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Abstract

Background: Time-to-event data that is subject to interval censoring is common

in the practice of medical research and versatile statistical methods for estimating

associations in such settings have been limited. For right censored data,

non-parametric pseudo-observations have been proposed as a basis for regression

modeling with the possibility to use different association measures. In this article,

we propose a method for calculating pseudo-observations for interval censored

data.

Methods: We develop an extension of a recently developed set of parametric

pseudo-observations based on a spline-based flexible parametric estimator. The

inherent competing risk issue with an interval censored event of interest

necessitates the use of an illness-death model, and we formulate our method

within this framework. To evaluate the empirical properties of the proposed

method, we perform a simulation study and calculate pseudo-observations based

on our method as well as alternative approaches. We also present an analysis of a

real dataset on patients with implantable cardioverter-defibrillators who are

monitored for the occurrence of a particular type of device failures by routine

follow-up examinations. In this dataset, we have information on exact event times

as well as the interval censored data, so we can compare analyses of

pseudo-observations based on the interval censored data to those obtained using

the non-parametric pseudo-observations for right censored data.

Results: Our simulations show that the proposed method for calculating

pseudo-observations provides unbiased estimates of the cumulative incidence

function as well as associations with exposure variables with appropriate coverage

probabilities. The analysis of the real dataset also suggests that our method

provides estimates which are in agreement with estimates obtained from the right

censored data.

Conclusions: The proposed method for calculating pseudo-observations based on

the flexible parametric approach provides a versatile solution to the specific

challenges that arise with interval censored data. This solution allows regression

modeling using a range of different association measures.

Keywords: pseudo-observations; interval censoring; flexible parametric model

1 Background
In medical research, the outcome is often an event such as death, occurrence of a

disease, or a treatment-related event during a follow-up period. Some individuals

will be event-free throughout follow-up, but the event may occur after the end of

follow-up. This kind of incomplete follow-up is called right censoring and methods

mailto:martin.johansen@rn.dk
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for dealing with this form of censoring are used very frequently in the medical lit-

erature. Right censored data thus consist of a mixture of exactly observed event

times and censoring times. In other situations, the exact event times are never ob-

served and the event status is only evaluated at certain time points, examination

times, and the data are then said to be interval censored. This phenomenon occurs

frequently when for example a specific group of individuals is monitored by routine

examinations for a medical condition. In such cases, event times are known only

to lie within a time interval from the last examination without the event to the

first examination after the event has occurred. In practice, data can also consist

of a mixture of right and interval censored data, e.g. when data are gathered from

different sources. A standard assumption when analyzing interval censored data

is that the examination times are independent of the event risk. In that case one

can in the analysis ignore the distribution of the examination times, and treat the

examination times as fixed. We will also assume that the examination times are

independent of the event risk.

Interval censoring has posed a challenge to the medical research community that

has proven hard to overcome. Regression models for interval censored data has tra-

ditionally mostly been concerned with basic parametric regression models where

inference can be performed by standard maximum likelihood methods and in which

the estimators converge at a rate of
√
n. Parametric models are easily fitted us-

ing most common statistical software but each distributional family imposes rather

strict assumptions on the shape of the hazard function and it is our impression that

their use in applications has diminished in recent years; most likely due to reluc-

tance to impose such assumptions, although covariate adjustment is straightforward

in parametric models. A parametric approach that can accomodate different dis-

tributional characteristics is the piece-wise exponential proportional hazards model

or equivalently a Poisson log-linear model where the hazard is assumed constant in

some set of intervals of the follow-up time[1]. When events are plentiful the follow-

up intervals can be made small enough to give a reasonable fit to practically any

shape of the hazard function but when the data is more sparse with few events or

the hazard has a more complex shape during follow-up the piece-wise exponential

model has obvious limitations[2].

