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Abstract
Background: Anxiety disorder, the most common mental health issue, can cause palpitations, fear, and
compulsive behavior, and can severely endanger human health. Most drugs to treat anxiety disorder can
cause a variety of side effects, therefore, it is important to seek natural and safe complementary and
alternative therapies.

Methods: The open field (OF), elevated plus maze (EPM), and light-dark box (LDB) tests were used to
confirm the anxiolytic effect of BEO in mice. Further, we constructed a component-target-signaling
pathway network and a protein-protein interaction (PPI) network for the regulation of anxiety by BEO
through pharmacological network analyses, and performed Gene Ontology (GO) enrichment analyses of
BEO targets, and analyzed the active components and targets of BEO through molecular docking.

Results: In the OF test, BEO significantly prolonged the time spent by the mice in the central area (p <
0.05), in a dose dependent manner (r = 0.9992), and also significantly increased the number of central
area entries (p < 0.01). In the EPM test, BEO significantly increased the time spent in the open arms (p <
0.01) and the number of entries into the open arms (p < 0.01) in a dose-dependent manner (r = 0.9733, r =
0.9669). In the LDB tests, BEO significantly increased the light area duration (p < 0.05) and the transition
number (p < 0.01) in a dose-dependent manner (r = 0.9166, r = 0.9572), thus confirming its anxiolytic
effect. Network pharmacology results showed that 33 active components in BEO acted on 54 targets,
mainly through modulation of neuroactive ligand-receptor interactions, G-protein coupled receptor
signaling pathways, and RNA polymerase II transcription factor activity. PPI network analysis identified
48 key proteins, including estrogen receptor 1 (ESR1), androgen receptor (AR), and mitogen-activated
protein kinase 8 (MAPK8). Molecular docking results showed that the main active components of BEO
are borneol, β-caryophyllene, α-cadinol, limonene, and α- selinene, which act on the key targets CNR2,
ADRA2B, and ADORA2A.

Conclusion: Our results indicated that BEO has multi-component, multi-target, and multi-pathway
characteristics, thus providing a theoretical basis for further research on the mechanism of action of BEO
as a potential anxiolytic agent.

1. Background
Anxiety disorder, the most common mental health issue, can cause palpitations, fear, and compulsive
behavior, and can severely endanger human health [1]. The main drugs used to treat anxiety disorders are
benzodiazepines, which have been used as the first-line treatment for decades. However, these drugs in
clinical practice have been found to cause problems such as excessive sedation, headaches, blurred
vision, dependence, and withdrawal symptoms [2]. Therefore, safe, and evidence-based complementary
or alternative therapies may provide safer and more effective treatments for patients with anxiety.

Recent studies have shown that essential oils can reduce stress, anxiety, and depression, and promote
physical and mental health. Essential oils have been used as traditional medicines for centuries, and a
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long history of treatment with essential oils has demonstrated their efficacy and safety [3]. Studies have
found that oral neroli oil, which is rich in limonene (25%), β-pinene (20%), and linalool (16%), can relieve
anxiety [4].

BEO (borneol, 16.4%) is a by-product of natural crystalline borneol (NCB, 98.4% borneol) obtained by
steam distillation of Cinnamomum camphora. Its main components, including β-caryophyllene (10.7%),
limonene (8.2%), α-pinene (7.5%), β-pinene (3.6%), and linalool (0.5%), have been shown to have
significant anti-inflammatory effects [5]. In animals, borneol has been reported to have significant
anxiolytic effects when injected into the dorsal hippocampus, on the basis of open field (OF), elevated
plus maze (EPM), and light-dark box (LDB) tests [6]. Oral β-caryophyllene also has shown significant
anxiolytic effects in the above tests [7]. Previous studies have confirmed that intraperitoneal injection of
limonene [8] and inhalation of α-pinene [9] have significant anxiolytic effects, on the basis of EPM
experiments. Therefore, these components may have potential as anxiolytic agents for administration in
humans.

The above findings indicate that all these components are found in BEO, and it anxiolytic effects are
worthy of further exploration. To date, the anxiolytic mechanism of action of essential oils has rarely
been investigated. Therefore, to determine its mechanism of action, we used classical OF, EPM, and LDB
methods to evaluate the anxiolytic efficacy of BEO, the BEO anxiolytic component-target-signaling
pathway network, and the protein interaction (PPI) network, as constructed through network
pharmacology analysis. We also performed Gene Ontology (GO) enrichment analysis of the targets of
BEO and analyzed the binding sites of the active components and their targets through molecular
docking to further determine the relationship between the active ingredients and targets, and to provide a
theoretical basis for the mechanism of action of these active compounds.

