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Abstract

Heron’s cubic root iteration formula conjectured by Wertheim is proved and ex-

tended for any odd order roots. Some possible proofs are suggested for the roots

of even order. An alternative proof of Heron’s general cubic root iterative method

is explained. Further, Lagrange’s interpolation formula for nth root of a number is

studied and found that Al-Samawal’s and Lagrange’s method are equivalent. Again,

counterexamples are discussed to justify the effectiveness of the present investiga-

tions.

Keywords: Even order roots; Odd order roots; Higher order roots; Heron’s method.

Mathematics Subject Classifications 2010: 01A30; 01A35; 11A07

1 Introduction and preliminaries

In Metrika III. 20, Heron described a procedure to calculate an approximate cube root

of 100 with the help of a cone. Deslauriers and Dubuc [12] reported that Heron used a

general iteration formula to determine the cube root of a number N. That was
3
√
N = a+

bd

bd+ aD
(b−a), where a3 < N < b3, d = N−a3 andD = b3−N . Heath [19] expressed that

Wertheim [37] made a conjecture about Heron’s cube root iteration formula. Wertheim

[37] conjecture that cube root of a number A was given by
3
√
A = a +

(a+ 1)d1
(a+ 1)d1 + ad2

,

∗ All Correspondence to: E-mail: skpadhan math@vssut.ac.in
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where a3 < A < (a+1)3, A− a3 = d1 and (a+1)3−A = d2. Later, Eneström [13] proved

the Wertheim’s conjecture by using some elementary considerations.

There is considerable interest in Heron’s work. Some of the works are found in [8, 20,

36]. Heron developed an iteration formula to find the approximate cube root of a number.

In this paper, a general iteration formula is established to find the approximate odd order

roots of a number. The possible proofs for even order roots are also provided in a similar

way as in [35]. Further, Lagrange’s interpolation formula for nth root of a number is

studied and we have found that Al-Samawal’s method and Lagrange’s method give the

same result. Furthermore, many examples are discussed in support of the results proved

here. Moreover, it is observed that our method give better result than Al-Samawal’s

method.

As root extraction always plays a major role in algebra, number theory, numerical

analysis and many more branches of mathematics, several attempts have been made by

different authors from ancient to modern times to find the square, cube and higher order

roots using many techniques. Hence, a brief historical background on root extraction is

presented in the next section.

2 Historical background

About 1800BC, the Babylonians used an iterative method to find the square root of a

number. The iterative method used by the Mesopotamians to extract square root is used

in digital computers till today. The method is as follows:

Let us find the square root of a positive integer N . Let a be the positive number whose

square is close to N .

Then N = a2 + e,where e is an error. Suppose

√
N = a+ b ⇒ N = (a+ b)2 = a2 + e

⇒ 2ab+ b2 = e.

As b2 is very small as compared to 2ab, so neglecting it, we get 2ab = e

⇒ b =
e

2a

⇒
√
N = a+ b ≈ a+

e

2a
.
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Considering a1 = a+ e
2a

as the new approximation and repeat the process again and again

to obtain better and better approximations which is very much closed to the actual root

(Joseph [22], Page 144).

Around 800-500BC, the value of
√
2 ≈ 1 + 1

3
+ 1

3.4
− 1

3.4.34
= 1.4142156... is evaluated

in the earliest mathematical writings of the Indians “The Sulbasutras” (Joseph [22], Page

334). In the 1st Century AD, Heron of Alexandria ([19], page 324) used the same proce-

dure for square root extraction as described by Babylonians which is presently known as

the famous Heron’s square root formula i.e.

√
N = a+ b ≈ a+

e

2a
= a+

N − a2

2a
=

a2 +N

2a
=

1

2

(

a+
N

a

)

In the later half of 1st Century AD, the methods of square root (khai fang) and cube root

(khai li fang) extraction appear in China in the book “Chiu-Chang Suan Shu” (Bag [3],

page 82).

During 200-400 AD, Bakhshali Manuscript was written in India which is famous for

computation of square roots of non-square numbers and this method is quadratically

convergent [4, 22]. According to this

√
N =

√
a2 + e ≈ a+

e

2a
= a+

e

2a
− ( e

2a
)2

2(a+ e
2a
)
.