As an example of an interval censored dataset, we consider a group of patients with

an implantable cardioverter-defibrillator (ICD), which is a kind of pacemaker that

can protect against slow heart rhythm but also fast arrhythmias, which otherwise

can result in hemodynamic compromise with loss of consciousness and cardiac ar-

rest. The fast arrhythmias can be treated by fast pacing or delivery of a high voltage

shock that restores the heart rhythm to normal. The ICD is placed in the subcu-

taneous tissue on the front of the chest below the left collarbone and is connected

to the inside of the heart through a large blood vessel. The ICD lead gives the

ICD the ability to continuously monitor the heart rhythm and if needed deliver the

high voltage shock inside the heart. The ICD lead is the most sensitive part of an

ICD system and is the part with the highest risk of failure either due to insulation

failures or conductor fractures. The particular lead investigated is prone to a rather

unique type of insulation failure because of a design flaw where the inner conduc-

tors over time work their way through the outer insulation. Such outer insulation
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failures, called externalizations, may be electrically silent at normal ICD follow-up

and require dedicated fluoroscopic/X-ray imaging to be detected. The ICD is at risk

of failing from such externalization events throughout follow-up, but patients can

also have their ICD leads removed (extracted) for other reasons during follow-up,

which obviously precludes an externalization event. We consider externalization as

the event of interest and we are interested in estimating the association between the

amount of slack in the lead body inside the heart and the time to externalization,

since more lead slack puts the continuously moving lead body under more physical

stress. In this setting, we have a combined competing risk of death or extraction of

the ICD leads. To assess the association between lead slack and externalization, we

are interested in comparing the cumulative risk of externalization at one or more

time points.

In this application, interest lies in assessing the effect of the exposure on the cu-

mulative risk of developing the outcome in the presence of the competing risks but

existing methods are not well-equipped for this type of situation. However, in the

right censored competing risk setting, pseudo-observations have been proposed[3] as

a modeling approach which enables effect estimation on a number of different scales

other than the hazard scale such as the cumulative incidence scale. This method

is based on a transformation of the potentially censored time-to-event data into a

set of complete data on which regression can be performed using generalized lin-

ear models to estimate the relevant effect parameters. When the aim is to model

some function of the cumulative incidence, the transformation is based on the non-

parametric Aalen-Johansen estimator of the cumulative incidence function.

A non-parametric estimator of the survival function based on interval censored data

has been proposed by both Peto and Turnbull[4, 5]. The resulting Peto-Turnbull

estimator is a piece-wise constant curve with relatively few jumps. A natural way

to apply the pseudo-observation approach to interval censored data therefore seems

to be to perform a transformation of the data based on the Peto-Turnbull estimator

similarly to the pseudo-observation approach based on the Aalen-Johansen estima-

tor. This approach has been investigated by Kim and Kim[6] in a competing risk

setting. However, the asymptotic properties of the resulting pseudo-observations

are unclear since the theory for pseudo-observations has been developed only for

estimators with parametric
√
n convergence rate[7], whereas the Peto-Turnbull es-

timator has slower n1/3 convergence rate[8].

Royston and Parmar[9] have proposed a flexible parametric model which is applica-

ble to both right censored and interval censored data. This is a regression modeling

framework where the log cumulative hazard function is estimated using a restricted

cubic spline in log time. In the most simple form with no covariates this approach

provides a way to model the cumulative incidence function and when covariates

are included the model can be formulated as either a proportional hazards or a

proportional odds model.

As in our example above, the event of interest in interval censored data is often

a non-fatal event, so methods for handling interval censoring should accomodate

death as a competing risk. For the remainder of this article, we consider only com-

peting events for which the event time is exactly observed and refer to competing

events as death for ease of terminology. In a competing risk setting with a right
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censored event of interest, we can model the cause-specific hazard functions sepa-

rately by considering only the time to whatever event occurs first. But when the

event of interest is interval censored, we are only observing the event if there is

an examination after the event has occurred but before the individual is censored

or dies. Hence, there might be some events of interest which are unobserved in the

data. Because of this circumstance, the inference needs to take into account that the

event of interest might or might not have occurred in the interval between the last

examination time without the event of interest and time of death or censoring. To

accomodate this, the data could be considered in an illness-death model[10] where

the risk of death is also modeled after an event of interest has occurred.