2. Materials And Methods

2.1 Reagents and instruments
BEO was provided by Chunjingziran Biotechnology (Shaoxing, Zhejiang Province, China) and was
obtained by steam distillation of fresh branches and leaves of Cinnamomum camphora chvar. Borneol.
Cinnamomum camphora chvar. Borneol. A voucher specimen (768133) was deposited at the South China
Institute of Botany, Chinese Academy of Science (Guangzhou, Guangdong, China). The essential oil was
dehydrated by the addition of anhydrous Na2SO4, collected in a dark brown bottle, and stored at 4°C until
use. The components of BEO were previously identified by our research group through gas
chromatography-mass spectrometry; the total number of components was 43, and the most abundant
component was borneol (16.4%) [5] (Table S1).

2.2 Experimental animals
All experimental animal procedures were approved by the Ethics Committee of the Experimental Animal
Center of Jiangnan University [No. 20191015i0151220 (279)], and the care and use of experimental
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animals complied with national and international guidelines (2010/63/EU). Adult Institute of Cancer
Research (ICR) mice (20 ± 2 g) were housed in an environment with 22 ± 2°C, 55 ± 15% relative humidity
and a 12-h light/dark cycle, and were given food and water ad libitum. All animals were acclimated to the
experimental environment for at least 5 days before experimentation.

The mice were randomly divided into five groups (ten per group: five males and five females), which
included a control group and a positive control group (2 mg/kg diazepam in saline solvent, administered
intraperitoneally) and three BEO groups with different BEO doses (150, 300, or 600 mg/kg in corn oil
solvent, administered orally) [10]. The administration continued for 7 days; at 30 minutes after the last
administration, OF, EPM, and LDB tests were performed sequentially.

2.3 Behavioral procedures

2.3.1 Open field tests
OF test is among the most used behavioral tests for the evaluation of anxiety in rodents. The test is
based on the animals’ tendency to move around the walls of the box rather that explore the central area.
Our experiments were performed according to a protocol modified from a previous study [10]. The OF test
uses an OF box and a video capture system. In this study, the OF test consisted of an arena of 45 cm
length × 45 cm width × 45 cm depth. At the beginning of the experiment, the mice were quickly placed in
the center of the OF, the video collection and timer were started simultaneously, and activity was recorded
for 5 minutes. After completion, we used 75% alcohol to clean and wipe the OF to eliminate the influence
of animal odor on subsequent experiments. Without changing the total moving distance, the increase in
the number of times in which the animal entered the central area and the percentage of time spent in the
central area with respect to the total time were recorded and used as anxiolytic effect indices. We used
Etho Vision XT 11 (Noldus Information Technology, Leesburg, VA) for data analysis.

2.3.2 Elevated plus maze test
The mice EPM test was based on a method slightly modified from that described previously [8]. The
equipment consisted of EPM hardware and a video capture system. The EPM hardware consisted of two
opposite open arms (30 cm × 6 cm × 15 cm), two opposite closed arms (30 cm × 6 cm × 15 cm), and a
central platform (6 cm × 6 cm) connected by four arms. The distance between the bottom of the maze
and the ground was 50 cm. At the beginning of the experiment, the mice were quickly placed onto the
central platform with their heads facing the open arm, then allowed to explore freely. Simultaneously, the
video acquisition and timer were started, and the number of times in which the mouse entered the open
arm, the staying time, the number of times the mouse entered the closed arm, and the staying time within
5 minutes were recorded. After the video collection, we again wiped the maze with 75% alcohol to
eliminate the influence of animal odor on subsequent experiments. Anxiolytic drugs decrease the natural
aversion of mice to the open arms and promote exploratory behavior. Therefore, the percentage of entries
to the open arms with respect to the total number of arm entries, and the percentage of exercise time in
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the open arms with respect to the total time were used as indicators to evaluate the anxiety levels in the
mice. We used Etho Vision XT 11 for data analysis.

