[1]Shaffer EA,Epidemiology and risk factors for gallstone disease: has the paradigm changed in the 21st century?Curr Gastroenterol Rep.2005;7:132–140.
[2]Schafmayer C, Hartleb J, Tepel J, et al.,Predictors of gallstone composition in 1025 symptomatic gallstones from Northern Germany.BMC Gastroenterol.2006;6:36.
[3]Wang Q, Jiao L, He C, et al.,Alteration of gut microbiota in association with cholesterol gallstone formation in mice.BMC Gastroenterol.2017;17:74.
[4]Human Microbiome Project C,A framework for human microbiome research.Nature.2012;486:215–221.
[5]Schroeder BO, Backhed F,Signals from the gut microbiota to distant organs in physiology and disease.Nat Med.2016;22:1079–1089.
[6]Hand TW, Vujkovic-Cvijin I, Ridaura VK, et al.,Linking the Microbiota, Chronic Disease, and the Immune System.Trends Endocrinol Metab.2016;27:831–843.
[7]Orth M, Bellosta S,Cholesterol: its regulation and role in central nervous system disorders.Cholesterol.2012;2012:292598.
[8]Keren N, Konikoff FM, Paitan Y, et al.,Interactions between the intestinal microbiota and bile acids in gallstones patients.Environ Microbiol Rep.2015;7:874–880.
[9]Fiorucci S, Distrutti E,The Pharmacology of Bile Acids and Their Receptors.Handb Exp Pharmacol.2019;256:3–18.
[10]Kriaa A, Bourgin M, Potiron A, et al.,Microbial impact on cholesterol and bile acid metabolism: current status and future prospects.J Lipid Res.2019;60:323–332.
[11]Postler TS, Ghosh S,Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System.Cell Metab.2017;26:110–130.
[12]Delzenne NM, Bindels LB,Gut microbiota in 2017: Contribution of gut microbiota-host cooperation to drug efficacy.Nat Rev Gastroenterol Hepatol.2018;15:69–70.
[13]Magoc T, Salzberg SL,FLASH: fast length adjustment of short reads to improve genome assemblies.Bioinformatics.2011;27:2957–2963.
[14]Bolger AM, Lohse M, Usadel B,Trimmomatic: a flexible trimmer for Illumina sequence data.Bioinformatics.2014;30:2114–2120.
[15]Edgar RC, Haas BJ, Clemente JC, et al.,UCHIME improves sensitivity and speed of chimera detection.Bioinformatics.2011;27:2194–2200.
[16]Edgar RC,UPARSE: highly accurate OTU sequences from microbial amplicon reads.Nat Methods.2013;10:996–998.
[17]Bokulich NA, Subramanian S, Faith JJ, et al.,Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing.Nat Methods.2013;10:57–59.
[18]Quast C, Pruesse E, Yilmaz P, et al.,The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.Nucleic Acids Res.2013;41:D590–596.
[19]Koljalg U, Nilsson RH, Abarenkov K, et al.,Towards a unified paradigm for sequence-based identification of fungi.Mol Ecol.2013;22:5271–5277.
[20]Schloss PD, Westcott SL, Ryabin T, et al.,Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.Appl Environ Microbiol.2009;75:7537–7541.
[21]Song Z, Cai Y, Lao X, et al.,Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome.Microbiome.2019;7:9.
[22]Fremont-Rahl JJ, Ge Z, Umana C, et al.,An analysis of the role of the indigenous microbiota in cholesterol gallstone pathogenesis.PLoS One.2013;8:e70657.
[23]Out C, Patankar JV, Doktorova M, et al.,Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4.J Hepatol.2015;63:697–704.
[24]Shin DJ, Wang L,Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors.Handb Exp Pharmacol.2019;256:51–72.
[25]Inagaki T, Choi M, Moschetta A, et al.,Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis.Cell Metab.2005;2:217–225.
[26]Vergnes L, Lee JM, Chin RG, et al.,Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels.Cell Metab.2013;17:916–928.
