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Abstract
An ever-growing body of evidence suggests that climate change is already impacting human and natural
systems around the world. Global environmental assessments assessing this evidence, for example by
the Intergovernmental Panel on Climate Change (IPCC)1, face increasing challenges to appraise an
exponentially growing literature2 and diverse approaches to climate change attribution. Here we use the
language representation model BERT to identify and classify studies on observed climate impacts,
producing a machine-learning-assisted evidence map which provides the most comprehensive picture of
the literature to date. We identify 100,724 (62,950 − 162,838) publications covering a broad range of
impacts in human and natural systems across all continents. By combining our spatially resolved
database with human-attributable changes in temperature and precipitation on the grid cell level, we infer
that attributable climate change impacts may be occurring in regions encompassing 85% (80%) of the
world's population (land area). Our results also reveal a substantial 'attribution gap' as robust evidence
for attributable impacts is twice as prevalent in high income compared to low income countries. While
substantial gaps remain on con�dently establishing attributable climate impacts at the regional and
sectoral level, our unique database illustrates the broad extent to which anthropogenic climate change
may already be impacting natural systems and societies across the globe.

Main
There is overwhelming evidence that the impacts of climate change are already being observed in human
and natural systems3. These effects are emerging in a range of different systems and at different scales,
covering a broad range of research �elds from glaciology to agricultural science, and marine biology to
migration and con�ict research1. The evidence base for observed climate impacts is expanding4, and the
wider climate literature is growing exponentially5,6. Systematic reviews and systematic maps offer
structured ways to collectively identify and describe this evidence while maintaining transparency,
attempting to ensure comprehensiveness and reduce bias7. However, their scope is often con�ned to very
speci�c questions covering no more than dozens to hundreds of studies.  

 

In the climate science community, evidence-based assessments of observed climate change impacts are
performed by the Intergovernmental Panel on Climate Change (IPCC)1. Since the �rst Assessment Report
(AR) of the IPCC in 1990, we estimate that the number of studies relevant to observed climate impacts
published per year has increased by more than two orders of magnitude (Fig. 1a). Since the third AR,
published in 2001, the number has increased ten-fold. This exponential growth in peer-reviewed scienti�c
publications on climate change5,6 is already pushing manual expert assessments to their limits. To
address this issue, recent work has investigated ways to handle big literature in sustainability science by
scaling systematic review and map methods to large bodies of published research using technological
innovations and machine learning methods8–12.

https://www.zotero.org/google-docs/?lfuVqM
https://www.zotero.org/google-docs/?ibvbxY
https://www.zotero.org/google-docs/?78do0j
https://www.zotero.org/google-docs/?ADsucb
https://www.zotero.org/google-docs/?b8kQoG
https://www.zotero.org/google-docs/?ZUUePC
https://www.zotero.org/google-docs/?ZH2xKU
https://www.zotero.org/google-docs/?lvkCyf
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Fully utilising the available knowledge on emerging climate change impacts is key to informing global
policy processes13 as well as regional and local risk assessments and on-the-ground action on climate
adaptation14,15. While the global policy process may be served well with literature assessments
presenting results aggregated on the level of continents or world regions1,16, informing climate
adaptation typically requires more highly localised and contextualised information on climate
impacts17,18. 

 

Another core challenge of literature reviews and assessments of observed climate impacts relates to the
question of whether climate impacts can be attributed to anthropogenic forcing4. While anthropogenic
climate change signals have been identi�ed in observed trends in a number of variables4 including
temperature19, precipitation20, sea level rise21, or water resources22, and selected extreme weather23

events, the con�dence in these assessments is still subject to substantial regional variations and remains
relatively tentative at smaller spatial scales even if very high con�dence levels can be reached for larger
scale (e.g., global scale) attribution �ndings. Con�dence also strongly depends on the variable being
considered, and speci�cally decreases further down the impact chain, i.e. for indicators of changes in
human and natural systems that are driven by changes in other climate impact variables4. In addition,
methodological approaches and robustness criteria for climate change attribution differ widely between
studies and disciplines, requiring expert judgement on a case-by-case basis in order to compile a
comprehensive evidence base.

 

This points towards the added value of joining the body of evidence documenting regional or local-scale
studies about climate impacts linked to common climate drivers such as temperature and precipitation
change to a spatially resolved detection/attribution database of those variables.

 

Using BERT, a state of the art deep learning language representation model24, we develop a machine
learning pipeline to identify, locate and classify studies on observed climate impacts at a scale beyond
that which is possible manually (see Extended Figure 1). We combine this spatially resolved dataset with
an approach to attributing observed trends in surface temperature and precipitation at the grid cell level
(5o x 5o and 2.5o x 2.5o cells respectively) to human in�uence on the climate. In doing so, we establish a
new paradigm for assessing the impacts of climate change across human and natural systems.  

 

 

https://www.zotero.org/google-docs/?T9dP67
https://www.zotero.org/google-docs/?AgD7VM
https://www.zotero.org/google-docs/?Hbh8V9
https://www.zotero.org/google-docs/?dqzS37
https://www.zotero.org/google-docs/?muuXuM
https://www.zotero.org/google-docs/?RW88Dc
https://www.zotero.org/google-docs/?Q9CGtI
https://www.zotero.org/google-docs/?etQWH5
https://www.zotero.org/google-docs/?UqirPO
https://www.zotero.org/google-docs/?ZlW42l
https://www.zotero.org/google-docs/?mxAFlP
https://www.zotero.org/google-docs/?bf8y55
https://www.zotero.org/google-docs/?KLb7wt
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Mapping over 100,000 impact studies

 

