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Abstract

Background: Neglected tropical diseases (NTDs) primarily affect the poorest
populations, often living in remote, rural areas, urban slums or conflict zones.
Arboviruses are a significant NTD category spread by mosquitoes. Dengue,
Chikungunya, and Zika are three arboviruses that affect a large proportion of the
population in Latin and South America. The clinical diagnosis of these arboviral
diseases is a difficult task due to the concurrent circulation of several arboviruses which
present similar symptoms, inaccurate serologic tests resulting from cross-reaction and
co-infection with other arboviruses. Objective: The goal of this paper is to present
evidence on the state of the art of studies investigating the automatic classification of
arboviral diseases to support clinical diagnosis based on Machine Learning (ML) and
Deep Learning (DL) models. Method: We carried out a Systematic Literature Review
(SLR) in which Google Scholar was searched to identify key papers on the topic. From
an initial 963 records (956 from string-based search and 7 from single backward
snowballing technique), only 15 relevant papers were identified. Results: Results show
that current research is focused on the binary classification of Dengue, primarily using
Tree based ML algorithms and only one paper was identified using DL. Five papers
presented solutions for multi-class problems, covering Dengue (and its levels) and
Chikungunya. No papers were identified that investigated models to differentiate
between Dengue, Chikungunya, and Zika. Conclusions: The use of an efficient clinical
decision support system for arboviral diseases can improve the quality of the entire
clinical process, thus increasing the accuracy of the diagnosis and the associated
treatment. It should help physicians in their decision-making process and, consequently,
improve the use of resources and the patient’s quality of life.

1 Introduction

Neglected tropical diseases (NTDs) include a wide range of parasitic, viral, and bacterial
diseases that prevail in tropical and subtropical conditions in 149 countries and affect
one billion people every year [1]. One major category of NTDs are arthropod-borne
viruses (or arbovirus diseases), a group of viruses that are found in nature and
biologically transmitted between susceptible vertebrate hosts by hematophagous
arthropods [2].
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Arboviruses included a wide variety of diseases including African swine fever virus,
Japanese encephalitis virus, Rift Valley fever virus, tick-borne encephalitis virus, West
Nile virus or yellow fever virus however the most common are Dengue, Chikungunya and
Zika [3]. These three arboviruses are primarily transmitted by Aedes spp. mosquitoes,
of which Aedes aegypti and Aedes albopictus are the most common vectors [4, 5]. The
Aedes aegypti can easily adapt to urban and semi-urban areas [6, 7]. Population growth,
unplanned urbanization, habitat modification, human and animal migration, and
climate change, combined with low-quality housing and neglected peri-domestic
environments, all contribute to creating ideal ecological conditions for urban Aedes spp.
populations to thrive [5, 8–10]. These factors, disproportionately affecting the poor,
increase the geographical area at risk to arboviral diseases and contribute to
establishment of arboviruses as a global health problem [8–11]. Furthermore, these
arboviruses are maintained outside rainy seasons by transovarial transmission from
female mosquitoes to offspring [12,13]. Other modes of transmission include vertical
and sexual transmission [14,15], and contaminated transfusions [5, 16]. The overall
burden of arboviral diseases in general is significant. The incidence and number of
deaths due to Dengue are increasing resulting in a global burden of disease of 2.9 million
disability-adjusted life years (DALYs) for 2017 alone, a 107% increase since 1990 [17].
Recent analysis on the global burden of Chikungunya and Zika suggest an average
yearly loss of over 106,000 and 44,000 DALYs, respectively, between 2010 and 2019 [18].
In each case, the burden of these diseases disproportionately impacts the Americas.

While the clinical presentation of these diseases are well-established [19,20],
diagnosing these diseases is a difficult task. Three primary reasons are cited in the
literature to explain why there are difficulties to make an arboviral diagnosis. Firstly,
the majority of cases are asymptomatic thus arbovirus may be present in an area
without an identifiable outbreak [21,22]. Secondly, their symptomatic infection is
usually clinically indistinguishable from each other. All of them share common
symptoms like fever, arthralgia, myalgia, headache, retro-orbital pain [21]. While
Dengue and Zika have some distinct symptoms, for example, hemorrhagic diathesis
(Dengue) and edema in limbs (Zika), and Chikungunya is related to the prominent joint
complaint, their diagnosis requires a high degree of experience and clinical insight which
can be further complicated in special populations [22,23]. In addition, Dengue and
Chikungunya symptoms may include hemorrages and leukopenia/thrombocytopenia,
while Chikungunya and Zika symptoms may include non-purulent conjunctivitis [22].
Thirdly, co-infection is also common increasing the difficulty of diagnosis of these
conditions [5, 21,24,25].