It seems that it is an extended work on square root formula in “The Sulbasutras” (Joseph

[22], page 364). In 250AD, Liu Hui of North-Central China [31] pictured the geometrical

basis of the square root formula using different colors. Theon of Alexandria [3, 18, 34] in

390AD, illustrated the Ptolemy’s method for extracting square roots using sexagesimal

system of fractions and found the square root of 45000 to be 6704
′

55” in sexagesimal unit.

This method is purely geometrical and depended on Euclidean concept.

In 499 AD, Aryabhata I [7] gave a rule to extract the square and the cube root of

positive integers. Other Indian Scholars Mahavira (850AD), Sridhara (900AD), Aryab-

hata II (950AD), Bhaskara II (1150AD)and Kamalakaran (1616-1700AD) have also given

the same procedure for square root extraction. Some scholars Bramhagupta (598AD),

Mahavira, Aryabhata II, Bhaskara I etc. have also attempted the same cube root formula

derived by Aryabhata I. Although Bramhagupta does not give any rule for square root,

but he tried to express the cube root method of Aryabhata I (Bag [3], page 78, Mishra

[27]) using different expressions.
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Abraham Ibn Ezra (1090-1167) of Spain, who is famous for “Hebrew Mathematical

Tradition” in his only mathematical work “Sefer Ha-mispar” (Section-7) described square

root algorithm as
√
N =

√
a2 ± e ≈ a± e

2a
. Two examples quoted there are as follows:

√
7500 =

√
8100− 600 ≈ 90− 600

180
= 86

and
√
600000 =

√
640000− 40000 ≈ 800− 40000

1600
= 774.

This identity and approximations were known to Babylonians and Greeks long years back.

Al-Samwal (1172), Nasir al-Din-al-Tulsi (1265) were respectively formulated the rule to

find fifth and fourth order roots of a real number. Levi ben Gershan (1288-1344) of South

France in his book “Maaseh Hoshev” (1321) (Section.e) explained the root extractions

of perfect square and cube numbers. Jasmid al-kashi in 1427 extracted the 5th root of

a decimal number and 6th root of a sexagecimal number respectively. Many researchers

Tonstall (1522), Rcorde (1542), Buteo (1599) and De lagmy (1650) were looking at cube

root extraction in a different way. Some of them prefer to use the table of cubes for cube

root extraction (Smith [34]). In 1685, the so called Newton’s method was published for

the first time. After that Thomas Simpson described it using Calculus in 1740. Similarly

Halley (1694) and Householder also developed root finding algorithms using Calculus.

In the 4th volume of Merifetname, Ibrahim Hakki of Erzurum, Turkey (Born in 1703)

described a method of finding square root. According to him if x < y, then
√
y ≈

√
x+ y−x

2
√
x+1

i.e.
√
7 ≈

√
4+ 7−4

2
√
4+1

= 2+ 3

5
. In 1819, English Mathematician George Horner

published a numerical method for finding the roots of nth degree equations and an Italian,

Paolo Ruffini (1765-1822) independently discovered the same, which is presently named

as Horner-Ruffini method. But the same computational technique was using by Chinese

more than 500 years ago.

Also in 20th Century, many researchers like [1, 2, 3, 4, 9, 10, 11, 17, 23, 25, 26, 30, 32, 33]

have worked on surds, square and cube root extraction methods of Hindu Mathematics.

Knudsen [24] has given a detailed analysis of square roots in the Sulbasutras. Parakh [29]

discussed Aryabhata’s square and cube root algorithms and their computational complex-

ities. Mishra [27] presented a brief account of square root method. A special algorithm

to approximate the square root of positive integer was given by Goo [16] in 2013. Izmirli

[21] has proved some results about the digital roots. Taisbak [35] established a conjecture

about Heron’s method and gave possible proofs of the same using difference operators in
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2014. Shanty [31] discussed about the implementation of instructed activities of square

root method of Liu Hui in a geometrical manner. Also Padhan et al. [28] have proposed

a general formula for cube and higher roots of real numbers and implemented in FPGA.

Cho et al. [6] presented a refinement of Muller’s algorithm for the computation of cube

root of c, where c is a cubic residue (mod p). Gadtia et al. [15] proposed two new itera-

tive algorithms for square root formula found in Śulbasũtras and Bakhshãl̃i Manuscript.

Recently, Faisal et al. [14] examined the solubility of x3 = a in general finite fields and

gave some results on cube roots of cubic residue.