We searched two large bibliographic databases (Web of Science and Scopus) using an inclusive and
transparent search method to systematically identify the literature on climate impacts. We assessed
comprehensiveness by ensuring that our search string returned all references from tables 18.5-18.9 in
AR5 WGII, which deal with the detection and attribution of climate impacts. Recent breakthroughs in
natural language processing (NLP) have extended the capabilities of text classi�cation. BERT
(Bidirectional Encoder Representations from Transformers) is a deep learning language model trained
using semi-supervised learning on massive corpora to represent text where word representations are
dependent on context. The pretrained model can be �ne-tuned on downstream tasks, and has achieved
state of the art results across a range of NLP tasks. Using training data assembled by collaboratively
screening and coding 2,629 abstracts, we use supervised machine learning, �ne-tuning a DistilBERT
model25, to classify, also based on the abstract text, documents relevant to understanding the observed
impacts of climate change in general, and to predict the human or natural systems for which they
document impacts (i.e., the impact categories), as well as the climate variable(s) driving the documented
impacts. Uncertainty estimates for the predictions are derived from bootstrapping. We employ a nested
cross-validation approach to hyperparameter tuning, model selection and classi�er evaluation, and �nd
that our binary inclusion classi�er achieves an average F1 score of 0.71, and ROC AUC score of 0.92. The
prediction of impact type is achieved with an average macro F1 score of 0.84 while the prediction of
climate driver is achieved with an average F1 score of 0.79 (see Methods section and Extended Figures 1-
5 for a detailed explanation of the labelling, machine learning approach and classi�er performance). 

 

Our query returned 603,759 unique documents (Fig.1a): many more than would have been possible to
screen by hand. Of these we estimate that 100,724   (62,950-162,838) documents are relevant to
understanding the observed impacts of climate change in general, based on the spread of
inclusion/exclusion predictions obtained from our model via bootstrapping (Fig. 1a.). This base of
relevant publications has grown substantially through the IPCC assessment cycles. 48,911 (39,602-
79,464) articles have been published in the sixth assessment cycle so far; this represents more than twice
the number of studies published during the AR5 period.

 

We used a geoparser pre-trained using neural networks26 to extract structured geographic information
from the titles and abstracts of the studies in our database. Although the number of relevant studies in
North America, Asia, and Europe is much higher than in South America, Africa, and Oceania, there is a
large body of relevant studies available on all continents (�g 1.c). The relevant publications are also
unevenly distributed across impact categories, with by far the largest number of studies 34,988 (18,520 -
65,666) documenting impacts on terrestrial and freshwater ecosystems (Fig 1.b.). However, the category

https://www.zotero.org/google-docs/?GJaPJ6
https://www.zotero.org/google-docs/?zuyf5W
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with the comparably smallest coverage--mountains, snow and ice--still has 6,307 (3,526 - 12,228)
studies. 

 

In contrast to the map of observed impacts produced by the IPCC, we do not only include papers which
formally attribute impacts to observed trends in climate. Instead, we take a more comprehensive
approach re�ecting that our objective is to map all possibly relevant studies on climate-related changes,
rather than a list of studies where the relationship between an observed climate trend and speci�c
impacts has been demonstrated with high con�dence, or even linked to human in�uence on the climate.
This includes studies attributing impacts to observed trends in climate variables, even where the authors
do not attribute these trends to human in�uence, such, for example, a study documenting the in�uence of
the date of snowmelt on the phenology and population growth of mammals27. In addition, we include
studies which provide evidence on the sensitivity of human or natural systems to climate metrics, such as
on how heart disease mortality responds to variations in temperature28. Finally, we include documents
describing the impacts of extreme events and studies which detect signi�cant trends in climate variables
or climate extremes29, regardless of  whether or not these trends are in line with the expected effects of
anthropogenic climate change. We exclude all studies which only describe potential or modelled impacts
of future climate change.

 

Combining geolocated literature with climate information

To add context on the role of anthropogenic climate change in driving impacts, or more precisely the role
of historical changes in anthropogenic climate forcing agents such as greenhouse gases and aerosols,
we combine our literature database of studies selected using machine learning with spatially explicit
analysis of detectable and attributable trends in two key climate variables. Combining evidence from
climate model simulations and observational datasets allows us to identify trends likely attributable in
part to anthropogenic climate change for near-surface temperature and precipitation at the level of 5
degree (temperature) or 2.5 degree (precipitation) grid cells19,20. Here we apply this methodology to
updated observational data until 2018 for temperature (Fig.2a) and until 2016 for precipitation (Fig.2b),
analysing in each case trends from 1951. Grid cells in our categories +-2 or +-3 show where trends cannot
be explained by internal variability and are either consistent with or greater than the expected change in
climate model simulations that include anthropogenic forcing agents like greenhouse gas increases. We
infer that these cells display detectable and at least partly attributable trends (see Methods for more
details).

 

We next resolve the structured geographic information extracted from our studies, which range from
continental scale down to individual watersheds or communities, to sets of grid cells (Extended Fig. 9,

https://www.zotero.org/google-docs/?nvUsnQ
https://www.zotero.org/google-docs/?8i5EGq
https://www.zotero.org/google-docs/?rZadyv
https://www.zotero.org/google-docs/?i5C0ua
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Methods). We can then derive the weighted number of studies per grid cell according to the number of
grid cells to which each study relates. By combining studies related to temperature or precipitation with
the gridded information on attributable trends in temperature and precipitation, this provides a  necessary
(though not necessarily su�cient) condition for a systematic two-step attribution to anthropogenic
activities of the impacts predicted by the classi�er30. Where studies documenting impacts associated
with changes in temperature or precipitation co-occur with attributable trends in those variables, we claim
that there is at least preliminary evidence for attributable impacts in these areas. This approach is similar
in nature to the “joint attribution” applied in IPCC AR431,32. 

