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Abstract
Background: Mitochondrial defect is often observed in cancers while, in comparison with other metabolic
cues, mitochondria mediated regulations in controlling tumorigenesis are less emphasized. Mitochondrial
transcriptional factor A (TFAM) acts as a key regulatory factor to control mitochondrial DNA (mtDNA)
replication and packing; the role of TFAM in modulating carcinogenesis, however, is controversial. Current
study therefore aims to define TFAM mediated regulations in head and neck cancer (HNC) development.

Methods: Multifaceted analyses in HNC cells genetically manipulated for TFAM were performed. Clinical
correlations of TFAM and its downstream Electron Transport Chain (ETC) associated factors in regulating
HNC progression were also examined in HNC specimens and different clinical databases

Results: At the cellular level, it was demonstrated that shRNA mediated TFAM silencing resulted in an
enhanced cell proliferation, both in vitro and in vivo; in contrast, TFAM overexpression suppressed cell
growth. Moreover, TFAM loss also facilitated cell migration and chemodrug resistance. At the molecular
basis, TFAM mediated phenotypic changes could be resulting from metabolic reprogramming by
directing HNC metabolism towards aerobic glycolysis, based on the detection of less respiratory capacity
in accompany with greater extracellular acidification in response to TFAM loss. Interestingly, it was also
found that TFAM loss upregulated ERK1/2 and Akt-mTORC-S6 signaling activity, revealing a potential
"mitochondrion-to-cytoplasm" retrograde regulatory cue in controlling HNC malignancy. Clinical impact of
TFAM and its downstream targets was further examined in clinical HNC tissues while the results showed
that TFAM expression and mtDNA copy numbers were significant dropped in HNC tissues compared with
their normal counterparts. By using clinical databases, HNC subjects with higher TFAM expression and
less genetic alteration(s) exhibited better survival rates.

Conclusion: Collectively, Current study uncovered a tumor suppressing role of TFAM and mitochondrial
genome in determining HNC oncogenicity. This TFAM mediated regualtions are through intracellular
metabolic reprogramming and mitochondria-to-cytoplasm cross-talk to activate oncogenic signals.

Background
The progression of malignant transformation from non-neoplastic cells to tumorous cells can be
achieved only by contribution of a series of cellular events including evasion of growth suppression,
sustainable proliferative capacity, enforced activation of intracellular oncogenic/angiogenic signals and
deregulated energetics [1]. In the aspect of energy production, it is widely accepted that, when compared
to normal cells, cancer cells are more prone to consume greater glucose thereby forming lactate by a
glycolytic pathway regardless of oxygen availability [2]. Indeed, a number of studies have shown that
enzymes involved in central carbon metabolism including glycolysis and Pentose Phosphate Pathway
(PPP) as well as de novo lipogenesis and glutaminolysis are enhanced in tumors compared with their
normal counterparts; the mitochondrial related metabolic activity, on the other hand, is often
downregulated [3-6].
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To date, most investigations focus on the role of glycolytic enzymes in regulating tumorigenesis [7, 8],
mainly due to the fact that at molecular basis differential expression of glycolytic enzymes and glucose
transporters has been shown to correlate with mutations of a classic tumor suppressor protein TP53 in
most cancers [9]. The roles of mitochondrial cues in controlling cellular malignancy, however, have been
under appreciated until recently. For example, mitochondrial aldehyde dehydrogenase (ALDH) could
facilitate cytosolic NADH content which serves as an electron donor to trigger ATP production, thereby
promoting tumor progression [10]. A high level of glutamine transporter (SLC1A5) and glutaminases
(GLS), two key factors involved in the conversion of glutamine into glutamate acting as a nitrogen
provider for anaplerotic flux to TriCarboxylic Acid (TCA) cycle, was detected in c-myc driven cancers [11].
Interestingly, enhanced Electron Transport Chain (ETC) activity was found in Venetoclax-resistant multiple
myeloma cells while application of ETC inhibitor IACS-010759 and thenoyltrifluoroacetone (TTFA) could
sensitize resistance to Venetoclax through the ATF4-BIM-NOXA pathway [12]. This suggests that
mitochondrial activity may not necessarily be downregulated during tumorigenesis. In addition to
metabolic enzymes or transporters, accumulating “oncometabolites” due to defective TCA cycle enzymes,
such as fumarate hydratase (FH), succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH),
were also detected in tumor cells implying that deregulated mitochondrial metabolites might also underlie
oncogenic transformation [13, 14].

