝑔), where 𝜉 is the meshing damping

ratio. To unify the dimension of the system, The dimensionless time parameter𝜔𝑑 and the dimensionless length

parameter 𝑏𝑐 are introduced, where 𝜔𝑑 =

√
𝑘𝑠𝑝𝑛/(

𝑀𝑠𝑀𝑝

𝑀𝑠+𝑀𝑝
).

Thus, the dimensionless equation of motion in the general coordinates can be derived in the matrix form as,

M ¥𝑞 + C ¤𝑞 + K𝑞 = 𝐹 (22)

where q is the generalized coordinate vector, M is the mass matrix, C is the damping matrix, K is the stiffness

matrix, F is the force vector. Here, the matrix M, K and C are (42*42) square matrices.

3. Calculation of TVMS and TVMF

3.1. Calculation of time-varying meshing stiffness

The meshing stiffness 𝑘 is a time-varying parameter, as the number of engaged teeth varies according to the

contact ratio. The meshing of gear pair is divided into internal meshing and external meshing in the model of

gear system.

3.1.1. Calculation of external meshing stiffness

The time-varying meshing stiffness of standard involute spur gear transmission system is solved based on

the potential energy method of analytical method in this paper. According to the principle of potential energy,

when the meshing force 𝐹𝑁 acts on the tooth, the tooth will produce Hertz contact deformation and bending,

compression and shear deformation, hence the four elastic potential energies: The Hertz𝑈ℎ, bending𝑈𝑏, axial

𝑈𝑎 and shear𝑈𝑠 compressive energies can be expressed as,

𝑈ℎ =
𝐹𝑁

2

2𝐾ℎ
; 𝑈𝑏 =

𝐹𝑁
2

2𝐾𝑏
;𝑈𝑎 =

𝐹𝑁
2

2𝐾𝑎
;𝑈𝑠 =

𝐹𝑁
2

2𝐾𝑠
(23)

where 𝐾ℎ, 𝐾𝑏, 𝐾𝑎, 𝐾𝑠 denotes the Hertz stiffness, bending stiffness, radial compression stiffness and shear

stiffness corresponding to the deformation of the tooth in the direction of the meshing line under the action of

the meshing force 𝐹𝑁 .

Based on Hertz contact theory, Hertzian contact stiffness can be written as,

1

𝐾ℎ
=

4(1 − 𝜈2)

𝜋𝐸𝑊
(24)

where 𝐸 , 𝜈 and𝑊 are Youngs modulus, Poisson’s ratio and width of tooth, respectively.

Based on the beam theory, the potential energy stored in a meshing gear tooth can be expressed as,




𝑈𝑏 =
𝐹2
𝑁

2𝐾𝑏
=

∫ 𝑑

0

[𝐹𝑁 (cos𝛼1)(𝑑 − 𝑥) − 𝐹𝑁 (sin𝛼1)ℎ]
2

2𝐸𝐼𝑥
𝑑𝑥

𝑈𝑎 =
𝐹2
𝑁

2𝐾𝑎
=

∫ 𝑑

0

(𝐹𝑁 sin𝛼1)
2

2𝐸𝐴𝑥
𝑑𝑥

𝑈𝑠 =
𝐹2
𝑁

2𝐾𝑠
=

∫ 𝑑

0

1.2𝐹𝑁 cos𝛼1

2𝐺𝐴𝑥
𝑑𝑥

(25)
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where 𝐺 is the shear modulus of the material. 𝐼𝑥 is inertia Moment of Sectional Parts with height 𝑥 from

meshing force. 𝐴𝑥 is area of section:

𝐺 =
𝐸

2(1 + 𝜈)
, 𝐼𝑥 =

2

3
ℎ3
𝑥𝑊 𝐴𝑥 = 2ℎ𝑥𝑊 (26)

where 𝐾ℎ, 𝐾𝑏 , 𝐾𝑎 and 𝐾𝑠 can be obtained according to the above formula. These four stiffnesses together

with the stiffness 𝐾 𝑓 corresponding to the deformation of the gear matrix on the meshing line constitute all

components of the gear time-varying meshing stiffness.