Recently, an elegant approach to calculating pseudo-observations for interval cen-

sored data was proposed by Sabathé et al.[11] specifically for an illness-death model.

This approach is based on modeling the three transition intensities using M-splines

and applying a penalized likelihood approach where more roughly shaped intensity

functions are penalized using the second derivatives of the three M-splines squared.

This requires a high number of coefficients for each of the three splines depending on

the order and the number of knots of the spline as well as three penalty parameters

to be chosen by the analyst. Due to this high number of parameters, the authors

do not recommend using their method in place of the traditional non-parametric

pseudo-observation approach for right censored data.

For right censored competing risk data, we have recently shown that in some situa-

tions calculating parametric pseudo-observations based on a marginal flexible para-

metric estimator of the cumulative incidence function can provide less variability in

the effect estimates than that of traditional non-parametric pseudo-observations[12].

In this article, we propose an extension of this approach that applies to the interval

censored setting and is targeted directly at estimating associations between an ex-

posure and the event of interest. In Section 2.1, we describe the proposed method

in more detail and in Section 2.2 we describe a simulation study that compares our

proposed method to the existing methods. We present the results of these simula-

tions in Section 3.1 and present an analysis of the example data in Section 3.2. We

conclude the article with a discussion and conclusion in Sections 4 and 5.

2 Methods

2.1 Proposed method

We now give details on how the parametric pseudo-observation approach can be

extended to cover interval censored settings with competing risks using an illness-

death model.

An illness-death model involves an event of interest and the competing event death

which gives three different states; 0 where neither event has occurred, 1 where only

the event of interest has occurred, and 2 which is death with or without having expe-

rienced the event of interest. In the following, we will assume that all individuals are

initially in state 0 at time t = 0 and we let hkl denote the hazard function describ-

ing transition from one state, k, to another, l and similarly we let Hkl denote the

cumulative hazard function. To estimate the cumulative incidence function of the

event of interest, F01(·), we will use the estimates of the transition-specific hazard
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functions and the relationship between these and the transition-specific cumulative

incidence function,

F01(t) =

∫ t

0

h01(u)S(u)du, (1)

where S(·) is the event-free survival function defined as

S(t) = exp
(

−H01(t)−H02(t)
)

.

We estimate the transition-specific hazard functions by modeling the transition-

specific log cumulative hazard functions using restricted cubic splines in x = ln(t).

According to Royston and Parmar[9], a natural cubic spline with m internal knots,

ξ1, . . . , ξm, and external knots ξmin, ξmax can be expressed as

s(x;γ) = γ0 + γ1x+ γ2v1(x) + · · ·+ γm+1vm(x),

where vj(x) = (x− ξj)
3
+ − λj(x− ξmin)

3
+ − (1− λj)(x− ξmax)

3
+.

Hence, we are assuming the model

ln(Hkl(t)) = skl(x;γkl)

= γkl,0 + γkl,1x+ γkl,2vkl,1(x) + · · ·+ γkl,m+1vkl,m(x),

for going from state k to state l. For simplicity, we assume that the number of

knots is m for all three splines. The model, hence, contains m + 2 spline coeffi-

cients, γkl = γkl,0, . . . , γkl,m+1, for each transistion and corresponding spline knots

ξkl,min, ξkl,1, . . . , ξkl,m, ξkl,max. Based on the spline coefficients, γ01, γ02, and γ12,

we can express the transition-specific hazard function as

hkl(t) =
dskl(x;γkl)

dt
· exp(skl(x;γkl))

=
1

t
·
dskl(x;γkl)

dx
· exp(skl(x;γkl)).

The derivative of skl(x;γkl) is

dskl(x;γkl)

dx
= γkl,1 +

m
∑

j=2

{

γkl,j ·
(

3(x− ξkl,j)
2
+

− 3λkl,j(x− ξkl,min)
2
+ − 3(x− ξkl,max)

2
+

)

}

.