Mitochondria are a double-membrane organelle that contributes to energy production in most eukaryotic
organisms via various bioenergetic processes including the TCA cycle, ETC and lipid catabolism. A
variety of cellular processes such as cell apoptosis, differentiation, calcium homeostasis and hormone
biosynthesis occur in different mitochondrial compartments [15, 16]. With distinct structural and crucial
physiological functions, mitochondria are interestingly regarded as an independent “organism” in a cell
based on the fact that mitochondria have their own genome, named mitochondrial DNA (mtDNA) [17] and
that mitochondria could be horizontally transferred between cells resulting in different pathophysiological
consequences [18]. In humans, mtDNA is a circular genomic material and encodes 13 ETC protein
subunits[17]. At the molecular level, mitochondrial transcription factor A (TFAM) plays a key role in
controlling mtDNA packing, replication and transcription [17]. In clinical studies, lower mtDNA and TFAM
is associated with poorer survival in ovarian cancer [19], esophageal squamous cell carcinoma [20],
colorectal cancer [21] as well as oral squamous cell carcinoma [22]. At cellular basis, decreased TFAM
and mtDNA content led to lower mitochondrial activity resulting in greater lactate production, increased
cell proliferation and enhanced metastatic capacity in breast cancer [23], intestinal cancer [24],
esophageal cancer [20] and cisplatin (CDDP) resistant ovarian cancer [19]. A more recent study showed
that TFAM mediated regulations for oncogenicity in various cancers are probably occur via the disruption
of LC3-II mediated autophagy [25]. In brief, most studies suggest that impaired mitochondrial could
accelerate oncogenicity in different cancers, both in vitro and in vivo.

Until now, an impact of TFAM in the development of Head and Neck Cancer (HNC) and the role of TFAM
in modulating cellular, molecular and metabolic identity in HNC remains elusive. Our recent study
demonstrated that manipulation of a rate-limiting factor of Pyruvate Dehydrogenase complex (PDC), and
Pyruvate Dehydrogenase E1 subunit (PDHA1) that controls the metabolic fate of lactate entering into
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mitochondria, could sufficiently enhance HNC cellular malignancy [26]. This is interesting to further verify
the role of mitochondrial genome and mtDNA regulator TFAM in regulating HNC malignancy.

Material And Methods
Chemical, cell culture, animal and clinical tissues

Puromycin, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), CDDP, 5-fluouracil (5-FU),
Paclitaxel (Taxol) and Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 were
purchased from Sigma-Aldrich. Protein kinase B (PKB/Akt) inhibitor MK-2206 was obtained from
Selleckchem. The source and culture conditions of HNC cells from different origins as well as in HNC
bearing xenografic tumor growth assay [under the approval of Institutional Animal Care and Use
Committee (IACUC), National Yang-Ming University (NYMU) were described elsewhere (26,35). Clinical
human HNC tumors and its adjacent normal tissues were obtained from the Department of Oral
Maxillofacial Surgery, NYMU Hospital under approval of the Institutional Review Boards (IRB) of NYMU
Hospital (IRB#: NYMUH 2018B003) and were preserved in RNAlater immediately after surgical resection
for qRT-PCR analysis (Table S1).

Establishment of TFAM deficient and overexpressing HNC cells

Plasmids encoding small hairpin RNAs (shRNA) targeting 3’-untranslated regions (3’-UTR) of TFAM gene
(shTFAM) were obtained from the National RNAi Core Facility, Academia Sinica, Taiwan (Table S2). The
lentiviral vectors containing shTFAM and the control shRNA targeting Luciferase (shLuc) were produced
in 293T cells for infection into HNC cells by using genejuice transfection reagent. Stable knockdown cell
line was cultured in medium containing 2.5ug/ml puromycin for further experiments. For making the
TFAM overexpressing vector, primers targeting wild-type TFAM gene carrying BamHI (5’-
CGAGGATCCACCATGGCGTTTCTCCGAAGC-3’) and Notl (5’- GTAGCGGCCGCATACACTCCTCAGCACCATA-
3’) restriction enzyme sequences were used to amplify full length TFAM cDNA from SAS cells, which
encode wild-type TFAM, using the Platinum PCR SuperMix High Fidelity system (Invitrogen™). The PCR
products were then cloned into the pcDNA4/myc-HisA,B,C vector (Thermo Fisher Scientific) between
BamHl and NotI. Candidate colonies were picked, amplified (Plasmid Midi kit, Geneaid) and verified
before transfection. For transfection of TFAM overexpressing plasmids into HNC cells, TransFectin™ Lipid
Reagent (BIO-RAD) was utilized following the manufacturer's instructions.