1

𝐾 𝑓

=
𝛿 𝑓

𝐹

𝛿 𝑓 =
𝐹cos2𝛼𝑚

𝑊𝐸

{
𝐿∗(

𝑢 𝑓

𝑆 𝑓
)
2

+ 𝑀∗(
𝑢 𝑓

𝑆 𝑓
) + 𝑃∗(1 +𝑄∗tan2𝛼𝑚)

} (27)

Given 𝐾ℎ, 𝐾𝑏 , 𝐾𝑎 and 𝐾𝑠 and 𝐾 𝑓 , if 𝜍 (𝜍 = 1, 2) is the number of meshing tooth pair, the time-varying

meshing stiffness of external meshing can be calculated as,

𝐾𝐸 =

2∑

𝜍=1

[1/(
1

𝐾ℎ,𝜍
+

1

𝐾𝑏1,𝜍

+
1

𝐾𝑠1,𝜍
+

1

𝐾𝑎1,𝜍

+
1

𝐾 𝑓 1,𝜍

+
1

𝐾𝑏2,𝜍

+
1

𝐾𝑠2,𝜍
+

1

𝐾𝑎2,𝜍

+
1

𝐾 𝑓 2,𝜍

)] (28)

3.1.2. Calculation of external meshing stiffness

The calculation method of time-varying meshing stiffness of internal gear tooth is the same as that of

external gear tooth. Unlike the calculation of external gear, the cantilever beam cannot be equivalent to the base

circle or the tooth root circle for integration. According to the geometric relations, 𝑥 can be obtained,





𝑥 = |𝑂𝑋 | cos 𝜃𝑥 − |𝑂𝐹 | cos 𝜃 𝑓 ℎ𝑥 = |𝑂𝑋 | sin 𝜃𝑥

|𝑂𝑋 | = 𝑅𝑏

√
1 + (𝛼𝑥 + 𝛼0)

2𝜃𝑥 = 𝜃0 + 𝛼𝑥 − arctan(𝛼𝑥 + 𝛼0)

𝛼𝑥 = 𝛼 𝑓 (𝛼𝑑) 𝛼0 = tan𝛼𝑟 − 𝛼𝑟 +
𝜋

2𝑧
𝜃0 =

𝜋

𝑧

(29)

where 𝑧 is the number of meshing internal gear teeth, 𝛼𝑟 is the pressure angle of meshing internal gear.

The moment of inertia of the internal gear cross section 𝑥 point and its cross section area can be calculated

by reference to the external meshing gear, distribution force 𝐹 of gear teeth perpendicular to the center line,

parallel to the center line of gear tooth and bending moment of gear tooth can be expressed as,

𝐹𝑏 = 𝐹𝑚 cos𝛼, 𝐹𝑎 = 𝐹𝑚 sin𝛼, 𝑀 = 𝐹𝑏𝑥 − 𝐹𝑎ℎ 𝑓 (30)

where 𝛼 = 𝛼 𝑓 + 𝜃0.

Since the internal gear does not consider the deformation of the matrix, the bending stiffness, radial

compression stiffness and shear stiffness of the internal gear meshing tooth can be calculated as,




1

𝐾𝑏
=

∫ 𝑑

0

(𝑥 cos𝛼 − ℎ 𝑓 sin𝛼)2

𝐸𝐼𝑥
𝑑𝑥

1

𝐾𝑠
=

∫ 𝑑

0

1.2cos2𝛼

𝐺𝐴𝑥
𝑑𝑥

1

𝐾𝑎
=

∫ 𝑑

0

sin2𝛼

𝐸𝐴𝑥
𝑑𝑥

(31)
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The time-varying meshing stiffness of external meshing can be obtained as,

𝐾𝐼 =

2∑

𝜍=1

[1/(
1

𝐾ℎ,𝜍
+

1

𝐾𝑏1,𝜍

+
1

𝐾𝑠1,𝜍
+

1

𝐾𝑎1,𝜍

+
1

𝐾 𝑓 1,𝜍

+
1

𝐾𝑏2,𝜍

+
1

𝐾𝑠2,𝜍
+

1

𝐾𝑎2,𝜍

)] (32)

3.1.3. Verification for the calculation method of TVMS

To test the validity of the above method, the parameters of gear pair used are the same as that in Ref. [4].

The calculation results with two methods are displayed in Fig. 2(a). For the value of single tooth meshing

stiffness and double tooth meshing value of TVMS (EM), the relative errors are less than two percent, which

are similar to that in Ref. [4] for CM. Therefore, the proposed method is accurate to calculate TVMS of the

gear system.