2.3.3 Light-dark box test
The LDB (Cat. No. 40553, UGO, USA) test was established on the basis of rodents’ aversion to bright new
environments. When mice are less anxious, the time and distance taken to enter the bright box increases.
However, when mice are more anxious, they tend to move into the dark box. At the beginning of the test,
the mice were placed into the light box, the board in the middle of the LDB was removed, and the animals
were allowed to explore freely for 5 minutes, during which their behavioral indices were recorded. The
percentage of time that the mice spent in the light box with respect to the total test time, and the number
of entries into the light box were used as indicators [10]. After each test, the LDB was wiped with 75%
alcohol to eliminate the influence of animal odor on subsequent experimental animals.

2.4 Grip-strength measurement
A grip strength meter (YLS-13A, Yiyan Technology Development Co., Ltd., Shandong, China) was used to
assess forelimb grip strength. Mice were lifted by their tails so that their forepaws could grip the strength
meter wire, then gently pulled back with their tails parallel to the surface of the table until they lost their
grip on the wire. The maximum force was recorded in gram-force (gf). Three tests were performed on
each mouse, and the average score was used for statistical analysis [11].

2.5 Network pharmacology analysis

2.5.1 Compound-target-pathway network
We have identified BEO components in our previous study [5] (Table S1). Simplified molecular input line
entry systems (SMILE) and strings of the components were obtained by searching the Traditional Chinese
Medicine Integrated Database (TCMID) (database http://www.megabionet.org/tcmid/) and imported into
the Swiss Target Prediction database (http://www.swisstargetprediction.ch/) to identify potential targets
for the BEO components. The Swiss Target Prediction database predicts targets of active molecules on
the basis of chemical structure and ligand similarity, as well as cross validation and arrangement
analyses [12]. The predicted targets for all BEO components were obtained from limited search species in
humans. Next, the DisGeNET database (http://www.disgenet.org/web/DisGeNET/menu/home) was used
to screen potential targets for anxiety treatment, and the targets for the BEO components and anxiety
treatment were intersected to obtain the targets that could potentially be used as anxiolytics.

On the basis of the above prediction results, the Clue GO module in Cytoscape 3.2.1 software was used to
annotate GO enrichment analysis of the targets of the BEO active components. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) Mapper tool from the KEGG database (http://www.kegg.jp/) was used to
identify enriched pathways of the targets. Cytoscape 3.2.1 was used to construct a component-target-
signaling pathway network in which nodes representing active components of BEO, potential targets, and
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associated signaling pathways were connected by edges. The mechanisms of action of BEO in treating
anxiety were determined by analysis of the constructed network.

2.5.2 Gene Ontology enrichment analysis
Clue GO analysis allows similar descriptors to be used for the functions of target products across
databases. It was used to classify and analyze the targets from biological processes, molecular
functions, and cellular components (p ≤ 0.05) to predict the anxiolytic mechanism of action BEO [13].

2.5.3 Construction of protein interaction networks
The String database (https://string-db.org/Version 10.5) was used to analyze known and predicted PPI
databases[14]. We imported the targets of the BEO active ingredients into the String database, limited the
research species to humans, obtained protein interaction relationships, and saved them in TSV format.
We imported node1, node2, and combined score information in the file into Cytoscape software to
construct the PPI networks and obtain the network analysis results. To produce the PPI, we further set the
node size; color, which ranged from dark red to yellow to light green, reflecting large to small values; and
edge thickness, reflecting the size of the combined score.

2.5.4 Component-target molecular docking of the potential
active components
To further verify the reliability of the target prediction results, we performed molecular docking validation
on the screened active ingredients and their associated targets. First, the chemical structures of the main
active ingredients were optimized with Chem 3D 15.0, and then the ligand rotatable bonds were
determined with AutoDock 4.2.6, after which the 3D structures of the key targets were obtained from the
Protein Data Bank (PDB) database (http://www.rcsb.org/pdb). Then the targets were de-watered and de-
liganded with PyMOL 2.3.4 software; hydrogenated and subjected to calculation of charges in AutoDock
4.2.6 software; docked with AutoDock Vina 1.1.2 software; and visualized with PyMOL 2.3.4 software.
The match between active components and target proteins was assessed according to the docking score
value. A binding energy less than − 4.25 kcal/mol is generally considered to suggest some binding
activity of the ligand to the receptor; less than − 5.0 kcal/mol implies good binding activity, and less than
− 7.25 kcal implies strong binding activity [13, 15].