Cellular assays

Cells growth was measured by both MTT assay and Trypan blue exclusion assay while the cell cycle,
Annexin V-FITC based cell apoptosis, transwell-based cell migration, drug resistance assay, quantitative
real-time PCR (qRT-PCR), and Western blot analysis was previously described (26). Primers for qRT-PCR
analysis (Table S3) and antibodies used for Western blot are listed (Table S4). Image J was used to
quantify protein expression.
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Metabolic assays

Lactate colorimetric/fluorometric assay kit, ATP colorimetric/fluorometric Assay kit, Pyruvate assay kit,
PDH Activity Colorimetric Assay kit (Biovision) and Glucose Uptake Cell-based Assay kit (Cayman
Chemical) were performed following the manufacturer's instructions. Colorimetric measurements for
optical density (OD) and flow cytometrical analysis were performed using an ELISA reader (TECAN
instruments, USA) and Beckman Coulter CytoFLEX, respectively, at the Instrumentation Resource Center
(IRC), NYMU.

Mitochondrial assays

To determine Oxygen Consumption Rates (OCRs), Seahorse XF bioanalyzer was used following the
manufacturer's instructions. The relative mtDNA copy number was measured by qRT-PCR. MitoTracker™
Red CMXRos and Carboxy-DCFDA (both from Thermo Fisher Scientific) were used to detect mitochondrial
mass and activity, respectively, using flow cytometrical analysis by Beckman Coulter CytoFLEX. Living
cells were also stained with MitoTracker™ Red CMXRos, followed by fixation of 4% PFA and
counterstained for nuclei by DAPI. Images were captured using Zeiss LSM880 with AiryScan at IRC,
NYMU. Final images were processed using Adobe Photoshop or PhotoImpact X3.

Metabolomics analysis

Cellular metabolites were analyzed using Liquid Chromatography-Mass Spectrophotometry (LC-MS) at
Metabolomics Core laboratory at NYMU. In brief, 106 cells were washed with PBS and treated with LC-MS
grade iced methanol and water followed by vigorous vortexing and centrifugation to remove cell debris.
The supernatants were collected for LC-MS metabolic profiling analysis.

Statistical analysis

All analyses were performed using the statistical software program package Prism 5. The differences in
the clinical characteristics between two groups were analyzed by a Chi-square test and student’s t-test.
Differences were assumed to be significant when the p-value was < 0.05.

Results
Changing TFAM Expression Modulates HNC Malignancy

To examine the roles of TFAM and its targeting mtDNA during HNC development, multiple in vitro
analyses in HNC cells, with different origins in response to TFAM changes, were performed. The results
showed that TFAM mRNA is reduced in tested HNC cells in contrast to normal human oral fibroblasts
(OF) (Fig. 1A). Next, HNC cells deficient (Fig. 1B) or enforced expressing for TFAM (Fig. 1C) were utilized
to better determine the role of TFAM in controlling HNC tumorigenicity. In addition to protein expression,
decreased copy number of mtDNA encoded ETC subunits (potential TFAM targets) including ND1, ND2,
ND3, ND4, ND4L, ND5, ND6 (Complex I, Fig. 1D), CytB (Complex III, Fig. 1E), Cox I, Cox II, Cox III (Complex
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IV, Fig.1F) as well as ATP8, ATP6 (Complex V, Fig. 1G) were detected by real-time PCR analysis in TFAM-
silencing HNC cells when compared with control cells. At the translational level, while no significant
changes for nuclear encoded ETC proteins (NDUFB8, SDHB, UQCRC2, ATP5A) were found in TFAM
knockdown HNC cells, mtDNA encoded COXII protein was greatly down-regulated in TFAM-silencing SAS,
OECM1 and HSC3 cells (Fig. 1H), highlighting the knockdown efficiency in our experimental setting. In
short, shRNA mediated TFAM silencing could functionally reduce TFAM and its targeting cues in HNC
cells.

Next, multifaceted cellular assays were performed in TFAM deficient and overexpressing HNC cells. By
using Trypan blue exclusion and MTT assays, it was shown that TFAM knockdown led to increased HNC
cell proliferation in vitro (Fig. 2A). In contrast, cell growth was downregulated in TFAM overexpressing
HNC cells when compared with control cells (Fig. 2B). Similar to in vitro growth, larger HNC-bearing
xenografic tumors were detected in vivo in most tested HNC cells (Fig. 2C) implying that TFAM expression
is negatively associated with HNC cell growth. Further analysis found that TFAM deficiency resulted in
reduced G0/G1 phase but increased distribution in both S and G2M phases (Fig. 2D). Meanwhile,
decreased apoptotic rate was detected in TFAM-silencing HNC cells (Fig. 2E), indicating that TFAM
mediated regulation for HNC cell growth is due to modulation of both cell cycling and cell apoptosis.