 

In general, we note that this type of automated assessment procedure which we present here is no
substitute for careful assessment by experts, but can identify large numbers of studies for a region that
may point toward attributable human in�uence on impacts. Con�dence in multi-step attribution claims
depends on con�dence in the attribution of the individual components (steps) along with the con�dence
or limitation in linking the different steps in the proposed causal chain32.  One limitation of our partially
automated two-step attribution approach is that we cannot verify that every temperature or precipitation
trend cited in impact studies matches, either in sign, magnitude or time period, those attributed to human
in�uence by the regional detection and attribution studies for temperature19 and precipitation20. This is a
greater problem for studies driven by precipitation, where both wetting and drying trends occur with
greater temporal variation, though these make up the minority of partially attributed studies and grid
cells. We also note that not all studies in our database document impacts in response to trends in climate
variables. Where impacts are attributed to extreme events or variation in temperature or precipitation, the
fact that recent trends in temperature or precipitation can be attributed to human in�uence provides
important context, but does not allow robust attribution of those impacts. These factors limit con�dence
in our cases of potential attribution of impacts to anthropogenic forcing.  Our approach could  be
extended with more �ne-grained analysis of studies or with attribution of additional signals in climate
variables in order to make more robust attribution statements.

 

For 80% of global land area (excluding Antarctica), trends in temperature and/or precipitation can be
attributed at least in part to human in�uence on the climate according to our analysis (purple cells,  Fig.
2c). Using gridded population density data33, we calculate that this covers 85% of the world’s population.
The majority of land grid cells show attributable warming trends, with exceptions where trends cannot be
robustly distinguished from internal variability (white cells, category 0) or where there is insu�cient data
to establish trends (grey cells). For precipitation, attributable wetting and drying trends are found with
greater geographical variation. There are also more grid cells where a trend in precipitation cannot be
established, or where the observed trend is opposite in sign to that simulated by climate model historical
simulations (green and yellow cells, +-4).

https://www.zotero.org/google-docs/?gn5blv
https://www.zotero.org/google-docs/?M9978J
https://www.zotero.org/google-docs/?C6Tbby
https://www.zotero.org/google-docs/?KI0n5m
https://www.zotero.org/google-docs/?qrEU7X
https://www.zotero.org/google-docs/?xIXByz
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Though most of the world’s population resides in areas where trends in temperature and or precipitation
can be at least partially attributed to human in�uence according to our analysis, there is substantial
geographical variation in the degree to which the impacts of temperature and precipitation on human and
natural systems have been studied. We characterise areas with fewer than 5 weighted studies per grid cell
as displaying low evidence, areas with between 5 and 20 weighted studies as robust evidence, and areas
with more than 20 weighted studies as high evidence.

 

For 48% of global land area (hosting 74% of global population), we �nd robust or high evidence of
impacts on human and natural systems colocated with attributable temperature or precipitation trends
(Fig. 2c). Areas with this combination of evidence are indicated by the darker purple cells. These
constitute almost all grid cells in Western Europe, North America, South and East Asia, and there are parts
of all continents for which we have similar pockets of substantial preliminary evidence.

 

However, for 33% of global land area (hosting 11% of global population), although we have evidence that
long-term trends in precipitation and temperature are attributable at least in part to human in�uence, there
is apparently relatively little evidence in the existing literature about how these trends impact human and
natural systems (Fig. 2c lightest purple shading). This imbalance suggests, in line with research
measuring climate impacts using remote sensing34, that the lack of evidence in individual studies is
rather to do with these locations being less intensively studied than an absence of impacts in these
areas. Parts of Western Africa, South-east, Western and Northern Asia contain several light red grid cells
where there is evidence to suggest that the climate (temperature and/or precipitation) has changed
because of human in�uence, but we have little evidence on how this may be impacting human and
natural systems. These demonstrable evidence gaps suggest a lack of impacts research commensurate
with current knowledge of how the local climate (temperature and/or precipitation) is changing. 

 

Some of the spatial features can be explained by the geographical characteristics. Among the regions
with limited evidence are vast, sparsely populated and di�cult to reach areas with a comparable uniform
biosphere and climate such as Siberia or the Saharan desert. But beyond these features, our results
clearly reveal a substantial 'attribution gap'. We �nd that 23% of the population of low income countries
live in areas with low impact evidence despite at least partially attributable trends in temperature and/or
precipitation (Fig. 2.d). In high income countries, this �gure is only 3%. A density of 5 studies per grid cell
or more with attributable impacts is 1.76 times as prevalent by population for high income countries
(88%) as for low income countries (50%), while a density of 20 studies or more with attributable impacts
is more than 4 times as prevalent (81% compared to 17%). 

https://www.zotero.org/google-docs/?NEKNk3


Page 9/27

 

In the remaining grey grid cells (Fig. 2c), trends in precipitation and temperature have not been attributed
to human in�uence on the climate according to the methodology in refs. 18 and 19, as applied to CMIP6
models. This does not rule out the possibility that some trends in precipitation or temperature have
occured in these regions that have been driven, at least in part, by human in�uence on the climate.
However, due to various factors, such as lack of adequate observational data, high levels of natural
variability compared to the climate change signal, or limitations in modelling or estimated climate
forcings, some observed changes that actually include anthropogenic contributions may not yet be
attributable at the grid cell level. This categorisation of individual gridpoints may well change as new
observational data are collected, as models improve, as the global climate continues to warm, or as
detection/attribution methodologies improve. Darker grey grid cells (10% of analyzed land area) indicate
where there are no detectable trends in temperature or precipitation that can be attributed to human
in�uence at a grid cell level, but where there nevertheless appears to be substantial evidence that local
trends in some climate variables lead to impacts on human and natural systems. For example, many
studies refer to the impacts of temperature in the state of Western Australia, but of the 40 grid cells in the
state, an attributable temperature trend can be demonstrated for 22 cells. For 16 of the remaining cells a
lack of data means that a detectable trend cannot be established, and for the remaining 2 cells, no
attributable trend can be established.