We consider a setting where the time to the event of interest can either be observed

exactly (right censored) or interval censored but the time of death is always ob-

served exactly (right censored). Estimation of the spline coefficients is performed

using maximum likelihood methods and the contributions to the likelihood func-

tion, L(γ01,γ12,γ02), take different forms according to the event trajectory of each

individual. These trajectories are determined by the occurrence and timing of the

event of interest and death as described by Touraine et al.[13]
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2.1.1 Maximum likelihood estimation

The observed trajectory of an individual can be described by the observed event sta-

tus and observation time for both the event of interest, (d1, t1), and death, (d2, t2),

as well as a time of the last examination time without the event of interest if any

such has occurred, l1. This last negative examination time might be at time l1 = 0 if

no negative examinations have occurred. For individuals with an interval censored

event of interest, the event of interest is then known to occur in the interval (l1, t1).

For individuals with an event of interest for which the time is observed exactly, l1

is not defined and for individuals with right censored data but no event of interest,

we let l1 denote the time point at which follow-up ends for that individual. We now

describe the contributions to the likelihood function for each trajectory. For the i’th

individual, we use the following notation.

d1i indicates an observed event of interest (either exactly observed or interval

censored)

l1i is the last known negative time point (potentially at time zero)

t1i is the observation time for the event of interest (either the exact time or the

first positive examination time)

d2i indicates a competing event (exactly observed)

t2i is the observation time for the competing event

For short, we will denote each individual’s contribution to the likelihood function

as Li.

Trajectory 1

If an individual has an exactly observed event of interest at time t1i and is then

right censored at time t2i, the corresponding contribution to the likelihood function

is

Li = S(t1i)h01(t1i)
exp(−H12(t2i))

exp(−H12(t1i))
.

Trajectory 2

If an individual has a negative examination at time l1i and is then right censored

at time t2i, the contribution is

Li = S(t2i) +

∫ t2i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
du.

This likelihood contribution also applies to individuals with right censoring of the

event of interest, since this corresponds to the special case where l1i = t2i and the

integral is thus zero.

Trajectory 3

If an individual has an interval censored event of interest occurring between time

l1i and t1i and is then censored at time t2i, the contribution is

Li =

∫ t1i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
du.

Trajectory 4

If an individual has an exactly observed event of interest at time t1i and then dies
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at time t2i, the contribution is

Li = S(t1i)h01(t1i)
exp(−H12(t2i))

exp(−H12(t1i))
h12(t2i).

Trajectory 5

If an individual has a negative examination at time l1i and then dies at time t2i,

the contribution is

Li = S(t2i)h02(t2i) +

∫ t2i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)du.

Again, this applies to individuals with right censoring of the event of interest.

Trajectory 6

If an individual has an interval censored event of interest occurring between time

l1i and t1i and then dies at time t2i, the contribution is

Li =

∫ t1i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)du.

If we furthermore use the indicator, d2i, for the competing event (exactly observed),

we can write all likelihood contributions as one of the following three expressions.

Trajectories 1 and 4

For an individual with the event of interest observed at time t1i exactly, followed

by death or censoring at time t2i, the contribution is

Li = S(t1i)h01(t1i)
exp(−H12(t2i))

exp(−H12(t1i))
h12(t2i)

d2i .

Trajectories 2 and 5

For an individual with an examination without the event of interest or right cen-

soring of the event of interest at time l1i followed by death or censoring at time t2i,

the contribution is

Li = S(t2i)h02(t2i)
d2i +

∫ t2i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)

d2idu.

Trajectories 3 and 6

For an individual with an interval censored event of interest occurring between time

l1i and t1i followed by a death or censoring at time t2i, the contribution is

Li =

∫ t1i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)

d2idu.

The likelihood function obtained by multiplying the relevant contributions for each

individual can be maximized numerically by using e.g. the Newton-Raphson algo-

rithm.
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2.1.2 Initial values

For likelihood maximization in practice, it is worth considering how to provide initial

values for the parameter vector (γ01,γ02,γ12) in order to achieve convergence in as

few iterations as possible. We propose the following approach using midpoints for

interval censored events of interest.