Despite the difficulties in differential diagnosis, the progression and impact of these
diseases varies significantly. After infection by Dengue, the disease may manifest
asymptomatically and patients may not even know they are infected. Serologically, after
7-10 days after the mosquito bite, a diagnosis of Dengue can be confirmed [26]; some
people may experience symptoms such as fever, headache, pain in the muscles and
joints, and fatigue. For some, the disease may progress to a more severe condition
resulting in bleeding, organ damage, and plasma leakage [19]. Dengue can be classified
into two stages - the febrile phase and the critical phase. The febrile phase typically
lasts for 2-7 days. The critical phase of dengue begins at defervescence and typically
lasts 24–48 hours. While most patients clinically improve, some may experience
systemic vascular leakage syndrome, characterised by increasing hemoconcentration,
hypoproteinemia, pleural effusion, and ascites [27]. Severe Dengue can result in death
due to plasma leaking, fluid accumulation, respiratory distress, severe bleeding, or organ
impairment [19]. Chikungunya infection may manifest symptoms similar to Dengue
between the fourth and seventh day after the bite, but with greater joint pain. The
progression of Chikungunya has three phases. The acute phase is characterised with
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sudden onset symptoms manifesting with high fever, rash, and arthralgia, affecting
mainly the small and large joints. The subacute phase is characterised by worsening
arthralgia. While Chikungunya is rarely fatal, it can progress to a chronic state.
Post-Chikungunya rheumatism is common and can last from weeks years with
associated adverse effects on quality of life [5, 28–31]. Zika was initially considered a
mild disease sometimes with no fever episode [5], however it is now clear that its major
threat is related to microcephaly and other congenital abnormalities in the fetus and
newborn; it may trigger Guillain-Barré syndrome, neuropathy, and myelitis in adults
and older children [31]. Symptoms of Zika include arthralgia, edema of the extremities,
low fever, maculopapular rash that is often pruritic, headaches, retro-orbital pain,
without purulent conjunctivitis, vertigo, myalgia, and digestive disorder [32]. The most
serious manifestation of infection is Congenital Zika Syndrome (CZS). The risk of the
infection can occur during any gestational trimester [33]. CZS is related to fetal
microcephaly, fetal brain disruption sequence, subcortical calcifications, pyramidal, and
extrapyramidal signs, ocular abnormalities (focal pigmented mottling, chorioretinal
atrophy), congenital contractures, fetal growth restriction, and even death [33–35].

Early identification of specific arbovirus infections can have a significant impact on
the clinical course and decisions related to treatment and care. The adverse impact of
poor arbovirus diagnosis are exacerbated where there are competing pressures for
funding and trained and experienced staff, due to multiple concurrent disease
epidemics [36]. Novel low-cost scalable approaches to the differential diagnosis of
arboviral diseases for epidemiological surveillance are required. One such approach is
the development of computational models for monitoring and diagnostic classification
based on clinical data and symptoms. Machine Learning (ML) and Deep Learning (DL)
models have been widely proposed in biomedical field to support the diagnosis and
prediction of disease [37]. ML is a computational method that makes use of experience
to make predictions, i.e., it is an algorithm that receives input data (training data set)
to learn or find a pattern. Data quality and size are fundamental to the success of the
learning process and as consequence to guarantee the efficiency of the model predictions.
When designing a ML model, the goal is to find a configuration (a set of
hyperparameters) that produces a model able to generalise and produce a satisfactory
performance when dealing with previously unseen new data. DL is a sub-field of ML
which emphasises learning based on successive layers of increasingly meaningful
representations [38]. Here, “deep” is related to the idea of successive layers of
representations. DL models are based on early iterations of neural networks and are
increasingly reported as the most effective ML approach with the advantage of
combining the feature extraction and the classification task at the same time. However,
the “black box” nature of most DL models is a significant challenge in the health space
which values transparency. As such more transparent ML models are commonly used
due their interpretability.