 

The lightest grey cells (17% of land area) describe areas where we do not detect anthropogenic in�uence
on regional temperature or precipitation and �nd few publications about the impacts of temperature or
precipitation on human and natural systems in those areas. Apart from high latitudes and over the ocean,
these cells are primarily in Africa. For example, in the light grey patch over the central part of sub-Saharan
Africa, either limitations of observed data, models, or low signal to noise imply that we are unable to
attribute temperature or precipitation trends to human in�uence on the climate using the methodologies
employed here (see extended �g. 4); further, we have identi�ed few studies analysing the impacts of
climate change on human and natural systems in those regions. These evidence gaps constitute
signi�cant blind spots in our understanding of climate impacts, and in some cases in our understanding
of attributable anthropogenic in�uence on regional precipitation and/or temperature. 

In total, 57,366 studies discuss impacts related to a driver which our analysis suggests can be attributed
in part to human in�uence on the climate in at least one grid cell to which the study refers. We �nd
hundreds of partially or mostly attributable studies (where there are attributable trends in the relevant
climate variable for at least 1% or more than 50% of grid cells respectively) in each impact category
across all continents (Fig. 3, indicated by the darker green and purple bars). This �gure ranges from 268
(143-514) studies of impacts on mountains, snow and ice in Africa to 7,835 (4,308-13,552) studies of
impacts on terrestrial ecosystems in North America. Wide con�dence intervals here re�ect the compound
uncertainty deriving from classi�cation of relevance, impact and driver. 
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Our analysis also allows quanti�cation of how the share of research on each impact category varies from
continent to continent. For example, research on human and managed systems makes up 12% of all
research globally, but only 10% of research in Europe, compared to 19% in Africa. This focus on human
and managed systems in Africa is remarkable given that the absolute numbers of studies in Africa
(1,466) is similar to that in Europe (1,799) despite the vast difference in total numbers of studies between
the two continents. This greater share of research in Africa documents impacts in human and managed
systems may re�ect the high vulnerability of particularly sub-Saharan Africa to climate impacts35.

Discussion And Conclusion
We develop a novel two-step attribution process which combines a transparent and reproducible36,37

machine learning approach to identifying studies on observed climate impacts with model-based
assessments of detectable anthropogenic contributions to historical temperature and precipitation
trends. Using machine learning to scale up evidence synthesis allows us to map 100,000 studies of
climate impacts, providing the most comprehensive picture of the evidence base to date. Bringing
together these two lines of evidence on climate change and climate impacts provides a new bridge
between the climate science community and the impacts, adaptation, and vulnerabilities communities,
and highlights the synergistic nature of their approaches.

 

Our spatially resolved approach allows for a systematic provision of regional to local, sector-speci�c
climate impact information to local or regional experts and adaptation practitioners. This offers
perspectives for a novel climate service supporting the uptake of scienti�c information in local contexts
and providing relevant information for adaptation action. Second, the quanti�cation of an “attribution
gap” highlights the need for more research on climate impacts in low income countries. Furthermore, the
automated nature of the assessment allows for continuous updating of the database, creating a ‘living’
evidence map that can also be improved and extended by incorporating additional sources of relevant
publications (e.g. non-English speaking evidence, or improved/expanded regional detection/attribution
studies) and targeted assisted learning in regional or topical areas of interest. 

 

The database we compile is vast, but neither complete nor perfect. Our systematic query-based literature
search in the Web of Science and Scopus - two large bibliographic databases - is extensive, but will also
exclude some relevant studies from our considerations. The selection and categorisation of studies was
achieved using machine learning, meaning that our results are subject to additional uncertainties, which
compound for each level of classi�cation. Further, documents were coded only at the abstract level, and
only the abstracts were used as inputs to our classi�ers. Given the relative simplicity of the type of
information we extract (focussing on the impact area studied and the documented driver), we expect

https://www.zotero.org/google-docs/?xjWXH7
https://www.zotero.org/google-docs/?7hUsik
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them to be covered in the abstract of a study, which provides the condensed summary of the study’s
�ndings.  Applying classi�ers to noisy full texts which contain contextual information and related
research as well as the results and topic of a study would greatly increase the risks of false positives. We
thus �nd our approach well justi�ed for such high-level syntheses.

 

The database we assemble will also incorrectly exclude some relevant documents and contain some
documents that have been incorrectly included or incorrectly coded, but the approach enables us to report
both classi�er performance and associated uncertainties. Additionally, some included studies may be of
low quality, as no process for critical appraisal (a key component of formal systematic reviews) was
followed either by human reviewers or in the machine learning pipeline. In the case of systems subject to
other anthropogenic interference such as the global biosphere, managed systems such as agriculture, or
human systems themselves, identifying a robust climate change driver requires careful assessment of
other socio-economic factors38,39, adding additional levels of complexity40. 

 

The two-step attribution process is also only applied for the subset of papers which provide evidence on
impacts driven by temperature and precipitation. Exploring the role of human in�uence for studies
analysing the effects of factors other than trends in mean temperature or precipitation as the main driver
would require additional attribution strategies, but these could in principle be combined with individual
studies in similar ways. There is a growing literature on attributable human in�uence on a number of
climate metrics at the regional scale as well as extreme events41–43, and therefore much scope for
expansion of this approach. Finally, we note that plausible causal chains of cascading impacts are not
covered by our attribution approach (such as temperature driving an increase in drought, leading to
reduced agricultural yields) except where studies address each part of the causal chain.

 

These caveats highlight that the type of machine learning-assisted evidence map we present here is no
substitute for careful assessment by experts, either in the context of a gold-standard systematic review44

or in IPCC assessments. However, in an age of “big literature”8,10, it is an invaluable complement. The use
of machine learning means we consider more evidence than would otherwise be feasible, showing where
evidence appears to be more prevalent  and where important gaps can be observed. While traditional
assessments can offer relatively precise but incomplete pictures of the evidence, our machine-learning-
assisted approach generates an expansive preliminary but quanti�ably uncertain map. Further, it enables
us to provide an automated, living systematic map of climate impacts that can be readily updated.
 Ultimately, we hope that our global, living, automated, and multi-scale database will help to jump-start a
host of reviews of climate impacts on particular topics or particular geographic regions.