Modeling the transition from state 0 to 1 can be done by fitting a flexible parametric

model with the spline knots chosen for this transition and using the midpoints

between l1i and t1i for interval censored events of interest. From this fitted model

we can calculate a predicted survival function to estimate 1 minus the cumulative

incidence of the event of interest. For each individual that has not had an observed

event of interst, we can then estimate the probability that they had an unobserved

event of interest in the interval between their last negative examination time, l1i,

and their end of follow-up time, t2i, as the difference in predicted survival between

these two time points. We can then randomly assign these individuals as having

had or not having had an unobserved event of interst based on their individual

probabilities and then temporarily consider some of them as if they had an event

of interest at the midpoint of the interval from l1i to t2i. This allows us to more

accurately estimate the remaining two transitions.

The transitions from state 0 to 2 and from 1 to 2 can now be modeled, again using

flexible parametric models with the relevant knots, using the updated event and

status variables and imposing delayed entry at the time of the event of interest for

the transition from state 1 to 2.

2.1.3 Parametric pseudo-observations for interval censored data

Once we have obtained estimates, γ̂01, γ̂02, and γ̂12, of the parameters in the

likelihood function described above, we can define a set of parametric pseudo-

observations for interval censored data, θIC1 , . . . , θICn , as

θICi = nθ̂IC − (n− 1)θ̂IC(−i), for i = 1, . . . , n, (2)

where θ̂IC denotes the estimate of the cumulative incidence function and θ̂IC(−i) is

the corresponding leave-one-out estimate based on all observations except the i’th

with the same spline knots as for the full-sample estimate.

The pseudo-observations thus defined can be analyzed using generalized linear

models with a sandwich estimator of the variance in the same way as both non-

parametric and parametric pseudo-observations for right censored data[3, 12].

2.2 Simulation studies

2.2.1 Data generation

We simulated datasets imposing a non-random binary exposure, x, such that half of

the individuals are exposed and the other half is non-exposed and an administrative

censoring at time t = 5.

For the event of interest, we simulated realizations of a random variable T01 ∼

Exp(λ01(x)), where the intensities are λ01(0) = 0.3 and λ01(1) = 0.2. Similarly, we

simulated death from a random variable T02 ∼ Exp(λ02) with intensity λ02 = 0.1.

Based on these variables we define event indicators δ01 and δ02 according to which
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event occurs first if min(T01, T02) < 5. Hence, all individuals enter the study at time

t = 0 in state 0.

For individuals who experience the event of interest, we simulate the transition from

state 1 to state 2 as another random variable T12 ∼ Exp(λ12) with λ12 = 0.4. The

time-to-event for this transition is then T01 + T12 with censoring at t = 5 and the

event indicator is δ12.

To mimic a practical setting with a mixture of right and interval censored data,

we consider the event of interest for some individuals to be interval censored and

for the others to be right censored. This allocation follows a Bernoulli distribution

with probability parameter pic for being interval censored. For individuals with

interval censoring of the event of interest, we simulate examination times with a

mean interval length of ∆ and a random error following a normal distribution with

mean zero and variance σ2. We continue adding examinations until either the event

of interest has occurred or the induvidual has died or has been censored following

an iterative formula for examination times,

ei+1 = ei + δi,

where δi ∼ N(∆, σ2). This gives rise to the variable l1i which is the last known time

with a negative status for the event of interest and the variable t1i which is the first

known positive status. For individuals with an exactly observed event of interest,

we let l1i = t1i be the event time, and for right censored individuals in which we do

not observe an event of interest will have li = t1i = t2i which is the time of death

or censoring.

For the simulations, we performed 1 000 repetitions of datasets of sample size n =

250, where pic = 80% of the events of interest are interval censored, and the mean

time between examinations is ∆ = 1 with σ2 = 0.2.

2.2.2 Data analysis

In each dataset, we calculated five sets of pseudo-observations for the event of

interest based on five different approaches.

θE1 , . . . , θ
E
n Potentially unobservable exact right censored event

times for all individuals. These will serve as a way to

measure the empirically highest achievable precision.