In this paper, Wertheim’s conjecture on Heron’s cubic root method is proved and

extended to higher order roots. Also it is shown that Lagrange’s and Al-samawal’s method

for nth root extraction are equivalent. Appropriate numerical examples are illustrated to

justify the fresh findings.

3 Iteration methods for odd order roots

In this section, a general formula for all odd order roots of a number is studied. Coun-

terexamples are also given in support of study.

3.1 Wertheim’s conjecture for cube root

Theorem 3.1 If a3 < A < (a+ 1)3, then approximate cube root of A is defined as

3
√
A = a+

(a+ 1)d1
(a+ 1)d1 + ad2

,

where d1 = A− a3 and d2 = (a+ 1)3 − A.

Proof: Now

d1 = A− a3

= (a+ x)3 − a3

= 3a2x+ 3ax2 + x3. (3.1)

Again

d2 = (a+ 1)3 − A

= (a+ 1)3 − (a+ 1− y)3

= 3(a+ 1)2y − 3(a+ 1)y2 + y3. (3.2)
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Using eqns. (3.1) and (3.2), we have

d2

d1
=

3(a+ 1)2y − 3(a+ 1)y2 + y3

3a2x+ 3ax2 + x3

=
3(a+ 1)y(a+ 1− y)

3ax(a+ x)
(

neglecting the very small terms y3 and x3
)

=
(a+ 1)y(a+ 1− y)

ax(a+ x)

=
(a+ 1)y

ax
. (∵ a+ x = a+ 1− y) (3.3)

From eqn. (3.3), we get

ad2

(a+ 1)d1
=

y

x

⇒ (a+ 1)d1 + ad2

(a+ 1)d1
=

y + x

x

⇒ x =
(a+ 1)d1

(a+ 1)d1 + ad2
(∵ x+ y = 1)

⇒ 3
√
A = a+

(a+ 1)d1
(a+ 1)d1 + ad2

✷

Remark 3.1 Heron’s cubic root iteration formula conjectured by Wertheim [37] can also

be written as

3
√
A =

(a+ 1)2d1 + a2d2

(a+ 1)d1 + ad2
.

Example 3.1 Evaluation of cube root of 100.

It is obvious that 43 < 100 < 53 that is 64 < 100 < 125. According to Theorem 3.2,

a = 4, a+ 1 = 5, d1 = 100− 64 = 36, d2 = 125− 100 = 25.

Therefore,

3
√
100 = 4 +

5× 36

5× 36 + 4× 25
= 4.6428571428571.

It can be easily seen that (4.6428571428571)3 = 100.08199708455 and the error is very

minimum that is 0.08199708455.
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3.2 5th root extraction

Theorem 3.2 If a5 < A < (a+ 1)5, then approximate 5th root of A is defined as

5
√
A = a+

(a+ 1)2d1
(a+ 1)2d1 + a2d2

,

where d1 = A− a5 and d2 = (a+ 1)5 − A.

Proof: Suppose that x is the 5th root of A. Assume that (x−a)5 = δ1 and (a+1−x)5 = δ2.

Now

(x− a)5 = δ1

⇒ x5 − 5x4a+ 10x3a2 − 10x2a3 + 5xa4 − a5 = δ1

⇒ 5xa(x3 − 2x2a+ 2xa2 − a3) = d1 − δ1, where x5 − a5 = d1. (3.4)

Again

(a+ 1− x)5 = δ2

⇒ 5(a+ 1)x{(a+ 1)3 − 2(a+ 1)2x+ 2(a+ 1)x2 − x3} = d2 − δ2, (3.5)

where (a+ 1)5 − x5 = d2.

Using eqns. (3.4) and (3.5), we have

d2 − δ2

d1 − δ1
=

(a+ 1){(a+ 1− x)3 + (a+ 1)2x− (a+ 1)x2}
a{(x− a)3 + x2a− xa2}

=
(a+ 1){(a+ 1)2x− (a+ 1)x2}

a(x2a− xa2)
(

neglecting the very small terms (a+ 1− x)3 and (x− a)3
)

=
(a+ 1)2(a+ 1− x)

a2(x− a)

=
(a+ 1)2

a2
× 1− (x− a)

x− a

=
(a+ 1)2

a2

( 1

x− a
− 1

)

. (3.6)
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As the value of δ1 and δ2 are very small, from eqn. (3.6), we get

d2

d1
=

(a+ 1)2

a2

( 1

x− a
− 1

)

⇒ 1

x− a
=

a2d2

(a+ 1)2d1
+ 1

⇒ x− a =
(a+ 1)2d1

a2d2 + (a+ 1)2d1

⇒ x = a+
(a+ 1)2d1

a2d2 + (a+ 1)2d1

⇒ 5
√
A = a+

(a+ 1)2d1
(a+ 1)2d1 + a2d2

. ✷

Example 3.2 Evaluation of 5th root of 100.