Without considering the influence of meshing phase on time-varying meshing stiffness of gear, The time-

varying meshing stiffness of the wind turbines gear system in two complete cycles is obtained. As shown in

Fig. 2(b).
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×10
8

a. Calculation of TVMS with traditional method and improved method b. Calculation of the system meshing pairs' TVMS

EM

CM

Dimensionless time

Fig. 2. The verification and calculation of TVMS

The above time-varying meshing stiffness is expanded by Fourier series and the time-varying meshing

stiffness in the form of Fourier series is obtained by deleting the high-order term,

𝑘 𝑗 (𝑡) = 𝑘 𝑗𝑚 +

𝑛∑

𝑖=1

𝑘 𝑗𝑎 cos(𝜔𝑡 + 𝜑 𝑗 ) (33)

where 𝑘 𝑗𝑚, 𝑘 𝑗𝑎, 𝜔, 𝜑 𝑗 is the equivalent average meshing stiffness, the time-varying meshing stiffness amplitude,

the meshing frequency and the meshing phase angle, respectively.

3.2. An improved method for time-varying meshing friction calculation

In the process of gear transmission, the friction coefficient changes significantly with the relative sliding

velocity, load distribution, temperature and tooth surface profile. In fact, the lubrication form of the wind

turbine’s gear meshing pairs is mixed EHL, which includes full oil film EHL and boundary lubrication. Fig.

13



3 depicts the moment of friction force and the internal reaction forces acting on the driving gear 𝑔 and driven

gear(𝑝). The geometric relationship of meshing friction force in gear meshing process is shown in the fig. 3(a).

Based on the Coulomb friction law, the magnitude of friction force (𝐹 𝑓 𝑣) is expressed as,

𝐹 𝑓 𝑣 = 𝜆𝜇𝐹𝑁 (𝑣 = 𝑝, 𝑔) (34)

where 𝜇 is the friction coefficient of mixed EHL, 𝐹𝑁 is the dynamic meshing force of the gear pair. 𝜆 is the

direction coefficient of the friction force. The normal forces acting on the driving gear,

rg

rp

FNg1

FNg2

Xg1

Xg2

Xp1
Xp2

FNp2

Ffg1

FNp1Ffg1

Ffp2

Ffp1

FNg

FNp

Ffg

Ffp

FNg

FNp

FNg

FNp

Ffg

Ffp

a. Appraching contact

b. No friction

c. Leaving contact

a.The meshing force arm and friction lever arm b.The meshing process

Fig. 3. The verification and calculation of TVMS

𝐹𝑁 (𝑡) = 𝑘 𝑝𝑔 (𝑡) [(−(𝑥𝑝 − 𝑥𝑔) sin(𝜑𝑝𝑔) + (𝑦𝑝 − 𝑦𝑔) cos(𝜑𝑝𝑔) + 𝑢𝑝 + 𝑢𝑔) − 𝐸𝑝𝑔]

+ 𝑐𝑝𝑔 [(−( ¤𝑥𝑝 − ¤𝑥𝑔) sin(𝜑𝑝𝑔) + ( ¤𝑦𝑝 − ¤𝑦𝑔) cos(𝜑𝑝𝑔) + ¤𝑢𝑝 + ¤𝑢𝑔)]
(35)

where 𝜑𝑝𝑔 is the pressure angle. Other parameters have the same meaning as the wind turbine’s gear system.

The change of friction force during meshing process can be divided into three period, which is capable to

be found in Fig. 4, Fig. 4(a), Fig. 4(b) and Fig. 4(c) are approaching contact, no friction and leaving contact

process, respectively. 𝜆 represents the change of force direction in meshing process,

𝜆(𝑡) =




1 𝜔𝑝𝑋𝑝𝑖 (𝑡) > 𝜔𝑔𝑋𝑔𝑖 (𝑡)

0 𝜔𝑝𝑋𝑝𝑖 (𝑡) = 𝜔𝑔𝑋𝑔𝑖 (𝑡)

−1 𝜔𝑝𝑋𝑝𝑖 (𝑡) < 𝜔𝑔𝑋𝑔𝑖 (𝑡)