2.6 Data analysis
Prism 6 (GraphPad, San Diego, CA, USA) and OriginLab-9.0s (OriginLab, Northampton, MA, USA) were
used for data analysis, and plots and results are expressed as mean ± standard deviation. The data were
analyzed with one-way analysis of variance with Dunnett's multiple comparisons test; *p < 0.05; **p < 
0.01; ***p < 0.001; and ****p < 0.0001 were considered statistically significant.

3. Results

3.1 Open field test
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In the OF test (Fig. 1), there was no significant difference in the total movement distance between groups,
thus indicating that the tested substance had no significant effect on the total activity of the mice
(Fig. 1A, p > 0.05). Compared with the control group, the groups with BEO treatment (300 or 600 mg/kg)
showed significantly longer time in the central area (Fig. 1B, p < 0.05), in a dose-dependent manner (r = 
0.9992). BEO (600 mg/kg) also significantly increased the number of center area entries (Fig. 1C, p < 
0.01), thus indicating its anxiolytic effect, which was comparable to that of the positive control
(diazepam). The above difference was not due to the difference in the total distance moved by the mice.

3.2 Elevated plus maze test
In the EPM test (Fig. 2), the BEO group showed significant differences with respect to the control group
when the dose reached 600 mg/kg, and the effect was equivalent to that seen with the positive control (p 
< 0.01). The time spent in open arms (Fig. 2A) and the number of entries onto open arms (Fig. 2B)
showed a dose-dependent increase (r = 0.9733 and 0.9669), thus indicating the good anxiolytic effects of
BEO.

3.3. Light-dark box test
In the LDB test (Fig. 3), BEO treatment (300 or 600 mg/kg), as compared with the control group,
significantly increased the light area duration (Fig. 3A, p < 0.05) and the transition number (Fig. 3B, p < 
0.01), similarly to the effects of the positive control. In addition, the light area duration and transition
number were dependent on the dose (r = 0.9166 and 0.9572).

3.4 Coordinated movement ability
To determine whether BEO influences movement coordination, we subjected the mice to grip meter testing
(Fig. 3C). BEO, compared with the control, had no significant effect on grip strength (p > 0.05), thus
indicating that BEO did not affect movement or coordination ability in these mice, in agreement with
previous observations after intraperitoneal injection of borneol [16].

3.5 Component-target-pathway BEO networks involved in
the regulation of anxiety

3.5.1 Components and targets
Using BEO components [5] (Table S1) obtained from previous research from our group, and examining
anxiety-related targets through database searches, we screened 33 components associated with anxiety
and identified 54 corresponding targets (Fig. 4A). The target genes cannabinoid receptor 2 (CNR2),
androgen receptor (AR), estrogen receptor 1 (ESR1), acetylcholinesterase (ACHE), solute carrier family 6
member 4 (SLC6A4), and cytochrome P450 family 2 subfamily C member 19 (CYP2C19) were associated
with 17, 16, 14, 14, 12, and 11 BEO components, respectively, and were the main targets involved in the
anxiolytic effect of BEO (Fig. 4A).



Page 8/23

3.5.2 Targets and signaling pathways
On the basis of results from KEGG signaling pathway analysis (Fig. 4B), signaling pathways for the 54
targets were found to involve mainly neuroactive ligand-receptor interactions (16 targets), metabolic
pathways (13 targets), calcium signaling pathways (9 targets), cancer pathways (9 targets),
neurodegeneration pathways (7 targets), Alzheimer’s disease pathways (6 targets), and cAMP signaling
pathways (6 targets).

3.5.3 Gene Ontology enrichment analysis
To further understand the interacting genes, we performed GO enrichment analysis, which revealed the
following findings. (1) The enrichment analysis of biological processes (Fig. 5A) showed that the ten
terms with the largest number of targets among 97 biological processes mainly included regulation of ion
homeostasis and organic hydroxy compound transport (11 targets), G-protein coupled receptor signaling
pathways, steroid hormone mediated signaling pathways and response to alkaloids (10 targets), and
response to ammonium ions (7 targets). (2) The enrichment analysis of molecular functions revealed
terms (Fig. 5A) including RNA polymerase II transcription factor activity (five targets), steroid hormone
receptor binding (four targets), neurotransmitter, sodium symporter activity, and oxidoreductase activity
(three targets). (3) The enrichment analysis of cellular components (Fig. 5A) confirmed that the targets
were mainly located in caveolae.

