[1] Ishimoto Y, Yoshimura N, Muraki S, et al. (2012) Prevalence of symptomatic lumbar spinal stenosis and its association with physical performance in a population-based cohort in Japan: the Wakayama Spine Study[J]. Osteoarthritis & Cartilage, 20(10).
[2] Deyo RA, Mirza SK, Martin BI, et al. (2010) Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA; 303:1259–65.
[3] Zaina F, Tomkins-Lane C, Carragee E, et al. (2016) Surgical versus non-surgical treatment for lumbar spinal stenosis[J]. Cochrane Database of Systematic Reviews,, 1(14):CD010264.
[4] Lee, N, Shin, D. A, Kim, K. N. et al. (2016) Paradoxical Radiographic Changes of Coflex Interspinous Device with Minimum 2-Year Follow-Up in Lumbar Spinal Stenosis[J]. World Neurosurgery. 85:177–184.
[5] CHEN Zhi ming, MA Hua song, ZHAO Ji e, et al (2010). Three—dimensional finite element analyses of unilateral pedicles crews fixation in lumbar spine. Chinese Journal of Spine and SpinalCord. 20(8):684688
[6] YANG Ming-jie ZENG Cheng LI Li-jun, et al. (2018) Establishment of 3D-finite element model for analysis of biomechanical stability of extraforaminal or transforaminal lumbar interbody fusion [J]. Journal of Tongji University(Medical Science), 39(3):41–47.
[7] YANG Ming-jie ZENG Cheng LI Li-jun, et al. (2018) Biomechanical analyses of extraforaminal lumbar interbody fusion [J]. Journal of Tongji University (Medical Science), 39(4):51–55.
[8] YAN Jia-zhi WU Zhi-hong WANG Xue-song, et al. (2009) Finite element analysis on stress change of lumbar spine [J]. NATIONAL MEDICAL JOURNAL OF CHINA, 89(17):1162–1165.
[9] Hao jian, Piao zhe, Li jihai, et al. (2012) Establishment of a normal human lumbar three-dimensional finite element model based on CT image and reverse engineering methods [J]. JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH, 16(4):593–596.
[10] Putzer M, Auer S, Malpica W, et al. (2016) A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion[J]. BMC Musculoskeletal Disorders, 17(1):95.
[11] Shin JK, Lim BY, Goh TS, et al. (2018) Effect of the screw type (S2-alar-iliac and iliac), screw length, and screw head angle on the risk of screw and adjacent bone failures after a spinopelvic fixation technique: A finite element analysis. PLoS One. Aug 16;13(8).
[12] Zhao Y, Li J, Wang D, Liu Y, Tan J, Zhang S. (2012) Comparison of stability of two kinds of sacro-iliac screws in the fixation of bilateral sacral fractures in a finite element model. Injury; 43(4):490–4.
[13] Driscoll M, Aubin C-E, Moreau A, Parent S. (2011) Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis. Medical & biological engineering & computing; 49(12):1437–45.
[14] Schultz AB,Warwich DN,Berkson MH,et al. (1979) Mechanical properties of human lumbar spine motion segments-Part I: responses in flexion,extension,lateral bending,and torsion[J]. J Biomech Eng, 101:46.
[15] Andersson GB,Schultz AB. (1979) Effects of fluid injection on mechanical properties of intervertebral discs[J]. J Biomech,12:453.
[16] Tencer AF,Ahmed AM,Burke DL. (1982) Some static mechanical properties of the lumbar intervertebral joint, intact and injured[J]. J Biomech Eng,104(3):193.
[17] Wilke HJ,Neef P,Caimi M,et al. (1999) New in vivo measurements of pressures in the intervertebral disc in daily life[J]. Spine (Phila Pa 1976), 24(8):755.
[18] Virgin WJ. (1951) Experimental investigations into the physical properties of the intervertebral disc[J]. J Bone Joint Surg Br, 33-B(4):607.
[19] Huang yufeng et al, (2015) Establishment of normal lumbosacral vertebral three-dimensional finite element [J]. Orthopaedic Biomechanics Materials and Clinical Study.15(5):16.
[20] Vadapalli S,Sairyo K,Goel VK,et al. (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion:a finite element study[J]. Spine. 31(26):E992-E998.
[21] Park P, Garton H J, Gala V C, et al. (2004) Adjacent Segment Disease after Lumbar or Lumbosacral Fusion: Review of the Literature[J]. Spine. 29(17):1938–1944.
[22] Okuda S, Oda T, Yamasaki R, et al. (2014) Repeated adjacent-segment degeneration after posterior lumbar interbody fusion[J]. Journal of Neurosurgery: Spine, 20(5):538–541.
[23] P. Khoueir, K. A. Kim, and M. Y. Wang. (2007) “Classification of posterior dynamic stabilization devices,” Neurosurgical Focus, vol.22,articleE3,
[24] Po-Hsin C, Hsi-Hsien L, An H S, et al. (2017) Could the Topping-Off Technique Be the Preventive Strategy against Adjacent Segment Disease after Pedicle Screw-Based Fusion in Lumbar Degenerative Diseases? A Systematic Review[J]. BioMed Research International, 2017:1–13.
[25] Lu K, Liliang P C, Wang H K, et al. (2015) Reduction in adjacent-segment degeneration after multilevel posterior lumbar interbody fusion with proximal DIAM implantation[J]. Journal of neurosurgery. Spine, 23(2):1–7.
[26] Qu SD, Hai Y, Su QJ, Qu SP. (2015) Finite element analysis of the refined interspinous dynamic system based on Coflex. Zhongguo Zuzhi Gongcheng Yanjiu.19(22):3571–3578
[27] Li A M, Li X, Yang Z. (2017) Decompression and coflex interlaminar stabilisation compared with conventional surgical procedures for lumbar spinal stenosis: A systematic review and meta-analysis[J]. International Journal of Surgery, 40(Complete):60–67.
[28] Yuan W, Su Q J, Liu T, et al. (2017) Evaluation of Coflex interspinous stabilization following decompression compared with decompression and posterior lumbar interbody fusion for the treatment of lumbar degenerative disease: A minimum 5-year follow-up study[J]. Journal of Clinical Neuroscience, 35:24–29.