(36)
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Where 𝜔𝑣 is the meshing frequency, 𝑋𝑝𝑖 (𝑡), 𝑋𝑔𝑖 (𝑡) stand for the length of the time-varying friction lever

arm of the 𝑖th gear tooth of pinion and gear, respectively and are given by,




𝑋𝑝𝑖 (𝑡) = (𝑟𝑝 + 𝑟𝑔) tan𝛼 −

√
𝑟2
𝑝 − 𝑟

2
𝑔 + 𝑟𝑝𝜔𝑡

𝑋𝑔𝑖 (𝑡) =

√
𝑟2
𝑝 − 𝑟

2
𝑔 − 𝑟𝑝𝜔𝑡

(37)

where 𝑟𝑣 is base radius. 𝛼 is meshing angle.

The friction coefficient of mixed EHL can be introduced as,

𝜇 = 𝜁 𝜇𝐸𝐻𝐿 + (1 − 𝜁)𝜇𝐵 (38)

The boundary lubrication friction coefficient 𝜇𝐵 measured through experiments is generally 0.10.2. The

full oil film EHL coefficient 𝜇𝐸𝐻𝐿 can be expressed as,




𝜇𝐸𝐻𝐿 = exp[ 𝑓 (𝑆𝑅, 𝐹𝑁 , 𝜂0, 𝜎)]𝑝ℎ
𝑏2 |𝑆𝑅 |𝑏3𝑣𝑟

𝑏6𝜂0
𝑏7𝑅𝑏8𝜉0.2

𝑓 (𝑆𝑅, 𝐹𝑁 , 𝜂0, 𝜎) = 𝑏1 + 𝑏4𝑝ℎ |𝑆𝑅 | log
𝜂0

10
+𝑏5 exp[−𝐹𝑁 |𝑆𝑅 | log

𝜂0

10
] + 𝑏9 exp[𝜎]

𝑆𝑅 = 2

����
(𝑧𝑝 + 𝑧𝑔)(tan(𝛼) − tan(𝛼𝑘1))

(𝑧𝑝 + 𝑧𝑔) tan(𝛼) + (𝑧𝑝 − 𝑧𝑔) tan(𝛼𝑘1)

����

𝑅 = 𝑟𝑝𝑏 tan(𝛼𝑘1) −
𝑟𝑝𝑏𝑧𝑝

(𝑧𝑝 + 𝑧𝑔) tan(𝛼)
tan (𝛼𝑘1)

2

𝑣𝑟 =

��𝑚𝑧𝑝𝜔 cos(𝛼) [tan(𝛼)(𝑧𝑝 + 𝑧𝑔) + (𝑧𝑝 − 𝑧𝑔) tan(𝛼𝑘1)]
��

2𝑧𝑔

𝑣𝑠 =

����
𝑚𝑧𝑝𝜔(𝑧𝑝 + 𝑧𝑔) cos(𝛼)

2𝑧𝑔
(tan(𝛼) − tan(𝛼𝑘1))

����

(39)

where 𝜂0 is the absolute viscosity at oil inlet temperature, 𝑆𝑅 is the slide-roll ratio of the gear pair, 𝑣𝑟 and 𝑣𝑠
is the relative sliding velocity and rolling velocity at contact point, 𝑏𝑖 (𝑖 = 1, 2, 𝑠, 9) are constant coefficients

that are dependent on the lubricant type. For ISO-VG-220 gear oil, 𝑏1 = −8.9, 𝑏2 = 1.1, 𝑏3 = 1, 𝑏4 = −0.3,

𝑏5 = 2.8, 𝑏6 = −0.1, 𝑏7 = −0.7, 𝑏8 = −0.4, 𝑏9 = −0.6.

a b c

Fig. 4. The verification and calculation of TVMF
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The friction coefficient of mixed EHL 𝜁 (0 < 𝜁 < 1) is related to the load distribution percentage function.

Based on a large number of experiments and numerical calculations, the load distribution percentage coefficient

be expressed as {
𝜁 = 1.21(ℎmin/𝜎)

0.64/[1 + 0.37(ℎmin/𝜎)
1.26]

ℎmin = 1.6𝛼0.6
𝑝 (𝜂0𝜈𝑚)

0.7𝑅0.43𝐸0.43/�̄�0.13
(40)

where ℎ𝑚𝑖𝑛 is the minimum oil film thickness, 𝜎 is the root mean square(RMS) of roughness, 𝛼𝑝 is the viscosity

coefficient, 𝑣𝑚 is the average speed of tooth surface meshing, �̄� is the load coefficient.