As enhanced metastatic activity and drug resistance are also hallmarks of cancer cells [27, 28], cell
motility and chemodrug treatment, sensitivity was next assessed in HNC cells that are deficient for TFAM
expression. By using Transwell-based migration assays, TFAM loss significantly promoted HNC cell
migration when compared with control cells (Fig. 2F). As for the changes of therapeutic sensitivity in
response to reduced TFAM expression in HNC cells, the half maximal inhibitory concentrations (IC50) of
CDDP, 5-FU and TAXOL, the most common chemodrugs for HNC in clinic, were determined. A greater half
maximal inhibitory concentration (IC50) for CDDP, 5-FU and Taxol was detected in TFAM deficient HNC
cells when compared with control cells (Fig. 2G). Taken together, TFAM negatively correlated with
malignancy index in HNC cells, confirming that TFAM acts as a tumor suppressing factor in HNCs.

TFAM Deficiency Modulates Metabolic Plasticity in HNC cells

Metabolic plasticity was recently demonstrated in numerous studies showing that cancers could evolve
to adapt environmental stresses allowing cell survival during progression [29]. Our previous findings
demonstrated that manipulations for pyruvate metabolic molecules LDHA and PDHA1 led to a metabolic
shift between a wide spectrum of metabolic pathways and further analysis confirmed that this metabolic
reprogramming is essential for LDAH/PDHA1 mediated malignant changes in HNC cells [26]. We herein
tested whether a metabolic shift could also be responsible for TFAM mediated cellular changes. Multiple
bioenergetic readouts including glucose uptake, intracellular pyruvate level, extracellular lactate
production, PDH activity and intracellular ATP level in TFAM-silencing HNC cells were examined. No
significant difference for glucose uptake activity and intracellular pyruvate content between TFAM-
silencing and control HNC cells was detected (Fig. 3A, B) whereas increasing ATP level is detected in
response to TFAM loss (Fig. 3C). Interestingly, lactate secretion was elevated (Fig. 3D) while decreased



Page 7/21

PDH activity, using either Western blot analysis for phosphorylation status (Ser293) of PDHA1 or
colorimetric assay for PDH activity was detected (Fig. 3E, F). Mitochondrial analysis using Mitotracker red
staining and Seahorse Mito-stress analyzer showed that the mitochondrial membrane potential (Fig. 3G)
as well as basal and maximal respiration (Fig. 3H), was down-regulated in TFAM-silencing HNC cells
when compared with control cells, showing that TFAM loss could induce Warburg phenotype.
Interestingly, Reactive Oxygen Species (ROS), a byproduct of Oxidative Phosphorylation (OxPhos)
reaction, was increased in most TFAM-silencing HNC cells compared with control counterparts whereas
mtDNA encoded COXII was negatively correlated with ROS level (Fig. 1H & Fig. 3I). This observation
revealed a possibility that TFAM loss might trigger ETC dysfunction thereby resulting in greater ROS leak
and eventually increased oncogenicity.

TFAM mediated metabolic shift was further evident by a LC-MS based metabolomics analysis for
glycolytic and TCA cycle metabolites. The analysis shows that only metabolites in the “payoff” phase of
glycolysis including 1,3 bisphosphoglycaerate, 2-/3-phosphoglycerate, and phosphoenoalpyruvate (PEP)
were decreased in TFAM-silencing HNC cells while other intracellular metabolites remain unchanged (Fig.
3J and Fig.S1-2). This result could be explained as a consequence of higher glycolytic metabolism in
response to TFAM loss, thereby leading to a greater consumption of glyceraldehyde-3-phosphate (G-3-P)
in order to meet energetic demand. As new glucose input was not significantly altered, we further
suspected that there might be alternative changes of other cellular metabolic cues, such as amino acid
metabolism, that could potentially compensate deregulated mitochondrial activity in a condition of TFAM
knockdown to support tumorigenic activity in HNC cells. Nevertheless, no significant changes for amino
acid level were found in TFAM-silencing HNC cells when compared with control cells (Fig.S3), implying
that biomolecules might be not limiting for TFAM mediated HNC oncogenic regulation. Taken together,
our results demonstrated that TFAM loss facilitated HNC cell malignancy likely via intrinsic metabolic
reprogramming away from mitochondrial metabolism towards to aerobic glycolysis without altering
external nutrition uptake and nitrogen metabolic pathway.