[27]Kong B, Wang L, Chiang JY, et al.,Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice.Hepatology.2012;56:1034–1043.
[28]Duan Y, Zhang F, Yuan W, et al.,Hepatic cholesterol accumulation ascribed to the activation of ileum Fxr-Fgf15 pathway inhibiting hepatic Cyp7a1 in high-fat diet-induced obesity rats.Life Sci.2019;232:116638.
[29]Joyce SA, Shanahan F, Hill C, et al.,Bacterial bile salt hydrolase in host metabolism: Potential for influencing gastrointestinal microbe-host crosstalk.Gut Microbes.2014;5:669–674.
[30]Wells JE, Williams KB, Whitehead TR, et al.,Development and application of a polymerase chain reaction assay for the detection and enumeration of bile acid 7alpha-dehydroxylating bacteria in human feces.Clin Chim Acta.2003;331:127–134.
[31]Ridlon JM, Harris SC, Bhowmik S, et al.,Consequences of bile salt biotransformations by intestinal bacteria.Gut Microbes.2016;7:22–39.
[32]Ridlon JM, Devendran S, Alves JM, et al.,The ‘in vivo lifestyle’ of bile acid 7alpha-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice.Gut Microbes.2019:1–24.
[33]Bhowmik S, Chiu HP, Jones DH, et al.,Structure and functional characterization of a bile acid 7alpha dehydratase BaiE in secondary bile acid synthesis.Proteins.2016;84:316–331.
[34]Ridlon JM, Kang DJ, Hylemon PB,Bile salt biotransformations by human intestinal bacteria.J Lipid Res.2006;47:241–259.
[35]Chiang JYL,Bile acid metabolism and signaling in liver disease and therapy.Liver Res.2017;1:3–9.
[36]Lamkanfi M, Dixit VM,Mechanisms and functions of inflammasomes.Cell.2014;157:1013–1022.
[37]Guo C, Xie S, Chi Z, et al.,Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome.Immunity.2016;45:802–816.
[38]Jiao N, Baker SS, Chapa-Rodriguez A, et al.,Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.Gut.2018;67:1881–1891.
[39]Biagioli M, Carino A, Cipriani S, et al.,The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intestinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis.J Immunol.2017;199:718–733.
[40]Fiorucci S, Biagioli M, Zampella A, et al.,Bile Acids Activated Receptors Regulate Innate Immunity.Front Immunol.2018;9:1853.
[41]Keitel V, Stindt J, Haussinger D,Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors.Handb Exp Pharmacol.2019;256:19–49.
[42]Deutschmann K, Reich M, Klindt C, et al.,Bile acid receptors in the biliary tree: TGR5 in physiology and disease.Biochim Biophys Acta Mol Basis Dis.2018;1864:1319–1325.
[43]Reich M, Klindt C, Deutschmann K, et al.,Role of the G Protein-Coupled Bile Acid Receptor TGR5 in Liver Damage.Dig Dis.2017;35:235–240.
[44]Berr F, Kullak-Ublick GA, Paumgartner G, et al.,7 alpha-dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones.Gastroenterology.1996;111:1611–1620.
[45]Marcus SN, Heaton KW,Intestinal transit, deoxycholic acid and the cholesterol saturation of bile—three inter-related factors.Gut.1986;27:550–558.
[46]Low-Beer TS, Nutter S,Colonic bacterial activity, biliary cholesterol saturation, and pathogenesis of gallstones.Lancet.1978;2:1063–1065.
[47]Parasar B, Zhou H, Xiao X, et al.,Chemoproteomic Profiling of Gut Microbiota-Associated Bile Salt Hydrolase Activity.ACS Cent Sci.2019;5:867–873.
[48]Kurdi P, Kawanishi K, Mizutani K, et al.,Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria.J Bacteriol.2006;188:1979–1986.
[49]Binder HJ, Filburn B, Floch M,Bile acid inhibition of intestinal anaerobic organisms.Am J Clin Nutr.1975;28:119–125.