In this paper, we detail a Systematic Literature Review (SLR) on how existing
research employs ML and DL techniques to automatically classify arboviral diseases and
support clinical diagnosis.

2 Methods

The purpose of an SLR is to identify, select and critically appraise research on a specific
topic. SLRs typically comprise three main phases: planning the review, conducting the
review, and reporting the review results [39]. The goal of this paper is to present
evidence on the state of the art of studies investigating the automatic classification of
arboviral diseases to support clinical diagnosis based on ML and DL models. To
accomplish this goal, this SLR seeks to address the following research questions:
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• RQ 01: What arboviruses are the focus of research on ML and DL classification
of arboviral diseases to support clinical diagnosis?

• RQ 02: Which ML and DL techniques are being used in research relating to the
classification of arboviral diseases to support clinical diagnosis?

• RQ 03: How are ML and DL models being designed and how do they perform
when classifying arboviral diseases?

• RQ 04: What data characteristics are considered when applying the ML and DL
techniques?

• RQ 05: What are the metrics being used to evaluate the performance of the ML
and DL techniques?

2.1 Search Strategy

The search strategy comprised an automated and manual phase. A literature search was
conducted using Google Scholar with the following search string: ((“deep learning” OR
“machine learning”) AND (“arbovirus” OR “arboviral”) AND (“classification” OR
“diagnosis” OR “analysis”) AND (“clinical data”)), in March, 2021. We then performed a
manual search to identify and download relevant studies from a single iteration reverse
snowballing procedure applied to relevant studies found in the automated search.

2.2 Study Selection

To ensure the selection of studies relevant to our review, we consider studies that meet
specific inclusion criteria. Inclusion criteria required that papers be in the English
language, and make use of clinical data in the application of ML or DL models for
arbovirus diagnosis in a primary study. Papers were excluded if they (1) did not
examine the diagnosis of arboviruses, (2) were in a language other than English, (3)
were a secondary or tertiary study, (4) used conventional statistical techniques, or (5)
did not use clinical data as inputs to the ML and DL models.

The initial automated search returned 956 records. These had their title and
abstracts assessed by two independent authors according to the inclusion and exclusion
criteria. Where a conflict arose, a third author arbitrated on selection. Based on the on
the inclusion and exclusion criteria, nine papers were retained. We performed a single
backward snowballing, that returned seven papers, and it yielded a further six relevant
papers, resulting in 15 papers.

2.3 Data Extraction and Coding

The following data was extracted for each study: authors, publication year, arboviral
disease type(s), ML and DL technique(s) employed, the data set used in the study, the
data characteristics used as input, and metrics used to evaluate the ML and DL
performance.

3 Results and discussions

Appendix A presents a list of included studies by year of publication, classification
target, ML and/or DL techniques used, model configurations, software, evaluation
metrics, and optimisation techniques employed for hyperparameter and feature selection.
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Figure 1. Study selection.

3.1 What arboviruses are the focus of research on Machine

Learning and Deep Learning classification of arboviral

diseases to support clinical diagnosis?

Surprisingly, given the range of arboviral diseases, the focus or research, albeit a small
sample, was the three most popular diseases i.e. Dengue, Chikungunya, and Zika.
Although these three are common arboviral diseases, no studies were found that carried
out multi-classification considering these arboviral diseases or other arboviral types,
such as West Nile virus, yellow fever virus, Saint Louis Encephalitis virus, Mayaro virus,
Oropouche virus and others, showing that there are space for further investigations in
this area.

Most of works presented models for binary classification: Dengue or not [40–45];
DHF or not [46]; Chikungunya or not [47]; and Zika classified between “Discarded cases”
and “Somewhat probable” for CZS [48]. It is interesting to note that the only work that
deals with Zika is focused on CZS, not covering Zika in general.