 

https://www.zotero.org/google-docs/?A7Fii7
https://www.zotero.org/google-docs/?F0pPNv
https://www.zotero.org/google-docs/?1BJ7e9
https://www.zotero.org/google-docs/?Pt6qZz
https://www.zotero.org/google-docs/?8TxR74
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Machine-learning pipelines as developed here will be useful to prepare the IPCC for the age of big
literature by scaling systematic evidence mapping approaches. However, our results also show how
synthesis and transparency can be lifted to new levels by combining so-far disparate lines of evidence
and reporting classi�er performance as well as associated uncertainties.  If science advances by
standing on the shoulders of giants, in times of ever-expanding scienti�c literature giants’ shoulders
become harder to reach. Our computer-assisted evidence mapping approach can offer a leg-up.
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Methods

Outline
An overview of each of the steps taken in this study is given in Extended Fig 1. These are outlined brie�y
here and explained in detail in the following sections. Over 600,000 documents were retrieved from
bibliographic databases using a query. 2,373 of these documents were screened for relevance and coded
for impact type and driver by human reviewers. The implicit inclusion and coding decisions for a further
351 documents were extracted from Tables 18.5-18.9 in the contribution of Working Group II to the Fifth
Assessment Report of the IPCC1. Machine learning classi�ers were trained to predict relevance of
documents using the titles and abstracts, and evaluated using nested cross-validation. The best
performing classi�er was then �t with all labelled documents using bootstrapping to make predictions
with con�dence intervals for the relevance of the remaining documents. Those documents predicted to be
irrelevant were discarded, as were documents labelled by reviewers as irrelevant. Multilabel classi�ers
were then trained using the remaining labelled relevant documents, and assessed in a similar fashion
using cross-validation. Predictions for impact type and driver were then made for the remaining
unlabelled documents. Geographical entities were extracted from the included studies using a geoparser,
and each entity was matched to the set of 2.5 degree grid cells overlapping it. Observed trends in
precipitation and temperature were collected for 2.5 and 5 degree grid cells and compared with climate
models to assess whether observed trends were detectable (i.e., unusual compared with natural
variability, and in the same direction as simulated by historical forcing climate model simulations) and at
least partially attributable to human in�uence on the climate, as discussed below. Finally, documents
predicted to be driven by temperature or precipitation were extracted from the database of studies and
merged with the grid cell attribution datasets so that each document could be characterised by the
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presence of human-attributable climate trends in the grid cells it referred to, and each grid cell could be
characterised by the number of studies referring to it.

 

 

Search, screening and coding

Search Strategy
Potentially relevant documents were assembled by developing a query to search bibliographic databases.
To validate the query, we tested this against a set of records known to be relevant. Tables 18.5-18.9 in the
contribution of Working Group II to the Fifth Assessment Report of the IPCC2 (AR5 WGII) contain the
studies considered in their assessment of the observed impacts of climate change. After extracting these
references, we built a query that would return all of the references in the tables that speci�cally referred to
the role of climate change (rather than of counterfactual explanations for impacts). The query is
reproduced in the Supplementary Information (in the format for Web of Science - the same query was
used for scopus) and is made up of three lists of keywords linked with boolean ANDs. The �rst set of
keywords refer to climate and climate variables, the second to impacts, and the third to observations and
attribution.

 

The query was performed on Scopus and the following citation indices from the Web of Science Core
Collection:

Science Citation Index Expanded (SCI-EXPANDED) --1900-present

Social Sciences Citation Index (SSCI) --1900-present

Arts & Humanities Citation Index (A&HCI) --1975-present

Conference Proceedings Citation Index- Science (CPCI-S) --1990-present

Conference Proceedings Citation Index- Social Science & Humanities (CPCI-SSH) --1990-present

Emerging Sources Citation Index (ESCI) --2015-present

The queries were updated on October 19 2020: Extended Table 1 documents the number of documents
retrieved from each database and the total number of records after deduplication through fuzzy title and
publication year matching using trigram similarity. The queries were imported into a database and
deduplicated using the NACSOS review platform3.

Inclusion and exclusion criteria

https://www.zotero.org/google-docs/?SAshwl
https://www.zotero.org/google-docs/?NScfDN
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We take a broad de�nition of climate impacts to include all studies relevant to understanding the
observed impacts of climate change. This includes

Studies which explicitly link impacts to climate change (8% of coded studies)

Studies which link impacts to trends in climate drivers like temperature or precipitation (42% of
coded studies)

Studies which link impacts to extreme climate events (6% of coded studies)

Studies which link impacts to variation in climate drivers (39% of coded studies)

Studies which document regional or local climate trends (11% of coded studies)

 

Documents which only provide evidence of likely future impacts of climate change were excluded.

 

With this broad de�nition of climate impacts evidence, we do not claim that each study is in and of itself
evidence of the impacts of climate change. Rather, taken together, and in the context of observations and
climate models, this collection of included studies constitutes the evidence base necessary for
understanding climate impacts.

 

Coding impacts and drivers
Where documents were selected for inclusion, reviewers coded the attribution category, the climate
impacts and the drivers (where appropriate) for each paper. Impacts and their drivers were chosen from a
selection of 75 speci�c categories, which were aggregated according to the hierarchy of categories
included in the supplementary �le category_aggregation.csv. 93% of included studies coded impacts in
one or more of the 5 broad impact categories used by IPCC AR5:

Mountains, snow and ice (11.42% of included studies)

Rivers, lakes and soil moisture (21.27% of included studies)

Terrestrial ecosystems (33.13% of included studies)

Coastal and marine ecosystems (13.21% of included studies)

Human and managed systems (21.42% of included studies)

Remaining studies documented only trends in climate variables without reference to any of these
systems.
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Screening and Coding
 

A total of 2,373 documents were screened by members of the author team using the NACSOS platform3,
of which 1,125 were included as relevant and coded for impacts and drivers. The median number of
documents coded per user was 133, and the mean was 173.