Oncogenic Akt and ERK Signaling Pathways Regulate TFAM Mediated HNC Oncogenicity

In addition to metabolic changes, it is widely accepted that activation of various oncogenic pathways is
essential for cancer development [30, 31]. Numerous studies have shown that Akt-mTORC and EGFR-
ERK1/2 signaling pathways are highly expressed in HNC cells and crucial for HNC carcinogenic identity,
both in vivo and in vitro [32-36]. Therefore, we investigated if Akt/ERK signals are key regulators for TFAM
mediated oncogenic changes in HNC cells. Western blot analysis showed that phosphorylated Akt
(Ser473), phosphorylated p44/42 MAPK ERK1/2 (Thr202/Tyr204) and mTORC pathway effector
phosphorylated S6 Ribosomal Protein (Ser235/Ser236) were all upregulated in TFAM-silencing HNC cells
compared with control cells (Fig. 4A). At the cellular level, IFA further confirmed that HNC cells, with
reduced TFAM expression, expressed a higher amount of phosphorylated Akt/ERK/S6 proteins, indicating
that TFAM mediated malignant changes could be made through the modulations of ERK1/2 and Akt-
mTORC-S6 signaling pathways (Fig. 4B). To further define the significance of Akt/ERK signaling
pathways in regulating TFAM-mediated neoplastic characteristics, ERK1/2 inhibitor PD98059 and
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PKB/Akt inhibitor MK2206 were applied in TFAM-silencing HNC cells and cell proliferation was examined.
The results showed that efficient inhibition of ERK1/2 and AKT activity (Fig.S4-5) significantly abolished
increased cell growth in TFAM-silencing HNC cells. Strikingly, a combinational treatment of PD98059 and
MK2206 exhibited a dose-dependent synergetic effect in controlling TFAM mediated HNC cell growth (Fig.
4C). These results confirmed a novel notion that mtDNA loss in response to TFAM deficiency could trigger
cytosolic signaling alteration. Interestingly, previous studies have reported that the recruitment of Akt
protein to mitochondria could inactivate PDC thus resulting in downregulation of OxPhos pathway under
hypoxic condition [37], further supporting a potential crosstalk between Akt signal and mitochondrial
metabolism. Collectively, these findings provided an alternative scheme for development of TFAM/Akt-
ERK combinational anti-cancer therapeutic strategy for HNCs.

Decreased TFAM and Its Downstream Genes in Human HNCs

As previous studies found that TFAM and mtDNA levels were positively correlated with colorectal cancer
prevalence but negatively associated with liver cancer frequency [38, 39], the association between TFAM
expression and HNC oncogenicity needs further determination through additional clinical trials. To this
end, the expression of TFAM and its target genes in HNC and their corresponding normal tissues was
analyzed using The Cancer Genome Atlas (TCGA) based databases. The results showed a positive
correlation between TFAM mRNA expression and mtDNA encoded ETC I/II/IV/V transcripts (Fig. 5A).
Moreover, the TFAM mRNA level was positively correlated with mRNA expression for OxPhos factors
(PDHA1, PGC1α, PPARGC1β) but negatively associated with glycolytic enzymes (HK2, PFKM, PGK1) (Fig.
5B). The prognostic significance of TFAM in HNC patients was also defined and it was found that
patients bearing HNCs with greater TFAM expression tend to have a better Overall Survival (OS) rate (Fig.
5C). Interestingly, HNC patients with TFAM genetic alteration exhibited worse OS rate than HNC patients
without TFAM alteration (Median Survival: 22.19 months vs. 56.94 months) indicating that maintenance
of TFAM integrity could be essential for better prognosis in HNC patients (Fig. 5D) The expression of
TFAM and its downstream targets was further examined in IRB approved paired adjacent normal (N) and
tumor (T) clinical tissues from HNC patients (N=18; Table S1). In agreement with database analysis,
TFAM mRNA expression and copy numbers of all mtDNA encoded ETC genes were significantly
downregulated in tumors compared with corresponding normal tissues, suggesting that decreased TFAM
levels might be important for HNC development (Fig. 5E). Further analysis to define a potential
association of TFAM/mtDNA encoded ETC gene expression and disease progression stratified by TNM
scaling was next determined. Even though the data showed no statistical significance, all mtDNA
encoded ETC genes showed a decreasing trend over a T (from T1 to T4) and N stages (from N0 to N2)
(Fig.6-7), suggesting that mtDNA encoded ETC genes reversely associated with disease severity. To draw
a more definite conclusion, a larger number HNC samples could be required.