3.2.1. Verification for the calculation method of TVMF

To test the validity of the above method, the parameters of gear pairs used are the same as those in Ref.

[17]. Comparison of calculation results of two Methods from Fig. 4(a), the calculation results ITVMF of the

above method are consistent with those in Ref. [17] for TVMF. Therefore, the proposed method can accurately

calculate the friction coefficient of wind turbine’s spur gears. In order to further study the influence of other

parameters on the friction coefficient, Fig. 4(b,c) give the effect of surface roughness and input torque. As Fig.

4(b) shows, as absolute values of slide-to-roll ratio and surface roughness increasing, the coefficient of friction

increases, surface roughness has great influence on friction coefficient. As could be deduced from Eq. (39), the

coefficient is directly related to meshing force 𝐹𝑁 , whice is determined by input torque(𝑇𝑐1
). Fig. 4(c) indicates

the TVMF under different (𝑇𝑐1
). Thus, with the increase of 𝑇𝑐1

, the friction coefficient increases.

4. Nonlinear dynamic response of the CGTS

The parameters of the CGTS are listed in Table 1. Other calculation parameters are shown in table 2.

The coupled dynamic equations are solved by the Runge-Kutta method. For better analysis the dynamic

characteristics of the CGTS, more numerical computations are carried out and the dynamic responses of gear

system are obtained. In order to study the effect of friction on the dynamic response of the system, the

timedomain curves of dimensionless relative vibration displacement of internal and external meshing gear pairs

are obtained without and with the effect of friction, as shown in Fig. 5.

a. Comparison of without friction and with friction b. The details of  a

with friction without friction with friction without friction

Fig. 5. Timedomain comparison curve of dimensionless relative vibration displacement 𝛿𝑠𝑝
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Table 1. This is a test basic parameters of gear system.

Parameters
carrier

(𝑐1/𝑐2)

Sun

(𝑠1/𝑠2)

Planet

(𝑝1/𝑝2)

Ring

(𝑟1/𝑟2)
Gear(g1) Pinion(g2)

Number of teeth, 𝑍 - 31/22 47/41 125/104 73 25

Mass, M/kg 2042/1212 345/131 388/176 410/80 208 24

Moment of inertia, I/(kg mm2) 463/152 8/1.5 16/5 226/26 8.87 0.12

Module, m/mm - 14/10 14/10 14/10 4

Average stiffness, N/m - 1.31×1010 1.48×1010 2.453×1010

Amplitude stiffness, N/m - 4.96×109 5.12×109 5.31×109

Modulus of elasticity, E/Gpa 206

Poissons ratio, 𝑃 0.3

RMS value of roughness, 𝜎/um 0.06

Ambient viscosity of lubricant,

𝜂0/pa𝑠
0.01

Viscosity pressure coefficient of lu-

bricant, 𝛼𝑝/pa−1 2.19×10−8

Load coefficient, 𝜛 0.3

Addendum coefficient, ℎ𝑎 1

Number of planets, 𝑁 3

pressure angle, 𝛼 22.5

Meshing damping ratio, 𝜉 0.07

Table 2. This is operation parameters of gear system.

Parameters Low speed stage Intermediate stage High speed stage

Transmission ratio 5.25 5.28 2.92

Rated input torque,𝑇𝑐(N/m) 1×106

Rated input torque,𝑇𝑔2
(N/m) 1.23×104

Rated input speed, n/min 18

Coupling stiffness, N/m 𝑘𝑠1𝑐2
=5×109 𝑘𝑠2𝑔1

=5×109

Dimensionless nominal length, 𝑏𝑐(𝜇𝑚) 10

Dimensionless gear backlash 2

Dimensionless error amplitude 2

It can be seen from Fig. 5 that when the effect of friction is considered, the dimensionless relative vibration

displacement amplitude decrease. The friction force increase the peak difference of the dimensionless relative

vibration displacement amplitude and makes the periodicity of the system complex, which is consistent with the

conclusion in the literatures[3]. The correctness of the model and simulation results can be verified. Because

the vibration characteristics of the internal and external meshing pairs are consistent, the relative displacement

of the external meshing pair 𝛿𝑠𝑝 is analyzed for the dynamic characteristics as an example.
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4.1. Effect of excitation frequency