 

In addition, documents extracted from the tables 18.5-18.9 in AR5 WGII were automatically labelled as
relevant and tagged with the broad impact categories corresponding to the table in which they were
found.

 

In order to mitigate a highly unbalanced sample (few relevant documents among many irrelevant
documents), and to make best use of reviewing resources, some documents were selected for screening
using an adapted active learning pipeline. With active learning, a classi�er (see following section for
details) is trained using existing screening decisions to predict the relevance of documents yet to be
reviewed. Usually, reviewers screen subsequent documents in decreasing order of predicted relevance and
the classi�er is periodically updated with the new data that has been generated. Given that our goal was
to not to screen all relevant documents but to generate useful labels e�ciently, we created samples with
relevance predictions greater than 0.2, 0.3 and 0.4, in order to exclude documents with a low likelihood of
being relevant. Documents were �rst screened by a small group of reviewers who developed the
categorisation scheme for impacts and drivers. A subsequent set of documents was screened by all
reviewers, and differences in coding were discussed and alterations recorded. Reviewers were then split
into teams corresponding with the AR5 impact categories according to expertise, and screened
documents predicted to be rather relevant (>0.33) to the given category. Each team screened a sample of
documents and discussed differences in screening and coding decisions. Teams reached average
Cohen’s Kappa scores between 0.66, indicating substantial agreement, and 1.0, indiciating full agreement.
After this initial round of double coding, reviewers proceeded to screen documents individually. Additional
documents were selected for screening using keyword searches
(https://github.com/mcallaghan/regional-impacts-
map/blob/master/literature_identi�cation/category_keywords.ipynb) to identify documents from
infrequently appearing subcategories. 

 

Because the documents selected using the methods described above are unlikely to be representative of
the full set of documents returned by the query, we also screened 732 documents drawn at random which
we used for validation.

https://www.zotero.org/google-docs/?3tCZsH
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Machine learning classi�ers for inclusion, impact type and
drivers
We �rst trained a binary classi�er to predict the inclusion/exclusion decision given by reviewers. We use a
nested cross-validation procedure (Extended Fig. 2) to optimize parameter settings and evaluate the
performance of a support vector machine (SVM) classi�er4 as well as a pre-trained DistilBERT model �ne-
tuned with our labelled dataset5. Support vector machines have a long history of applications in evidence
synthesis6, while the BERT7 (Bidirectional Encoder Representations from Transformers) model recently
achieved state of the art results in a variety of natural language processing challenges, and has begun to
be used in evidence synthesis pipelines8. 

 

In our nested cross-validation procedure, we �rst separate those documents which were drawn at random
from the population of documents identi�ed by the query from the remaining unrepresentative
documents. Only randomly selected documents are used in validation and test sets, in order to ensure
that the estimation of the performance of the classi�er on the whole dataset is not biased. In the outer
fold of the cross-validation loop, a separate test set is drawn from the randomly selected documents for
each fold, k, and all other documents are assigned to the test set. The inner CV loop draws k inner
validation sets from the remaining random documents in the training set, and allocates all other
documents in the training set to an inner training set. The inner loop is used to optimise hyperparameters
for each model using grid search: a model is initialised with each combination of hyperparameters and �t
on each inner training set and evaluated on each inner validation set. The combination of
hyperparameters with the best mean F1 score across inner folds is selected as the best model. This
model is �t with the training data from the outer CV and evaluated with the test data. The outer CV thus
returns k scores for each metric, which we report below.

 

We evaluated our binary inclusion/exclusion classi�ers with 5 inner and outer folds. DistilBERT clearly
outperformed SVM across all metrics, achieving an average F1 score of 0.71, and an average ROC AUC
score of 0.92 (Extended Fig. 3). A �nal DistilBERT model con�guration was chosen using the same
procedure on the outer folds. Each combination of parameter settings was tested on each outer fold, and
the combination of parameter settings with the highest mean F1 score was selected. 

https://www.zotero.org/google-docs/?yeTzAE
https://www.zotero.org/google-docs/?EGUqOK
https://www.zotero.org/google-docs/?mxSaH1
https://www.zotero.org/google-docs/?Rlf0GN
https://www.zotero.org/google-docs/?1LFu5A
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This �nal model was used to predict the relevance of all remaining documents. To create a con�dence
interval for each prediction, 5 versions of the �nal model were trained on 5 folds of the data. Upper and
lower estimates for each document are given by the mean plus or minus one standard deviation. All
documents where the lower estimate was below 0.5 were excluded from the study.

 

We then trained multilabel classi�ers to predict the impact category and the driver category of included
documents. Classi�ers parameters were optimised and classi�ers evaluated with the same nested cross-
validation method, using only those labelled documents which were included. Because documents
selected for screening using the active learning process are broadly representative of the documents to
which the multilabel classi�ers are applied, all documents selected in this manner are also used for
validation. Due to the lower number of documents, and lower number of documents drawn from a
random sample in this set, we used a smaller k value of 3 for cross-validation. We treat each class
equally and optimise using the macro F1 score. For the prediction of impact categories, DistilBERT
outperforms SVM, achieving a macro-averaged F1 score of 0.84 and a macro-averaged ROC AUC score of
0.95 (Extended Fig. 4.). For classi�cation of climate drivers, we optimise for the macro-averaged F1 score
for the categories temperature and precipitation. DistilBERT outperforms SVM, achieving an average F1
score of 0.79 and an average ROC AUC score of 0.86. Where no individual class has a prediction larger
than 0.5, documents are classes as “Other systems”.