3.5.4 Protein interaction network
The PPI network was constructed with the String database and Cytoscape software (Fig. 5B). Among 54
target proteins, six targets [ACHE, BCHE, thymidylate synthetase (TYMS), carboxylesterase 2 (CES2),
macrophage migration inhibitory factor (MIF) and prolyl endopeptidase (PREP)] did not interact with
other targets. According to database calculations, AR and E1A binding protein p300 (EP300), peroxisome
proliferator activated receptor gamma (PPARϒ) and EP300, EP300 and ESR1 had the strongest
interaction, with a combined score of 0.999. According to the target interactive network diagram (Fig. 5B),
AR and ESR1 were located in the center of the targets, with the highest degree value, followed by mitogen-
activated protein kinase 8 (MAPK8), PPARG, nuclear receptor subfamily 3 group C member 1 (NR3C1),
EP300, prostaglandin-endoperoxide synthase 2 (PTGS2), 5-hydroxytryptamine receptor 2A (HTR2A),
dopamine receptor D2 (DRD2), and metabotropic glutamate receptor 5 (MGR5).

3.5.5 Active component-target protein molecular docking
analysis
The top five components derived from BEO were borneol (16.4%), β-caryophyllene (10.7%), camphor
(10.6%), limonene (8.2%), and α-pinene (7.5%) (Table S1). The components with the top five "degree"
values according to network pharmacology were borneol (26), linalool (16), methyl eugenol (16), α-
cadinol (14), and α-selinene (11) (Table 1). For these 54 targets associated with anxiety, molecular
docking was performed. The system with the lowest docking energy for each component and the targets
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were shown in Table 1. The docking energy of all components was lower than − 5 kcal/mol, thus
indicating that the components have good binding activity to the target proteins. The docking energy of
more than 50% of the components with the targets was less than − 7.25 kcal/mol, thus showing strong
binding activity [13]. The docking results (Fig S1) indicated that the above components and targets are
the active components and targets of the anxiolytic effect of BEO.

Table 1
Molecular docking score

Molecular name Content (%) * Target Score (Kcal/mol)

Borneol 16.4 CNR2 -7.6

β-caryophyllene 10.7 CNR2 -9.5

Camphor 10.6 EP300 -7.4

Limonene 8.2 ADRA2B -7.2

α-Pinene 7.5 EP300 -7.7

α-selinene 0.7 ADORA2A -9.0

Linalool 0.5 MIF -6.5

Methyl eugenol 0.3 LRRK2 -7.1

α-Cadinol 0.1 CNR2 -9.0

*Preliminary work acquisition

As shown in Fig. 6A, β-caryophyllene, α-cadinol, and borneol had the lowest binding energy with CNR2,
showing strong binding activity (Table 1). For the CNR2 protein, the small molecule binding pocket is
composed of typical hydrophobic amino acids such as F94, P184, F106, F183, I110, V113, F87, and F91,
which form a hydrophobic binding pocket, whereas the S90, a polar amino acid, can form hydrogen
bonds with small molecules. β-caryophyllene, which is composed of carbon atoms, has a large volume,
can interact with the hydrophobic binding cavity on the CNR2 protein, and has the lowest energy (Fig. 6A).
Compared with β-caryophyllene, α-cadinol is smaller, and thus the hydrophobic interaction formed
between the surrounding amino acids is relatively weak. However, the hydroxyl -OH on the α-cadinol
molecule can form a hydrogen bond with the S90 amino acid; therefore, it still has strong binding activity
(Fig. 6A). Compared with β-caryophyllene and α-cadinol, borneol molecules have relatively fewer carbon
atoms; consequently, when it binds the CNR2 protein, it cannot completely occupy the binding cavity, and
its binding activity remains relatively low (Fig. 6A). Study have shown that β-caryophyllene acts on CNR2
and exerts anxiolytic effects [7], in agreement with the results from this study, showing that CNR2 is an
important target for the anxiolytic effect of BEO. Among them, limonene and ADRA2B (Fig. 6B), α-
selinene, and ADORA2A also have high binding activity (Fig. 6C).

4. Discussion
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The results of OF test indicated that BEO significantly prolonged the time spent in the central area by
approximately 0.52-fold (Fig. 1). Studies have shown that β-caryophyllene gavage in mice at a dose of
200 mg/kg also significantly prolongs the time spent in the central area by approximately 0.34-fold [10].
However, the actual concentration of β-caryophyllene in this study was only 64 mg/kg (Table S1), thus
indicating that the active components in BEO are derived from β-caryophyllene. For example, intra-dorsal
hippocampal injection of pure borneol [6] has anxiolytic effects, thereby indicating that borneol is also an
active anxiolytic compound found in BEO.