Discussion
In the present study, we discovered that lower TFAM and mtDNA expression led to decreased
mitochondrial activity, which elicited oncogenic pathways to promote tumor proliferation, mobility and
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therapeutic sensitivity in TFAM-silencing HNC cells. At molecular basis, we further demonstrated that
ERK1/2 and Akt-mTORC-S6 pathways were highly active in TFAM-silencing HNC cells and treatment of
ERK/Akt inhibitors effectively repealed TFAM-mediated malignant changes. In agreement with in vitro
and in vivo findings, it was also found that TFAM and mtDNA encoded ETC genes were down-regulated in
cancerous HNC tissues compared with their normal counterparts. In summary, our findings provide strong
evidence showing that (1) TFAM is critical for mtDNA replication in HNCs and (2) a loss of TFAM
modulated mitochondrial activity and oncogenic signals, thus resulting in up-regulating HNC malignancy.

Based on previous investigations, TFAM does not always act as a suppressor in cancers. It is also
reported that when TFAM is enriched it could promote cancer cell proliferation and metastasis in bladder
[40], esophageal [41], gastric [42] and colon cancers [43]. It is suspected that the discrepancy of the role
of TFAM in different cancers might be attributed to distinct metabolic features in order to adapt to
different tumor microenvironments [44]. Moreover, genetic mutations/polymorphisms of TFAM and its
downstream mtDNA genes could also be a key factor in controlling tumor cell malignancy[45]. In
agreement with former findings in non-Asian HNC subjects [46], we discovered mutations in mt-ND4
(T10873A, G11719A) in all tested HNC cell lines as well as OF. Interestingly, two additional synonymous
mutations (T10915C, T11819C) in mt-ND4 were detected in SAS and FaDu cells as their roles in
controlling HNC tumorigenicity remain unknown (Table S5). In addition to ND4, several nonsynonymous
mutations only detected in HNC cell lines, but not OF, including A4833G in ND2, C8414T in ATP8 and
T14798C in CytB were uncovered for the first time in HNC cancer cells. It would be of great interest to
further define the roles of these mtDNA mutations during HNC carcinogenesis, in an attempt to find a
diagnostic marker for HNCs.

Another interesting discovery from our results is that TFAM seems impacted differentially for extrinsic
and intrinsic metabolic cues since no significant changes for glucose uptake, intracellular ATP and
pyruvate content were detected whereas elevated aerobic glycolysis was evident in TFAM-silencing HNC
cells. Results from these metabolic assays suggest that the loss of TFAM does indeed alter HNC cell
metabolism, however, the reprogramming seems to be the outcome of the rewiring of intracellular
metabolites but not external nutrient inputs. Furthermore, it was demonstrated that the ROS level
reversely correlates with mtDNA encoded COX-II expression further verifying that mitochondrial activity is
likely defective in HNC cells and ROS may play a critical role in regulating oncogenicity. Nevertheless, how
TFAM-silencing HNC cells ease the accumulation of ROS to promote cell malignancy remains to be
explored.

It is widely accepted that cancers are metabolically dynamic in order to survive in different environmental
challenges. It therefore becomes convincing that targeting tumor metabolic plasticity could be capable of
improving therapeutic efficacy of anti-cancer schemes. In agreement with this concept, we found that
suppression of TFAM-silencing induced ERK1/2 and Akt-mTORC-S6 activity by commercial inhibitors
could effectively abolish cell viability in highly-proliferating TFAM-silencing HNC cells, implying that
targeting intracellular molecular cues, in combination with metabolic manipulation, could likely develop a
more efficient treatment regimen in clinical studies. In addition to intracellular molecular changes,
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mitochondrial manipulation could also result in metabolic alterations in different cancers. By taking
advantage of transcriptomic analysis, previous studies found that TFAM loss led to increased
angiogenesis and invasion as well as genes relates to amino acid metabolism (e.g. SLC1A5 (ASCT2) and
SLC1A4 (ASCT1)) in melanoma cells [44]. Another very recent study demonstrated that BTB and CNC
homology 1 (BACH1) depletion up-regulated ETC gene expression and mitochondrial respiration, thus
promoting breast cancer growth while the addition of ETC inhibitor metformin could more effectively
inhibit cell survival of these ETC hyperactive breast cancers [47]. These data suggested that, in order to
gain better anti-cancer therapeutic efficacy, it is important to define molecular and metabolic features
upon mitochondrial manipulation.