Detection and Attribution
To put our database of impact studies in context, we match studies with grid cell level detection and
attribution of temperature and precipitation trends to human in�uence on the climate.

Updating attribution of temperature and precipitation trends

We followed a previously published methodology9,10 used to attribute observed temperature and
precipitation trends to human in�uence around the globe, at the level of typical climate model grid cells (5
degree grid boxes for temperature and 2.5 degree grid boxes for precipitation). The different resolutions
are based on the available observed datasets, which we did not regrid for our project. The method relies
on a comparison of gridbox-scale trends in observational datasets for temperature (HadCRUT4 version
4.611) and precipitation (GPCC v2018, obtainable from
https://psl.noaa.gov/data/gridded/data.gpcc.html), with those produced in climate model runs from
CMIP612.  The CMIP6 runs simulate climate changes over the historical period under the in�uence of
either all forcings (i.e., both natural and anthropogenic, referred to as “ALL”) or natural forcings only
(referred to as “NAT”).

https://www.zotero.org/google-docs/?DadPL5
https://www.zotero.org/google-docs/?FuAnTR
https://psl.noaa.gov/data/gridded/data.gpcc.html
https://www.zotero.org/google-docs/?IDi9Wp
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We analysed the outputs of these simulations from 10 CMIP6 models, namely MIROC6, IPSL-CM6A-LR,
CanESM5, HadGEM3-GC31-LL, CNRM-CM6-1,GFDL-ESM4, CCESS-ESM1-5, BCC-CSM2-MR, NorESM2-LM
and CESM2 . The model selection was based on the availability of ALL, NAT as well as “piControl” runs
(simulating internal climate variations in the absence of external forcings, apart from a constant solar
forcing).  The analysis provides a test of the ability of the corresponding ALL simulations to reproduce
the regional trends in annual mean temperature and precipitation against observational data13. For some
models the ALL simulations were not available after 2014, in which case we combined them with the �rst
few years of the ssp585 simulations of future climate conditions in order to match the length of the
observational data.

 

Linear trends over the 1951-2018 (for temperature) and 1951-2016 periods (for precipitation) were
computed over each grid cell with adequate data for each observational dataset, following the criteria of
ref. 7 and 8 (see Extended Figures 6a&b). For temperature we computed a linear trend for each ensemble
member of the HadCRUT4 dataset, from which observed trend distributions were derived. Precipitation
trends were not computed over grid cells where less than 20% of data was available for the �rst or last
10% of the observed time series or where the entire time series had less than 70% of data available. For
temperature, we divide the trend period into �ve roughly equal periods and require that each period has at
least 20% temporal coverage for annual means. We consider an annual mean as available if at least 40%
of the months are available for the year.

 

To be compared with the observational data, for each model the data from  both the ALL and NAT runs
were �rst re-gridded onto the observational grids (5° × 5° for temperature and 2.5° x 2.5° for precipitation),
excluding times and grid locations where observed data were missing, before linear trends were
computed over each grid cell in which adequate temporal coverage was available (see Extended Figures
6c&d). For each model, we then assessed the potential effect of internal variability by computing trends
of the length being investigated in 50 random samples of the corresponding piControl runs from each
model.  The model control runs had beforehand been corrected for any long-term drift, and the anomaly
series adjusted by a factor to ensure consistency of low-frequency variability between model control runs
and estimated internal variability from observations (further discussed below). We then combined the
resulting trend distributions from the piControl runs with the trends computed in the ensemble mean of
ALL and NAT runs. Following previous studies9,10, the �nal trend distribution for temperature was based
on an aggregate distribution of all constructed model trend distributions (and thus included the spread of
different model ensemble means) whereas for precipitation, an average distribution of model trends
across the ensemble was used (i.e., the distribution had the average characteristics of the 10 CMIP6
models). 

https://www.zotero.org/google-docs/?EunFGx
https://www.zotero.org/google-docs/?L0UaHF
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Attribution categories were assigned to grid cells (Extended Fig. 6 e,f) based on where their observed
trend (or trend distribution in the case of temperature) lay relative to the �nal trend distributions derived
from the ALL  and NAT runs. Over the grid cells where an observed trend was in the same direction (sign)
as the mean of the  ALL trend distribution and was outside the trend distribution 5th-95th percentile
 range for the NAT simulations, the observed trend was categorized as -3 (+3), -2 (+2) or -1 (+1) depending
on whether it was signi�cantly stronger, the same or weaker than the simulated decrease (increase).
Categories -3 (+3) and -2 (+2) are de�ned as decreases (increases) that are detectable and at least
partially attributable to anthropogenic forcing, according to our methodology.   Categories -1 (+1) are
detectable but not attributable. If the observed trend was signi�cantly different from the NAT distribution,
but was in the opposite direction to the mean of the All-Forcing distribution, it was categorized as -4
(observed decrease, modeled increase) or +4 (observed increase, modeled decrease).  All observed trends
(or trend distributions, in the case of temperature) that intersected with the 5th-95th percentile range of
the corresponding trend distributions derived from the NAT runs were categorized as non-detectable, or
indistinguishable from natural variability (i.e. category 0). Note that for cases where observed trends or
trend distributions had a different sign of the mean trend from that of the trend distribution derived from
the ALL runs, but were within the range of the Nat run distribution, the corresponding grid cells were also
categorised as non-detectable (category 0). 

 

Once the grid cells were categorised, in the case of temperature the results were re-gridded to a 2.5° x 2.5°
grid to allow superposition with the categories obtained for precipitation.