The results of EPM test indicated that BEO prolonged the time spent in the open arms by approximately
1.2-fold and increased the number of entries on open arms by approximately 1.5-fold (Fig. 2) that in the
control group. The β-caryophyllene used in the OF test also significantly prolonged the time spent on the
open arms by approximately 0.6-fold when the mice were intragastrically administered a dose of 200
mg/kg. The number of entries into open arms significantly increased by approximately 0.4-fold [10], in
agreement with previous results showing that the active components of BEO are derived not only from β-
caryophyllene but also from other components. According to preliminary experiments (Table S1), the
components of BEO, in addition to β-caryophyllene (10.6%), borneol (16.4%), and limonene (8.2%), have
been tested with the EPM and demonstrated to possess anxiolytic effects [6, 8]. The above results
indicate that β-caryophyllene, limonene, and borneol are the active components involved in the anxiolytic
effect of BEO.

The results of LDB test indicated that BEO treatment (600 mg/kg), compared with the control group,
significantly prolonged the light area duration by approximately 0.45-fold and increased the transition
number by approximately 0.67-fold (Fig. 3). The β-caryophyllene described above also prolonged the light
area duration by approximately 0.47-fold at a dose of 200 mg/kg and increased the transition number by
0.4-fold [10]. The actual concentration of β-caryophyllene found in BEO in this study was only 64 mg/kg
(Table S1), thereby indicating that other components in BEO and β-caryophyllene have synergistic effects.

Further network pharmacological analysis results shown that CNR2 is associated with anxiety and
depression [7], and AR has been confirmed to be involved in brain function and the regulation of anxiety
[17]. ESR1 has also been confirmed to be associated with anxiety and to be a cause of frequent anxiety in
women [18]. Furthermore, low ACHE activity has been associated with an increased risk of depression
and anxiety in adolescents [19], and SLC6A4 is also associated with anxiety and depression [20].
Selective serotonin reuptake inhibitors are the main treatments for major depression and anxiety, and
CYP2C19 polymorphisms are known to affect the metabolism of these drugs, thereby affecting their
efficacy and safety [21].

In addition, studies have shown that borneol acts on the transient receptor potential cation channel
vanilloid subfamily member 1 (TRPV1) and exerts analgesic effects [22]. Moreover, α-pinene, β-pinene,
camphor, and limonene inhibit ACHE activity, and limonene also inhibits BCHE activity [19], whereas β-
caryophyllene acts on CNR2, thereby producing its anxiolytic effect [7]. These results show that these
components and targets are important for the regulation of anxiety with BEO.
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Based on analysis of the KEGG signaling pathway (Fig. 4B), among them, the neuroactive ligand-receptor
interaction signaling pathway controls and regulates many important biological functions such as
emotion, memory, and endocrine function [23]. Anxiety and metabolic disorders are closely related, and
both have common pathological manifestations, such as chronic inflammation [24]; moreover, long-term
stress and anxiety can induce tumors and promote the development of cancer [25]. Both depression and
anxiety are early manifestations of neurodegenerative diseases and Alzheimer's disease [26]. In addition,
the serotonergic synapse pathway is associated with the occurrence of anxiety [23]. The cAMP signaling
pathway also has anxiolytic effects, through regulating intracellular cAMP levels [27]. Therefore, BEO
regulates anxiety through multiple signaling pathways, thus underscoring its multi-component, multi-
target, and multi-pathway function. Furthermore, our current research is essentially consistent with
previous results and thus should have value for theoretical guidance. Based on the analysis of GO
enrichment analysis (Fig. 5A), among these, G-protein coupled receptor signaling pathways are involved
in the development of anxiety disorders and may be a potential therapeutic target [28]. The steroid
hormone mediated signaling pathway has also been confirmed to be associated with anxiety [29].
Interestingly, the sedative and hypnotic mechanism of action of a compound found in Anshen essential
oil is similar to those of components in BEO and are also associated with calcium ion transport into the
cytosol, response to ammonium ions, and RNA polymerase II transcription factor activity [13]. The above
studies are essentially consistent with the findings of this study and indicate that BEO regulates anxiety
through modulating ion homeostasis, transcriptional regulation, and signal transduction. Among the
result of PPI network, AR and ESR1 are associated with a variety of human behaviors, including anxiety
[30]. PPARG has been confirmed to be associated with pathological anxiety [31]. glucocorticoid receptor
(NR3C1) [32] and HTR2A [33] are also associated with anxiety disorders. An estrogen-dependent
interaction between ESR1 and EP300[34] and an interaction between NR3C1 and EP300 in transcription
activation[35] have been reported. ADORA2A and D2D2 have been shown to have a synergistic effect on
anxiety disorders [36]. The above results are consistent with those of this study. Subsequently, we further
focused on the potential therapeutic targets of anxiety disorders and used molecular docking analysis of
the active components and potential targets obtained from the screening.