The speed of the wind turbine’s gear transmission system is the most important external excitation of the

gear system, which corresponds to the excitation frequency (Ω) in the gear system. When the dimensionless

excitation frequency Ω is considered as the bifurcation parameter, the bifurcation diagram of the wind turbine’s

gear tranmission system is shown in Fig. 6. It can be seen from the Fig. 6 that the wind turbine’s gear

transmission system has rich bifurcation and chaos behaviors, in which includes single-period, multi-period,

quasi-period and chaotic motion. The system first undergoes periodic motion in the low frequency region,

then enters chaotic motion. In chaotic region, system appears two periodic windows. Finally, system changes

from chaotic motion to single-period motion through inverse doubling bifurcation. To display the dynamic

characteristics more clearly, time region diagrams, poincare maps, phase diagrams and amplitude-frequency

spectrums are obtained to analyze the nonlinear characteristics of the wind turbine’s gear tranmission system in

detail.

1-T

2-T

chaotic

3-T

chaotic

2-T

1-T

Inverse doubling 

bifurcation

periodic windows

4-T
chaotic

Fig. 6. Bifurcation diagram using frequency ratio as control parameter

When Ω is less than 0.4, It can be seen from Fig. 6 that the bifurcation diagram presents a single point.

Time region diagram exhibits regular single-amplitude sine wave, and phase diagram shows one close loop.

Poincare map has only one point, and amplitude-frequency spectrum has one-peak amplitude, as shown in Fig.

7. Obviously the gear system is periodic-1 motion under low frequency excitation. Corresponding to the wind

turbine at low rotational speed, the operation of the gear system is relatively stable.

When Ω is increased to 0.42, It can be seen from Fig. 8 that time domain diagram appear two peaks in

one period, there are two closed circles in phase diagram, and Poincare map shows two points. Moreover,

the amplitude-frequency spectrum has two peaks amplitude, the system state is changed from periodic-1 to

periodic-2 motion. Corresponding to the wind turbine’s gear system, there is a multi-period window in the

single-periodic region.

When Ω is changed from 0.43 to 0.97, the systems motion is periodic-1 motion. With Ω increases to 0.98,

the system turns to chaotic motion. As shown in Fig. 9, time domain diagram appears irregular vibration

and phase diagram show irregular countless closed motion, and the chaotic motion can be verified by irrgular

discrete points in projection of Poincare map and amplitude-frequency spectrum display multiple amplitudes.

When Ω increases to 1.12, the system appear periodic window in chaotic region. For example, when

Ω=1.15, the time domain diagram has three amplitude changes in a period. there are three discrete points on the
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Fig. 7. The dynamic characteristic curve of the system at Ω = 0.4.

Fig. 8. The dynamic characteristic curve of the system at Ω = 0.42.
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Fig. 9. The dynamic characteristic curve of the system at Ω = 0.98.

Fig. 10. The dynamic characteristic curve of the system at Ω = 1.15.
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Poincare map. The phase diagram is a closed pattern formed by three periods of phase trajectories. Poincare

map is three fixed points. There are three peaks in the amplitude spectrum, which appear at one third and two

thirds of the fundamental frequency, respectively. Obviously the system is periodic-3 motion. As shown in Fig.

10.

When Ω increases to 1.18, it is can be seen from Fig. 6 that the system turns to chaotic motion. When Ω

continues to increase to 1.52, the systems appear periodic window again, including periodic-4 motion; when

Ω reaches to 1.66, the time domain diagram, phase diagram, Poincare map and amplitude-frequency spectrum

corresponding to the chaotic response are presented in Fig. 11. Obviously, the system is in chaotic state

under this excitation frequency. In the working process of the wind turbine, the operation under the excitation

frequency of this region should be avoided as far as possible.

Fig. 11. The dynamic characteristic curve of the system at Ω = 2.

With the increasing of Ω, the system turns to periodic-2 motion which remains the state from 3.05 to 3.76.

When Ω is equal to 3.15, time domain diagram appear two peaks in one period, there are two closed circles

in phase diagram, and Poincare map shows two points. The amplitude-frequency spectrum has two peaks

amplitude, which are distributed at discrete points of Ω/2. as illustrated in Fig. 12.