θM1 , . . . , θMn Midpoints of the examination intervals for interval

censored events, exact right censored event times

otherwise.

θR1 , . . . , θ
R
n Right endpoint of the examination intervals for inter-

val censored events, exact right censored event times

otherwise.

θIC1 , . . . , θICn Proposed method for taking interval censoring into

account.

θS1 , . . . , θ
S
n Method for taking interval censoring into account

proposed by Sabathé et al.
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For each set of pseudo-observations we fitted the same generalized linear models

to estimate the risk, risk difference, and relative risk of experiencing the event of

interest before time t = 3. If the estimation of spline coefficients for either the full

sample or one or more leave-one-out subsamples did not converge or if the general-

ized linear regression model gave unreasonable estimates (cumulative incidence not

in (0, 1), risk difference not in (−1, 1), relative risk not in (10−1, 10)), we considered

the results to be unvalid and ignore them in the following. Based on the obtained es-

timates, we then calculated the median bias, the empirical standard error (empSE)

and the confidence interval coverage probability[14]. We also calculated a relative

empSE with the empSE of the θEi s as the reference value to assess the amount of

additional variation that is added by accounting for the interval censored nature of

the data.

We generated data and performed all pseudo-observation calculations except the

θSi s as well as regression modeling using Stata/MP version 16.1. To calculate the

θSi s we used R version 3.6.3 and the packages SmoothHazard and pseudoICD.

3 Results
3.1 Simulation studies

To illustrate the five different estimation approaches, we have shown the full-sample

estimators on which each of the compared approaches are based for a randomly

chosen simulated dataset in Figure 1. It is clear that the Aalen-Johansen estimator

based on either the midpoints (red curve) or the right endpoints (green curve) un-

derestimate the cumulative incidence as estimated by the Aalen-Johansen estimator

on the exact event times (blue curve). Both the penalized likelihood estimator (pur-

ple curve) and the flexible parametric estimator (black curve) follow the estimator

based on the exact event times reasonably well. The results of the simulation study

are shown in Table 1. In the 1 000 datasets, there were on average 146 events of

interst but only 120 that we observe when considering the data as interval censored.

We focus mainly on the estimates of absolute cumulative incidence of the event of

interest. For the estimation of cumulative incidence, 18 of the 1 000 datasets resulted

in an unvalid estimate for the interval censored method, 4 did so when we used the

right endpoints and none did for the other methods. For both the risk difference

and the relative risk, this happened in 13 and 4 of the subsamples for the interval

censored and right endpoint methods respectively.

Using the exactly observed data, the parametric pseudo-observations perform very

well and we obtain unbiased estimation of the true value of the cumulative inci-

dence function at time t = 3, which is 0.460, with an empirical standard error of

0.028 and coverage probability close to the nominal value of 95%. Using the mid-

points with right censored methods, we observe a substantial negative bias due to

the unobserved events. This bias is exacerbated when we use the right endpoints

due to the systematic over-estimation of the observation time. These biases cause

both of the methods to yield useless coverage probabilities. Analysing the interval

censored data using our proposed parametric pseudo-observations, we still get an

unbiased estimator but the empirical error is roughly 50% higher due to the added

uncertainty inherent in the interval censored data. The coverage of this method is

also reasonably close to 95%. In terms of bias and coverage, the method proposed
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by Sabathé et al. performs quite similarly to our proposed method while the em-

pirical standard error of the cumulative incidence estimates is somewhat lower for

the Sabathé et al. method. This might be explained by the additional three penal-

ization parameters which control the smoothness of the fitted M-splines but must

be provided explicitly or determined from the data using an approximate likelihood

technique[13].

Estimating associations with the exposure gives small biases for both the risk dif-

ference and relative risk using either our proposed method and that of Sabathé et

al. and the coverage probabilities are in good agreement with the nominal value.