And four studies covered multi-class problem: Thitiprayoonwongse et al. [49]
classified between Dengue Fever (DF), Dengue Hemorrhagic Fever 1 (DHF1), Dengue
Hemorrhagic Fever 2 (DHF2) and Dengue Hemorrhagic Fever 3 (DHF3); Fahmi et
al. [50] focused only on Dengue, classifying between DF, Dengue Hemorrhagic Fever
(DHF) and DSS; Veiga et al [48] that classified between “Discarded cases”, “Somewhat
probable”, “Moderately probable” and “Highly probable” of having CZS, while Lee et
al. [51] proposed models to differentiate between DF, DHF and Chikungunya.
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3.2 Which Machine Learning and Deep Learning techniques

are being used in research relating to the classification of

arboviral diseases to support clinical diagnosis?

Figure 2 presents the ML and DL techniques used to perform arboviral diseases
classification in the sample1. Only one paper used DL. Ho et al. [45] compared a
Convolutional Neural Network (CNN) with Decision Tree and Logistic Regression
models. All other papers employ common ML techniques, including tree-based
algorithms (Decision Trees, Random Forest, AdaBoost and Gradient Boost), Neural
Networks (NN), Support Vector Machine (SVM), Naive Bayes, Logistic Regression, and
K-Nearest Neighbors (kNN).

Figure 2. Models used in the works divided by the main problems.

3.2.1 Tree based algorithms: Decision Tree, Random Forest, AdaBoost
and Gradient Boost

A Decision Tree is a non-parametric method that can be applied in problems with
categorical variables (classification tree, the focus of this work) and also with continuous
variables (regression tree). A tree is composed of a root node, internal nodes and leaf
nodes, and it is built successively dividing data according to one of the predictor
variables [53]. To build a Decision Tree, it is necessary to define the node-splitting
algorithm, in order to minimise the impurity of the node. If the split achieves the
maximum reduction of impurity, then the node is defined as a leaf [54]. The most
common splitting algorithms are the Information Gain (used by Classification and
Regression Tree (CART)) and the Gini index (used by Iterative Dichotomiser 3 (ID3)
and C4.5 algorithms). The main advantage of using Decision Tree algorithms is implicit
feature selection during the model building process and the interpretability of results.
Decision Trees are also able to handle missing values, which are commonly encountered
in clinical studies [40]. On the other hand, over-complex trees do not generalise the data
well, often presenting overfitting (or underfitting), and are prone to errors with

1For the purpose of this paper, we consider traditional statistical techniques (e.g. Decision Trees,
Logistic Regression and Naive Bayes) as ML as per [52].
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relatively small number of samples for training. The sample includes eleven Decision
Tree models - [40], [55], [49], [51], [56], [42], [43], [44], [45], [50] and [48].

In contrast to Decision Trees (sometimes referred to as ’strong learner’ approaches)
optimised to solve a specific problem by looking for the best possible solution, ensemble
learning techniques are based on a set of “weak learners”. Ensemble learning techniques
can be categorised into three classes: (1) bagging (or bootstrapping), (2) boosting and
(3) stacking [57]. Random Forest is an ensemble technique based on bagging that
combines several Decision Trees. It is built randomly from a set of possible trees with K

characteristics in each node. Random in this context means that in the set of trees, each
tree has an equal chance of being sampled. Multiple classification trees are obtained
from bootstrap samples in order to calculate the final majority classification. The SLR
sample includes three Random Forest models - [46], [50] and [48]. As Random Forest
models combine different Decision Trees, their results are not as easy to understand as a
Decision Tree and are also more expensive computationally. Notwithstanding this,
Random Forests typically outperform Decision Trees and handle balancing errors better
when working with an imbalanced data set [58].

Boosting is an ensemble technique that combines k low performance models
(M1,M2...,Mk) in order to improve the final model, M∗ [59]. The k classifiers are
learned iteratively and after a Mi is learned, the weights are updated in order to
generate the next classifier, Mi+ 1. Performance is improved by training tuples that
were misclassified by Mi. The final boosted model, M∗, combines the results of each k

classifier.
The Adaptive Boosting (AdaBoost) [60] is the first stepping stone in boosting

techniques and it uses Decision Trees with single split (one node and two leaves), also
named Decision Stumps, as “weak learners”. Gradient Boost uses a technique named
forward stage-wise additive modelling that add a new Decision Tree at each step to
minimise a global cost function using the Steepest Gradient Descent method [57]. The
main advantages of boosting algorithms in general, including AdaBoost and Gradient
Boost, are intrinsic automated variable selection, and flexibility regarding the type of
predictors and stability when handling high-dimensional data [61]. AdaBoost,
particularly, is also known to be quite resistant to overfitting. While these advantages
have attracted attention of biomedical researchers [61], only one paper in the sample
proposed an AdaBoost model (Fahmi et al. [50]) and another, Veiga et al. [48], proposed
a Gradient Boost model.