It is clear that 25 < 100 < 35 that is 32 < 100 < 243. According to Theorem 3.2,

a = 2, a+ 1 = 3, d1 = 100− 32 = 68, d2 = 243− 100 = 143.

Therefore,

5
√
100 = 2 +

32 × 68

32 × 68 + 22 × 143
= 2.5168918918919.

It can be easily verified that (2.5168918918919)5 = 101.00033364761 and the error is very

minimum that is 1.00033364761.

3.3 nth root extraction

Here the general formula for odd order roots (n = 2m + 1, m ∈ Z+) of a number is

discussed.

Theorem 3.3 If an < A < (a + 1)n, n = 2m + 1, then approximate nth root of A is

defined as

n

√
A = a+

(a+ 1)md1
(a+ 1)md1 + amd2

,

where d1 = A− an and d2 = (a+ 1)n − A.
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Proof: Let x be the nth root of A. Suppose that (x−a)2m+1 = δ1 and (a+1−x)2m+1 = δ2.

Now

(x− a)2m+1 = δ1

⇒ x2m+1 − (2m+ 1)C1
x2ma+ (2m+ 1)C2

x2m−1a2 − ...+ (2m+ 1)C2m
xa2m − a2m+1 = δ1

⇒ (2m+ 1)C1
x2ma− (2m+ 1)C2

x2m−1a2 + ...− (2m+ 1)C2m
xa2m = x2m+1 − a2m+1 − δ1

⇒ (2m+ 1)C1
xa(x2m−1 −mx2m−2a+ ...− a2m−1) = d1 − δ1 (3.7)

where x2m+1 − a2m+1 = d1.

Similarly, taking (a+ 1)2m+1 − x2m+1 = d2, we have

(2m+ 1)C1
(a+ 1)x{(a+ 1)2m−1 −m(a+ 1)2m−2x+ ...− x2m−1} = d2 − δ2. (3.8)

Dividing eqn. (3.8) by eqn. (3.7), we get

d2 − δ2

d1 − δ1
=

(2m+ 1)C1
(a+ 1)x{(a+ 1)2m−1 −m(a+ 1)2m−2x+ ...− x2m−1}

(2m+ 1)C1
xa(x2m−1 −mx2m−2a+ ...− a2m−1)

=
(a+ 1){(a+ 1)2m−1 −m(a+ 1)2m−2x+ ...− x2m−1}

a(x2m−1 −mx2m−2a+ ...− a2m−1)
(

neglecting the very small terms (x− a)3, (x− a)5, ..., (x− a)2m−1

and (a+ 1− x)3, (a+ 1− x)5, ..., (a+ 1− x)2m−1 and simplifyng
)

=
(a+ 1)m

am

( 1

x− a
− 1

)

. (3.9)

As the value of δ1 and δ2 are very small, from eqn. (3.9), we get

d2

d1
=

(a+ 1)m

am

( 1

x− a
− 1

)

⇒ 1

x− a
=

amd2

(a+ 1)md1
+ 1

⇒ x− a =
(a+ 1)md1

amd2 + (a+ 1)md1

⇒ x = a+
(a+ 1)md1

amd2 + (a+ 1)md1

⇒ n

√
A = a+

(a+ 1)md1
(a+ 1)md1 + amd2

. ✷

Remark 3.2 When m = 1, Theorem 3.3 reduces to Heron’s cubic root iteration formula

conjectured by Wertheim [37]. That is

3
√
A = a+

(a+ 1)d1
(a+ 1)d1 + ad2

,

where a3 < A < (a+ 1)3, A− a3 = d1 and (a+ 1)3 − A = d2.
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4 Iteration methods for even order roots

In this section, it is verified through counterexamples that our proposed methods can also

work well for even order roots. That is, if an < A < (a+ 1)n, n = 2m, then

n

√
A = a+

(a+ 1)md1
(a+ 1)md1 + amd2

, (4.1)

where d1 = A− an and d2 = (a+ 1)n − A.