 

Our analysis requires the internal variability for each grid location and variable to be estimated via model
control runs.  To compare observed estimated internal variability and trends with those generated by the
model control runs, Extended Figs. 7 and 8 show fractional difference maps for estimated internal low-
frequency variability (model vs. observed) for each model individually and for the ensemble mean of the
modeled variability (the latter being most relevant for our analysis, which is based on combined
estimated variability across the models).  The observed low-frequency internal variability is estimated by
subtracting the multi-model ensemble All-Forcing change from the observations and computing the
standard deviation of the annual residuals, after application of a 7-year running mean �lter.  For models,
we use the simulated variability from the various control runs, again smoothed with the 7-year running
mean smoother.  The averaged internal low-frequency variability comparison plot for precipitation
(Extended Fig. 7, top panel) shows reds in most regions indicating that by this measure of internal low-
frequency variability, the CMIP6 models actually tend to overestimate observed variability levels.   So our
detection results for precipitation will tend to be conservative, while conversely, the ability of All-Forcing to
be consistent with observations will tend to be liberal, because the modeled spread is relatively wide.  
However, blue regions are evident in Extended Fig. 7 in some tropical regions, including over Africa and
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South America, indicating an undersimulation of internal low-frequency variability there.  We took the
internal variability comparisons vs. observed estimated internal variability in Extended Fig. 7 and
adjusted the control run variability and trends by the ratio [Obs. stdev / Model stdev] prior to computing
our assessment categories.  Results without this variability adjustment (not shown) are broadly similar
but show more category -4 (unexplained trends of incorrect sign) over Africa, where internal low-
frequency variability appears to be underestimated in models according to this analysis; unadjusted
results show slightly less detectable human in�uence in middle and high latitudes, where internal
variability is apparently overestimated in models.   

 

For surface temperature (extended Fig. 8) the internal variability comparison results vs. observed
estimates are similar to those of Knutson et al. 2013 for CMIP3 and CMIP5 with a mixture of results:
 models tend to simulate more internal variability than the observed estimate in northern mid to high
latitudes, typically less than observed over most other ocean regions at lower latitudes, and mixed results
over land regions.   Whether we include the gridpoint-scale adjustment of simulated internal variability in
our detection/attribution analysis or not, the results are similar (unadjusted control run-based assessment
not shown).  For the assessment of 1951-2018 observed trends (Extended Fig. 6), there are some
additional regions with detectable anthropogenic warming compared to Knutson et al. (2013), but that is
as expected, since the Knutson et al. analysis only examined trends through 2010.  With the termination
of the ‘global warming hiatus’ around 2014, the additional recent years have been adding to an ongoing
strengthening warming signal and leading to even greater assessed area with detectable anthropogenic
warming. In Extended Fig. 6 and elsewhere in the study, we use the adjusted control run results for our
assessments for both temperature and precipitation.  

 

Spatial resolution of studies
 

In order to match this data with the �nest-scale resolution of our database, we resolved each study to the
set of 2.5 degree grid cells contained by the smallest geographical entity extracted from each paper’s title
and abstract using the geoparser Mordecai14. For each study, we calculated the proportion of the grid
cells that this entity corresponds to in which an attributable trend for each variable can be found. For
example, in Extended Figure 9, panels a. and b. show that 20 out of Sudan’s 27 grid cells show an
attributable anthropogenic warming trend, so each study referring to Sudan and documenting impacts
predicted to be driven by temperature receives a precipitation trend proportion value of 20/27. Such a
study would therefore add towards the dark red bars in Fig. 3, which count studies where an attributable
temperature trend can be demonstrated for more than 50% of the grid cells the study refers to.

https://www.zotero.org/google-docs/?m3gh19
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We also calculate a weighted number of studies for each grid cell by adding 1 divided by the number of
grid cells a study refers to to each of those grid cells, and repeating this procedure for all identi�ed
relevant studies. Extended Figures 9c. and d. show 11 studies which refer to impacts predicted to be
driven by temperature trends in Sudan, where Sudan is the smallest geographical entity mentioned. Each
gridcell in Sudan therefore recieves 11/27 weighted studies. Given that some geographical entities were
too small to hold one 2.5 degree grid cell, their longitude-latitude values were interpolated to the nearest
grid cell instead and the grouped studies apportioned to that one grid cell. Because 4 additional studies
refer to Khartoum, we add 4/1 to the weighted studies value in the grid cell containing Khartoum.
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Figures

Figure 1

Results of the machine-assisted literature review. All results shown are based on our search queries and
subsequent classi�cation by the machine learning pipeline. a. Growth in the scienti�c literature relevant to
observed climate impacts over the last 30 years (cumulative totals for IPCC assessment periods are
highlighted for reference). Inset: numbers of documents considered in the total query and in the IPCC AR5
WGII Tables 18.5-18.9. b-c. The estimated number of studies for each impact category and continent in
our database (note that uncertainty bars take into account uncertainty over relevance as well as impact
category).

Figure 2

Potential attribution of impact studies to regional anthropogenic temperature and precipitation trends.
Model-based assessment of the attribution of regional temperature (a, timespan 1951-2018) and
precipitation trends (b,timespan 1951-2016) to human in�uence. Cooling/warming or drying/wetting
trends in the regions marked as categories -/+2 and -/+3 are assessed as attributable in part to human
in�uence (see Methods). c, Global map of area-weighted studies coloured by the existence of attributable
trends (purple for attributable trends in at least one variable, cross-hatched for attributable trends in both
variables, grey for no attributable trends) and indicating the localised evidence density (Low: <5 weighted
studies, Robust: >5 weighted studies, High: >20 weighted studies). d, the proportion of land area and
population with each grid cell type, grouped by country income category.

Figure 3

A global density map of climate impact evidence. Map colouring denotes the number of weighted studies
per grid cell for all evidence on climate impacts (N=77,785). Bar charts show the number of studies per
continent and impact category. Bars are coloured by the climate variable predicted to drive impacts.
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Colour intensity indicates the percentage of cells a study refers to where a trend in the climate variable
can be attributed (partially attributable: >0% of grid cells, mostly attributable: >50% of grid cells).
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