3.2 Application to ICD data

Our ICD dataset holds data on 377 patients who are followed from the time of

ICD implantation and for a maximum of about 10 years. During follow-up we have

information on our event of interest, externalization status, at each fluoroscopic

examination time and on the date of death or lead extraction if this occurred. The

dataset, hence, consists only of interval censored data for the event of interest and

right censored data for death or lead extraction. We show the trajectory for each

patient in Figure 2 where lines indicate an observation interval colored black for

intervals ending at a positive examination and grey if we do not observe exter-

nalization and black dots indicate death or lead extraction times. We observed 37

externalization events and 106 cases of death or lead extraction during follow-up.

We first estimated the cumulative incidence function for the externalization

event based on a competing risk model using the non-parametric Aalen-Johansen

estimator[15] applied to the midpoints of the intervals. This is illustrated by the

solid step function in Figure 3. The dashed and dotted curves in the figure show

the estimator based on the flexible parametric approach by fitting splines with 3

and 4 knots, respectively, to the interval censored data in an illness-death model.

The three estimators seem to capture roughly the same shape of the cumulative in-

cidence function although the Aalen-Johansen estimator based on midpoints shows

a tendency to place the bulk of the events around 2–3 years due to a high number

of patients having their first examination since implantation after roughly 5 years.

We then calculated parametric pseudo-observations for externalization events based

on splines with 3 knots evaluated at 5 years after ICD implantation and estimated

the cumulative incidence at this time point as well as the risk difference and rel-

ative risk comparing patients with high lead slack to those with low lead slack.

The results of the regression analyses show an estimated cumulative incidence at 5

years of 0.07 with a 95% confidence interval (CI) of (0.04 to 0.10). The risk is quite

different for the two exposure groups with an estimated risk difference of 0.07 (95%

CI: (0.01 to 0.14)) and the estimated relative risk is 2.94 (95% CI: (1.11 to 7.75)).

4 Discussion
With the methods proposed in this article, we have provided a way to calculate

pseudo-observations and hence perform regression modeling in data consisting of

both right and interval censored data on an event of interest which is subject to

competing risks. We have shown by simulations that this method avoids the bias

that occurs when using methods for right censored data on either the midpoints or
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the right endpoints of interval censored data. Our proposed methods also provides

confidence intervals that have coverage probabilities close to the nomimal value.

Our method is a further development of an approach for right censored competing

risks data[12] and compared to the recently proposed method by Sabathé et al.[11]

it requires relatively few parameters and does not require any analyst choices apart

from determining the spline knots.

There are a number of considerations and assumptions for the parametric pseudo-

observations for right censored data that also apply to the interval censored version.

This concerns the assumption of independent censoring as well as the choice of num-

ber and positions of knots for the splines. For the interval censored data, we have

imposed the additional assumption that the examination times are independent of

the risk of the event of interest.

A practical limitation of our method is that it is a very computationally inten-

sive task to estimate the spline coefficients in each leave-one-out subsample of the

dataset. Fortunately, this need only be done once for each study. This is also the

reason for our limited number of repetitions in our simulation study.

Although we allow that the event of interest is either right or interval censored or

a mix of both, we have only considered the case where the time of the competing

event is exactly observed. If this is not the case and the competing event is also

interval censored, the situation is far more complicated. This is unlikely to be the

case when death is the only competing event but it could be relevant if other events

can preclude the event of interest. Our proposed methods do not cover this situation

and are not easily extended to do so.

A special case of interval censored data to which our methods do apply is known

as current status data in which we only have one examination for each individual.

One example of such data is information from a systematic population screening

for a specific condition. For a non-congenital condition, a positive screening would

provide information that the condition has occurred at some point prior to the

screening but nothing more yielding long intervals that reflect the uncertainty of

the exact occurrence time of the condition.

5 Conclusion
In this article, we have shown how the previously proposed parametric pseudo-

observations for right censored data can be extended to cover setting with both

right and interval censored data. Since interval censored data are almost inevitably

subject to the competing risk of death, we have formulated the methods in an

illness-death model that accommodates this circumstance. We have demonstrated

through simulations that the proposed method performs well with no noteworthy

bias and satisfactory coverage probabilities for estimating the cumulative incidence

as well absolute and relative associations with an exposure.