Example 4.1 (4th order root extraction). Evaluation of 4th root of 100.

It is clear that 34 < 100 < 44 that is 81 < 100 < 256. According to eqn. (4.1),

a = 3, a+ 1 = 4, d1 = 100− 81 = 19, d2 = 256− 100 = 156.

Therefore,

4
√
100 = 3 +

42 × 19

42 × 19 + 32 × 156
= 3.1779859484778.

It can be easily checked that (3.1779859484778)4 = 102.00181287647 and the error is

2.00181287647.

Example 4.2 (6th order root extraction). Evaluation of 6th root of 100.

It is seen that 26 < 100 < 36 that is 64 < 100 < 729. According to eqn. (4.1), a =

2, a+ 1 = 3, d1 = 100− 64 = 36, d2 = 729− 100 = 629.

Therefore,

6
√
100 = 2 +

33 × 36

33 × 36 + 43 × 629
= 2.161892071952.

It can be easily shown that (2.161892071952)6 = 102.09490123878 and the error is

2.09490123878.

4.1 4th order root extraction using difference operators

Some possible proofs are given in order to extract the 4th root of a number using difference

operators. This approach is similar to Taisbak [35].

First part: Let a−1, a, a+1 be 3 successive positive integers. To find the ratio between

the difference of their 4th powers.
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Assertion: If S = a4 − (a− 1)4 and D = (a+ 1)4 − a4, then S : D ≥ (a− 1)2 : (a+ 1)2.

Proof:

S = a4 − (a− 1)4

= a4 − (a4 − 4a3 + 6a2 − 4a+ 1)

= 4a3 − 6a2 + 4a− 1.

D = (a+ 1)4 − a4

= a4 + 4a3 + 6a2 + 4a+ 1− a4

= 4a3 + 6a2 + 4a+ 1.

Ignoring ±1, we get

S

D
≥ 4a3 − 6a2 + 4a

4a3 + 6a2 + 4a

=
2(a− 1)2 + (a− 1) + 1

2(a+ 1)2 − (a+ 1) + 1

=
2(a− 1)2 + (a− 1)

2(a+ 1)2 − (a+ 1)

(

ignoring + 1
)

=
(a− 1){2(a− 1) + 1}
(a+ 1){2(a+ 1)− 1}

=
(a− 1)2

(a+ 1)2
.
(

ignoring ± 1
)

Therefore,
S

D
≥ (a− 1)2

(a+ 1)2
.

Second part: To determine the approximate 4th root of a non-4th power integer A. Let

it be a, whose neighbors are a− f and a+ g (f, g are numbers < 1).

Assertion: If P = a4− (a−f)4 and Q = (a+g)4−a4, then P : Q ≥ f(a−f)2 : g(a+g)2.

Proof: P = a4− (a−f)4 = 4a3f −6a2f 2+4af 3−f 4, Q = (a+g)4−a4 = 4a3g+6a2g2+

4ag3 + g4.
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Ignoring −f 4 and +g4, we get

P

Q
≥ 4a3f − 6a2f 2 + 4af 3

4a3g + 6a2g2 + 4ag3

=
f{2(a− f)2 + af}
g{2(a+ g)2 − ag}

=
f{2(a− f)2 + (a− f)f + f 2}
g{2(a+ g)2 − (a+ g)g + g2}

=
f{2(a− f)2 + (a− f)f}
g{2(a+ g)2 − (a+ g)g}

(

ignoring + f 2 and + g2
)

=
f(a− f){2(a− f) + f}
g(a+ g){2(a+ g)− g}

=
f(a− f)× 2(a− f)

g(a+ g)× 2(a+ g)

(

ignoring + f and − g
)

=
f(a− f)2

g(a+ g)2
.

Therefore,

P

Q
≥ f(a− f)2

g(a+ g)2

⇒ (a+ g)2P : (a− f)2Q ≥ f : g.

Taking the case of 4
√
100, it can be observed that a+ g = 4, a− f = 3, P = 19, Q = 156

and the ratio f : g = 304 : 1404. So the ratio f : (f + g) = 304 : 1708. As f + g = 1, so f

is a fraction less than 1 and hence a = 3 + f is found.

5 Heron’s Cubic Root Iteration Method

In this section, we shall prove Heron’s general cubic root iteration method.