TFAM regulates mtDNA replication and transcription in cooperating with other molecules including
mitochondrial RNA polymerase (POLRMT), mitochondrial polymerase catalytic subunit-γ (p140 or POLG)
and transcription factor B1 (TFB1M)/B2(TFB2M) [17]. Recent studies revealed that high expression of
TFAM, POLG, TFB1M and TFB2M is positively associated with better prognosis in astrocytoma and
Glioblastoma Multiforme [48]. On the other hand, it was found that down-regulation of POLRMT
decreased mtDNA content, OxPhos activity and cell viability in acute myeloid leukemia [49]. It was also
reported that TFB2M is enriched in patients with hepatocellular carcinoma as TFB2M knockdown
reduced cell viability and metastasis both in vivo and in vitro [50]. While no significant correlations
between TFAM and these assemble factors in HNC patients (Fig. S9), the significance of these mtDNA
assembling factors in regulating HNC malignancy remained to be verified. Moreover, how TFAM interacts
with these factors to control downstream target genes leading to distinct malignant changes is of great
interest for further work. Future work to define TFAM directed targets using Chromatin
immunoprecipitation sequencing (ChIP-Seq) analysis is currently in progress in order to better determine
key downstream targets that control TFAM mediated regulations in HNC cells.

Conclusions
In summary, we highlighted the prominent role of TFAM in regulating HNC malignancy and confirmed
that TFAM could be a key tumor suppressor during HNC tumorigenesis, not only in experimental setting
but also in clinical specimen. In line with this finding, further work to explore small molecules or
compounds to activate expression of TFAM or mitochondrial ETC encoded subunits could potentially
provide an effective therapeutic option to lessen HNC malignancy.
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Figure 1

TFAM Alterations Lead to Functional mtDNA Change in HNC Cells (A) Real-time RT-PCR analysis showed
decreased TFAM mRNA expression in HNC cells compared with OFs. Western blot analysis showed
effective changes of TFAM expression in (B) shRNA-mediated TFAM silencing and (C) TFAM
overexpressing HNC cells. (D-G) Functional knockdown is evident using real-time RT-PCR analysis
showing significant downregulation of mtDNA-encoded ETC subunit genes in TFAM silencing HNC cells.
Different ETC complex genes including Complex I (D, ND1, ND2, ND3, ND4, ND4L, ND5, ND6), Complex III
(E, CytB), Complex IV (F, Cox I, Cox II, Cox III) and Complex V (G, ATP8, ATP6) are indicated. (H) Western
blot analysis showed differential expression of respiratory proteins in TFAM silencing HNC cells.
Quantification is represented as the fold changes of respiratory protein expression in TFAM silencing
(shTFAM) over control (shLuc) HNC cells. Data are presented as Mean±SEM (N>=3). *p<0.05, **p<0.01,
***p<0.001.
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Figure 2

TFAM Loss Facilitates HNC Malignancy (A) Increased cell growth was detected in TFAM silencing HNCs
cells using Trypan exclusion assay and MTT assay compared with control cells. (B) On the contrary, HNC
cells enforced expressing TFAM showed a decreased cell growth compared with their parental
counterparts. (C) In vivo analysis for HNC-bearing xenografic tumor growth showed that TFAM loss
resulted in greater tumor mass compared with control tumors. (D) Flow cytometry based cell cycle
analysis showed that TFAM loss resulted in faster cycling while lower cell population in G0/G1 phase and
more cells are distributed in S and G2M phases. (E) Annexin V based flow cytometric analysis was
performed to determine the apoptotic status in TFAM silencing HNC cells. TFAM loss resulted in lower
apoptotic percent in HNC cells. (F) TFAM loss led to increased migration in HNC cells by using transwell
based cell motility assay. (G) Upregulation of half maximal inhibitory concentration (IC50) for
chemotherapeutic agent CDDP, 5FU and Taxol was detected in response to TFAM loss in HNC cells. Data
are presented as Mean±SEM (N=3). *p<0.05, **p<0.01, ***p<0.001.
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Figure 3