Based on analysis of the molecular docking, among these, ADRA2B [37] and ADORA2A [36] have been
reported to be closely associated with anxiety. In addition, camphor, α-pinene, linalool, and methyl
eugenol have high affinity for EP300, MIF, and leucine rich repeat kinase 2 (LRRK2) targets. Furthermore,
EP300 [38], MIF [39], and LRRK2 [40] have been confirmed to be associated with anxiety (Fig. S1), thus
indicating that the above components and targets are significantly related to anxiety and are worthy of
further investigation. This study determined and confirmed that the main active components in BEO,
including borneol, β-caryophyllene, α-cadinol, limonene, and α-selinene, act on key targets, such as CNR2,
ADRA2B, and ADORA2A. This study therefore provides new avenues for further research on the
pharmacodynamic basis of BEO for the treatment of anxiety. Moreover, it should promote future basic
research to determine novel targeted drugs for the treatment of anxiety disorders.

5. Conclusion
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In this study, the OF, EPM, and LDB tests were used to confirm the anxiolytic effect of BEO in mice.
Component-target-pathway network and PPI network pharmacology analysis of the anxiolytic process of
BEO revealed 33 active components regulating 54 targets through neuroactive ligand-receptor interaction,
G-protein coupled receptor signaling pathways, RNA polymerase II transcription factor activity, and other
pathways working together in anxiety disorders. Our molecular docking results showed that the main
active components of BEO are borneol, β-caryophyllene, α-cadinol, limonene, and α-selinene, which act on
the key targets CNR2, ADRA2B, and ADORA2A. These relationships reveal the multi-component, multi-
target nature of BEO. This study provides a theoretical basis for the mechanism of action of BEO as a
potential treatment for anxiety and provides a novel means to explore auxiliary and alternative therapies
for anxiety.
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Figure 1

Effect of Cinnamomum camphora chvar. Borneol essential oil (BEO) on mice: total distance (A), time at
the center (B), and number of center area entries (C) Data are expressed as the mean ± SEM (n = 10), **p
< 0.01; ***p < 0.001; ****p < 0.0001 compared with the control group.
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Figure 2

Effect of BEO on mice: time spent in open arms (%) (A) and number of entries to open arms (%) (B). Data
are expressed as the mean ± SEM (n = 10), **p < 0.01; ***p < 0.001; ****p < 0.0001 compared with the
control group.
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Figure 3

Effect of BEO on mice: light area duration (%) (A), transition number (B), and grip strength test (C). Data
are expressed as the mean ± SEM (n = 10), **p < 0.01; ***p < 0.001; ****p < 0.0001 compared with the
control group.
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Figure 4

Anxiety pharmacology component-target-pathway network regulated by BEO.
Rhomboidal yellow nodes
represent components, round orange nodes represent targets, and hexagonal pink nodes represent
pathways.
1. Neuroactive ligand-receptor interaction; 2. metabolic pathways; 3. calcium signaling
pathway; 4. pathway in cancer; 5. pathways of neurodegeneration; 6. Alzheimer’s disease; 7. cAMP
signaling pathway; 8. serotonergic synapse; 9. inflammatory mediator regulation of TRP channels; 10.
Parkinson’s disease; 11. retrograde endocannabinoid signaling; 12. necroptosis; 13. insulin resistance; 14.
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synaptic vesicle cycle; 15. cholinergic synapse; 16. aldosterone-regulated sodium reabsorption; 17. taste
transduction; 18. cholesterol metabolism; 19. drug metabolism; 20. renin-angiotensin system.

Figure 5

Gene Ontology (GO) enrichment analysis (A) and protein-protein interaction (PPI) network (B) of the 54
genes.
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Figure 6

Molecular docking diagram for β-caryophyllene, α-cadinol, borneol (A), limonene (B), and α-selinene (C).
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