6 Abbreviations
ICD: Implantable cardioverter-defibrillator

CI: Confidence interval

empSE: Empirical standard error
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Figures

Figure 1 Full-sample estimators of the cumulative incidence function in one of the simulated
datasets. Blue curve: Aalen-Johansen estimator on exact event times. Red curve: Aalen-Johansen
estimator on interval midpoints. Green curve: Aalen-Johansen estimator on right endpoints.
Purple curve: Penalized likelihood estimator used in the approach by Sabathé et al. Black curve:
Flexible parametric approach used in our proposed approach.

Figure 2 Visualization of the interval censored real example dataset. A black line indicates an
interval with an observed externalization, a grey line indicates an interval with no observed
externalization, black dots indicate deaths or lead extractions.

Figure 3 Estimated cumulative incidence of externalization. Solid curve: Aalen-Johansen
estimator in a competing risk model. Dashed curve: Flexible parametric estimator with 3 knots
based on an illness-death model fitted on the full sample. Dotted curve: Flexible parametric
estimator with 4 knots based on an illness-death model fitted on the full sample.

Table 1 Results of the simulations in the general set-up based on estimation of cumulative incidence,
risk difference and the logarithm of relative risk.

Method Bias empSE Relative empSE Coverage (95% CI)

Cumulative incidence (true value: 0.460)

Exact 0.000 0.028 1 (ref.) 95.4 (93.9 to 96.5)
Midpoint −0.067 0.033 1.16 35.6 (32.7 to 38.6)
Right endpoint −0.105 0.029 1.02 4.3 (3.2 to 5.8)
IC −0.001 0.043 1.51 94.2 (92.5 to 95.5)
Sabathé et al. 0.001 0.034 1.21 95.7 (94.2 to 96.8)

Risk difference (true value: -0.128)

Exact 0.000 0.057 1 (ref.) 95.0 (93.5 to 96.2)
Midpoint 0.020 0.057 1.00 95.5 (94.0 to 96.6)
Right endpoint 0.025 0.056 0.99 94.0 (92.3 to 95.3)
IC −0.002 0.076 1.33 95.3 (93.8 to 96.5)
Sabathé et al. −0.001 0.070 1.24 95.2 (93.7 to 96.4)

Logarithm of relative risk (true value: -0.281)

Exact −0.001 0.128 1 (ref.) 95.5 (94.0 to 96.6)
Midpoint 0.002 0.149 1.16 95.7 (94.2 to 96.8)
Right endpoint −0.012 0.165 1.29 96.0 (94.6 to 97.0)
IC −0.006 0.168 1.31 94.6 (93.0 to 95.9)
Sabathé et al. −0.004 0.158 1.23 95.3 (93.8 to 96.5)

http://dx.doi.org/10.1002/sim.2673


Figures

Figure 1

Full-sample estimators of the cumulative incidence function in one of the simulated datasets. Blue curve:
Aalen-Johansen estimator on exact event times. Red curve: Aalen-Johansen estimator on interval
midpoints. Green curve: Aalen-Johansen estimator on right endpoints. Purple curve: Penalized likelihood
estimator used in the approach by Sabathe et al. Black curve: Flexible parametric approach used in our
proposed approach.



Figure 2

Visualization of the interval censored real example dataset. A black line indicates an interval with an
observed externalization, a grey line indicates an interval with no observed externalization, black dots
indicate deaths or lead extractions.

Figure 3



Estimated cumulative incidence of externalization. Solid curve: Aalen-Johansen estimator in a competing
risk model. Dashed curve: Flexible parametric estimator with 3 knots based on an illness-death model
�tted on the full sample. Dotted curve: Flexible parametric estimator with 4 knots based on an illness-
death model �tted on the full sample.


	Abstract
	Background
	Methods
	Proposed method
	Maximum likelihood estimation
	Initial values
	Parametric pseudo-observations for interval censored data

	Simulation studies
	Data generation
	Data analysis


	Results
	Simulation studies
	Application to ICD data

	Discussion
	Conclusion
	Abbreviations