TFAM Silencing Elicits Metabolic Reprogramming in HNC Cells
No significant changes of (A) Glucose
uptake, (B) Intracellular pyruvate and (C) ATP levels were found in TFAM silencing HNC cells compared
with control cells. (D) Increasing extracellular lactate levels and (E) significant decreased pyruvate
dehydrogenase activity were detected in TFAM silencing HNC cells. (F) Western blot analysis further
showed an increase of phosphorylated PDHA1 (inactive form) protein expression in TFAM silencing
HNCs cells. (G) Flow cytometry and immunofluorescence staining analysis showed that TFAM loss led to
decreased mitochondrial activity by Mitotracker Red staining in HNC cells. (H) Seahorse bioanalyzer to
determine basal, maximal respiration and ATP production showed a drop of respiration in TFAM silencing
HNC cells; while (I) significant upregulation of intracellular ROS content using a flow cytometry based
DCFDA assay for was detected in TFAM-silencing HNC cells. (J) Using LC-MS based metabolomic
analysis for detection of glycolytic metabolites, it was shown that TFAM loss could result in decreased
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intracellular 1,3-diphosphoglycerate, 3-phosphoglycerate/2-phosphoglycerate and phosphoenolpyruvate
abundance in HNC cells. Data are presented as Mean±SEM (N=3). *p<0.05, **p<0.01, ***p<0.001.

Figure 4

PKB/Akt and ERK Signaling Pathways Underlie TFAM Mediated Malignant Changes in HNC Cells
(A)
Western blot analysis showed increased expression of phosphorylated Akt (Ser473), phosphorylated
p44/42 MAPK ERK1/2 (p-ERK, Thr202/Tyr204) and mTORC pathway effector phosphorylated S6
Ribosomal Protein (p-S6, Ser235/Ser236) in TFAM-silencing HNC cells. (B) Immunofluorescence staining
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analysis indicated that HNC cells with lower TFAM expression (yellow arrows) exhibited greater
phosphorylated S6 and ERK expression as HNC cells with higher TFAM levels displayed lessp-S6 (while
arrows). (C) Trypan blue exclusion assay for TFAM-silencing SAS, FaDu, OECM1 cells solely- or co-treated
with PKB/Akt inhibitor MK2206 and ERK1/2 inhibitor PD98059 showed that PKB/Akt and ERK activities
contribute to TFAM-mediated increased cell growth in a dose-dependent manner. Doses (µM) of inhibitors
are shown in parentheses. Data are presented as Mean±SEM (N=3). *p<0.05, **p<0.01, ***p<0.001.

Figure 5

Clinical Impacts of TFAM and mtDNA-encoded ETC in HNCs
(A) Positive correlations between TFAM and
ETC subunits including Complex I: NDUFS1, Complex II: SDHB, Complex III: Cycs, Complex IV: Cox 5B,
Complex V: ATP5F1 and (B) mitochondrial factor (PDHA1, PGC1α, PPARGC1β) were detected in TCGA
based database; whereas negative correlations between TFAM and glycolytic enzymes (HK2, PFKM,
PGK1) were found in HNCs using The Cancer Genome Atlas (TCGA) database (N=273). Kaplan-Meier
analysis for overall survival rates in HNC patients classified by (C) TFAM expression (N=519) and (D)
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TFAM genetic alteration(s) using TCGA database (N=519). HNC cases with TFAM alteration(s) have
significant poorer overall survival (N=26, median months survival: 22.19) than HNC cases without TFAM
alteration(s) (N=462, median months survival: 56.94). (E) Real-time RT-PCR analysis detected mtDNA
encoded ETC genes in HNC tumors (T) and their corresponding adjacent normal tissues (N) from IRB-
approved clinical specimens (N=15). Results showed significant decreased expression in 13 mtDNA
encoded ETC transcripts and decreasing TFAM mRNA expression in clinical tumorous tissues compared
with their normal counterparts. Data are presented as Mean±SEM (N=3). *p<0.05, **p<0.01, ***p<0.001.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

SupplementaryFigure.pdf

SupplementaryFigure.pdf

SupplementaryFigure.pdf

SupplementaryTable.pdf

SupplementaryTable.pdf

SupplementaryTable.pdf

https://assets.researchsquare.com/files/rs-78709/v1/SupplementaryFigure.pdf
https://assets.researchsquare.com/files/rs-78709/v1/SupplementaryFigure.pdf
https://assets.researchsquare.com/files/rs-78709/v1/SupplementaryFigure.pdf
https://assets.researchsquare.com/files/rs-78709/v1/SupplementaryTable.pdf
https://assets.researchsquare.com/files/rs-78709/v1/SupplementaryTable.pdf
https://assets.researchsquare.com/files/rs-78709/v1/SupplementaryTable.pdf