Theorem 5.1 If a3 < A < b3, then approximate cube root of A is defined as

3
√
A = a+

bd1

bd1 + ad2
(b− a),

where d1 = A− a3 and d2 = b3 − A.

Proof: Now

d1 = A− a3

= (a+ x)3 − a3

= 3a2x+ 3ax2 + x3. (5.1)
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Again

d2 = b3 − A

= b3 − (b− y)3

= 3b2y − 3by2 + y3. (5.2)

Using eqns. (5.1) and (5.2), we have

d2

d1
=

3b2y − 3by2 + y3

3a2x+ 3ax2 + x3

=
3by(b− y)

3ax(a+ x)
(

neglecting the very small terms y3 and x3
)

=
by(b− y)

ax(a+ x)

=
by

ax
. (∵ a+ x = b− y) (5.3)

From eqn. (5.3), we get

ad2

bd1
=

y

x

⇒ bd1 + ad2

bd1
=

y + x

x

⇒ x =
bd1

bd1 + ad2
(b− a) (∵ x+ y = b− a)

⇒ 3
√
A = a+

bd1

bd1 + ad2
(b− a). ✷

Remark 5.1 Heron’s general cubic root iteration formula can also be written as

3
√
A =

b2d1 + a2d2

bd1 + ad2
.

6 A study on existing methods

In this section, we study some known methods and obtain relations between them.

Al-samawal’s method:[5] If a is the integer part of nth root of a number A, then

approximate nth root of A is

n

√
A = a+

A− an

(a+ 1)n − an
.

13



Lagrange’s interpolation method: If an < A < (a+ 1)n, then by Lagrange’s interpo-

lation, the approximate nth root of A is

n

√
A =

A− (a+ 1)n

an − (a+ 1)n
× a+

A− an

(a+ 1)n − an
× (a+ 1).

Remark 6.1 Al-samawal’s method and Lagrange’s interpolation method for nth order

root of a number are equivalent.

Proof: For an < A < (a+ 1)n, Lagrange’s interpolation method is

n

√
A =

A− (a+ 1)n

an − (a+ 1)n
× a+

A− an

(a+ 1)n − an
× (a+ 1)

=
−aA+ a(a+ 1)n + (a+ 1)A− (a+ 1)an

(a+ 1)n − an

=
−aA+ a(a+ 1)n + aA+ A− (a+ 1)an

(a+ 1)n − an

=
A+ a(a+ 1)n − aan − an

(a+ 1)n − an

=
(A− an) + a{(a+ 1)n − an}

(a+ 1)n − an

= a+
A− an

(a+ 1)n − an
.

Hence, Al-samawal’s method and Lagrange’s interpolation method are equivalent. ✷

7 Comparison with our proposed methods

It is natural to wonder how our method compares with other known methods. We provide

below a comparison and show that our method yields better results. In the table given

below, we have compared Al-samawal’s method [5] with our proposed method.

Al-samawal’s method Our proposed method
n

√
A Approximate Value Error Approximate Value Error

3
√
100 4.5901639344262 -3.28705926928 4.6428571428571 0.08199708455

4
√
100 3.1085714285714 -6.622250226676 3.1779859484778 2.00181287647

5
√
100 2.3222748815166 -32.4589009001 2.5168918918919 1.00033364761

6
√
100 2.0541353383459 -24.87675760439 2.16189207152 2.09490123878

From the above table it is cleared that our proposed method gives better approxima-

tion than previously reported methods [5].
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8 Conclusion

In this paper we have extended Heron’s method to obtain higher order roots. Some

possible proofs for roots of even order are also mentioned. It is also shown that both

Al-samawal’s method and Lagrange’s method are same. The method of our paper is

compared with Al-samawal’s method and we observe that it gives minimum error. It

is also found that the method conjectured by Wertheim [37] is a particular case of the

present work. Several counterexamples are discussed in lieu of the present investigation.

The convergency of the investigated methods are yet to be studied.
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and Bakhshãl̃i Manuscript, Journal of Interdisciplinary Mathematics, 23 (2020)

1-10.

[16] H.M. Goo, A Special Algorithm to Approximate the Square Root of Positive

Integer, International Journal of Mathematical and Computational Sciences, 7

(2013) 245-248.

[17] R.C. Gupta, Vedic Mathematics from the Śulbasũtras, Indian Journal of Math-
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