3.2.2 Support Vector Machine (SVM)

SVM is a classifier based on Vapnik’s statistical learning theory [62]. To perform
classification, SVM builds hyperplanes in a multidimensional space in order to separate
instances of different classes. The goal is to find the optimal separating hyperplane and,
at same time, maximise the distance between the support vectors (which are the
extreme delimiters) [57,62].

Robustness is one of the main advantages of SVM models. Data with outliers do not
impact negatively in SVM model performance. While Decision Tree models benefit from
interpretability, lack of transparency is a drawback of SVM models understand,
especially when dealing with high-dimensional data sets. SVM models can also be quite
memory-intensive and therefore processing large and complex data sets can be slow [57].
SVM models feature in five studies in the sample - [41], [46], [44], [47] and [50].

3.2.3 Neural Networks

MLP [63] is a perceptron model that simulates a human neuron. Its main difference
from a simple perceptron is the number of hidden layers, each containing a number of
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neurons which are connected by weights. The data of the independent variables is
inserted in the neurons of the input layer, is processed in the hidden layers, and finally,
the output layer is responsible for presenting the result of the MLP. Sometimes, MLPs
are often referred to as NN and the terms are used interchangeably. In general, NNs
present many advantages including high capacity to learn and generalise, and the ability
to deal with imprecise, fuzzy, noisy and probabilistic information [64,65]. As such, they
are widely used in health research [66–68].

MLP was a popular ML solution in the 1980s with applications in various fields,
recently the interest in this type of model was renewed due to the success of DL. Several
authors classify MLP as a traditional model of ML [69,70], but with the advent of DL,
concepts of MLP were improved and it can also be classified as a DL [71]. In this paper,
we classify MLP as a traditional model of ML due to the context observed in the selected
proposals. Five papers employed NN models in the sample: [72], [42], [43], [47] and [50].

3.2.4 Naive Bayes

Naive Bayes is a probabilistic classifier that performs classification based on the Bayes’
Theorem, selecting the most likely class according to its independent variables [73]. The
term naive is due to the way the model calculates the probabilities of each event i.e. all
attributes of the data set are equally important and independent.

In general, Naive Bayes models are simple, fast and effective, and perform well when
a data set contains outliers or is missing data [57], common features in many health
data sets. However, Naive Bayes models are not without drawbacks. They assume that
all attributes of a data set have the same importance which is often not true. If a data
set has large numbers of attributes, the reliability of the results may be limited. Four
works in the sample applied Naive Bayes models - [41], [43], [46] and [50].

3.2.5 Logistic Regression

Logistic Regression is a classification technique based on idea of modelling the odds of
belonging to Class 1 using an exponential function [57]. In this technique, the
dependent variable, Y , is binary and the independent variables, X = {x1, x2, ..., xn},
are used to estimate the value of Y by using a logistic function. The goal is to find
an optimal hyperplane, that separates the two target classes (binary classification). In
case of multi-class problems, the one-vs-all strategy can be used to address the problem.

Some advantages of this model includes dealing with categorical independent
variables and a high degree of reliability. As disadvantages, this type of model does not
generalise well when using a large number of features, it is vulnerable to overfitting, and
cannot solve non-linear problems, requiring a transformation of non-linear resources [74].
Two works employed Logistic Regression in the sample - [45] and [50].

3.2.6 k-Nearest Neighbours (kNN)

kNN is a classification technique that defines a minimum number of neighbours, k, and
calculates the distance, the similarity, of each data element with respect to its k

neighbours. There are many measures of similarity, and the most commons approaches
are the Euclidean distance and the Minkowski metric [57]. The most frequent class
among the neighbouring k is determined as the class of the target instance [75].