When Ω continues to increases to 3.77, the system finally returns to periodic-1 motion. the time domain

diagram, phase diagram, Poincare map and amplitude-frequency spectrum corresponding to periodic-1 response

are presented in Fig. 13. In engineering practice, the excitation frequency corresponds to the speed of the wind

turbines gear transmission system. In order to make the wind turbine’s transmission gear system have better

stability and reliability and prolong the working cycle life, wind turbine should avoid the speed range of chaotic

motion and the critical speed of changing state.
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Fig. 12. The dynamic characteristic curve of the system at Ω = 3.15.

Fig. 13. The dynamic characteristic curve of the system at Ω = 4.2.
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4.2. Effect of friction on Bifurcation Characteristics

The bifurcation characteristics is also one of the main nonlinear dynamic of gear system. Thus, it is

necessary to study the influence of friction on the Bifurcation characteristics of gear system. Fig. 14 shows

the bifurcation diagram of the dimensionless displacement 𝛿𝑠𝑝 using the excitation frequency Ω as bifurcation

parameter when using different RMS of roughness (𝜎=0.03,0.06), and the other parameters remain the same as

the previous section.

Ω
a. σ=0.03 b. σ=0.06

period-doubling 

windows

periodic windows

chaotic 

Windows disappearance

chaotic ↓

periodic
Periodic-3

Fig. 14. Bifurcation diagram of the system with Ω

It can be seen from Fig. 14(a, b) that the bifurcation behavior of the system is basically unchanged with the

increase of RMS of roughness in the low frequency region, indicating that friction has little effect on the low

frequency region.

When is equal to 1.15, phase diagrams infinitely loop in the enclosed area, but never duplicates. The

return points in Poincare maps form a geometrically fractal structure, and amplitude-frequency spectrum is

continuous. the systems motion is in state of chaos, as shown in Fig.15. Thus, When is changed from 1.12 to

1.18, the periodic window of the chaotic region disappears. When is equal to 2, the fluctuation of time domain

curve tends to be smooth, Discrete points of Poincare maps is more concentrated. as shown in Fig. 16.

Through comparing Fig. 11 and Fig. 17, the peak number of amplitude-frequency spectrum decreases.

The chaotic characteristics of system attenuate. It can be seen from Fig. 14(a,b) that with the increase of RMS

of roughness, the periodic window of inclusions in the chaotic region of the system disappears in the high

frequency region.

When is equal to 3.15, as shown in Fig. 17. The quasi-periodic motion of the system changes into chaotic

motion, resulting in an increase in the chaotic region. The motion state of the system changes, the bifurcation

behavior becomes complicated.

When is more than 3.27, the system enters periodic-3 motion, as shown in Fig. 18, which indicates that

friction has a great influence on the high frequency region. From the above analysis, the multiple periodic

motion of the system decreases, the chaotic motion region increases, and the critical frequency of entering the

chaotic motion is advanced in the high frequency region when RMS of roughness increase.
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Fig. 15. The dynamic characteristic curve of the system at Ω = 1.15.

Fig. 16. The dynamic characteristic curve of the system at Ω = 2.
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Fig. 17. The dynamic characteristic curve of the system at Ω = 3.15.

Fig. 18. The dynamic characteristic curve of the system at Ω = 4.2.
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5. Conclusion

A 42-DOF translation-torsion coupling dynamics model of the wind turbines gear transmission system

considering TVMS, TVMF, meshing damping, meshing error and backlash is established. The dynamic

characteristics of the wind turbines gear transmission system are studied, which is solved by the RungeKutta

numerical method, and the conclusions are as follow:

• Considering the TVMS and TVMF, the system frequency is an important parameter. For some values

of the frequency ratio (i.e,2<Ω<3.15), the system gets into multi-period and chaos motion state. In these

cases, the vibration state of the system is disordered, and such vibration frequency should be avoided as

far as possible.

• Mix-EHL is more in line with the engineering practice,which includes boundary friction and EHL.

When friction is considered, the friction has little effect on the bifurcation behavior of the system in the

low frequency region. In the high frequency region, the bifurcation behavior of the system becomes

complicated and the chaotic region increases.

• With the increase of friction coefficient, the periodic window of the system disappears in the low frequency

region, the multiple periodic motion regions decrease in the high frequency region, and the chaotic motion

interval of the system increases.
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