Simplicity is the main advantage of kNN. kNN is a good choice when working with a
small low-dimensional data set however it can be extremely inefficient when dealing with
large data sets because it is computes all pairwise distances [57]. Only one paper in the
sample proposed a kNN model, Fahmi et al. [50], using Euclidean distance with k = 5.
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3.2.7 Convolutional Neural Networks (CNN)

A convolutional neural network is a DL technique. CNNs are designed to process input
data in the form of multiple arrays [76]. A basic CNN comprises convolutional layers,
pooling layers, nonlinear function (generally ReLU), and fully connected layers. Units in
a convolutional layer are organised into feature maps and each unit is connected to local
patches in the feature maps of the previous layer. It is done by using a set of weights
called filters. The result of this local weighted sum is passed through a nonlinear
activation function. All units in a feature map share the same filter bank, and different
feature maps in one layer can use different filter banks. The result of this whole process
feeds fully connected layers resulting in a final classification. As discussed earlier, DL
models, including CNN, often outperform traditional ML models however their adoption
in health settings has suffered due to lack of transparency.

Although the methodology of training and test the models is clearly well-defined, the
resultant models themselves can be often unexplainable to humans [77]. Even when
techniques are used to select attributes resulting in good model performance, the
relationships between those attributes and the output classification may not directly
track causal relationships in the real world [77]. One paper in the sample, Ho et al. [45],
uses a CNN, DenseNet. DenseNet is a CNN architecture in which each layer is
connected to all the others within a dense block [78]. In this case, all layers can access
feature maps from their preceding layers enabling heavy feature reuse. As a direct
consequence, the model is more compact and less prone to overfitting. Furthermore,
each individual layer receives direct supervision from the loss function through the
shortcut paths, which provides implicit deep supervision [79].

3.3 How are ML and DL models being designed and how do

they perform when classifying arboviral diseases?

As presented in Section 3.1, studies included in the sample focused on only three
arboviruses - Dengue, Chikungunya, and Zika.

3.3.1 Dengue

Of the 15 relevant papers in the sample, 12 included the diagnosis of Dengue in their
studies including binary classification and multi-class classification:

• Binary classification

– Dengue or not Dengue: Tanner et al. [40], Fathima and Hundewale [41],
Sajana et al. [42], Gambhir et al. [43], Sanjudevi and Savitha [44], Ho et
al. [45];

– Severity of Dengue: Tanner et al. [40]2, Potts et al. [55], Phakhounthong
et al. [56];

– Risk of Dengue: Faisal et al. [72]; and

– DHF or not: Arafiyah et al. [46]

• Multi-class classification

– DF, DHF or Dengue Shock Syndrome (DSS): Fahmi et al. [50]; and

– DHF1, DHF2 or DHF3: Thitiprayoonwongse et al. [49]

2Tanner et al. appeared twice because they presented two distinct classification problems.
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Tanner et al. [40] proposed two Decision Tree models. The first, the Dengue
Diagnostic Model (DDM), sought to classify if a patient had Dengue or not using 1,200
records of patients with acute febrile illness. The second, the Dengue Severity Prediction
Model (DSPM), sought to classify the severity of Dengue in adults using data from 161
patients. A C4.5 Decision Tree classifier was built using the Inforsense software. A
k-fold cross-validation approach (k = 10) was used to avoid model over-fitting. Both
models presented good performance however the DDM performed better across all
metrics i.e. sensitivity (71.2%), specificity (90.1%), overall error rate (15.7%) and AUC
(0.88). This is unsurprising given the larger data set available to the DDM.

Fathima and Hundewale [41] compared two classification models, SVM and Naive
Bayes, to classify if a patient had Dengue or not. To determine the best SVM
hyperparameters, a Grid Search was performed changing the gamma parameter and the
cost (c). Despite executing the Grid Search, neither the best configuration nor the
configuration of the Naive Bayes model was detailed. In general, the SVM model
presented the best performance, despite its low sensitivity (47%). The Naive Bayes
models presented high sensitivity and very low specificity, accuracy and risk rates, all
above of 18%.

Sajana et al. [42] proposed three models for binary classification of Dengue using
clinical and laboratory data: a MLP, and two Decision Trees (C4.5 and CART). Like
Fathima and Hundewale [41], the configurations of the models were not detailed. The
CART model presented the best results, achieving 100% in all metrics (accuracy,
sensitivity, precision and F-Measure). There is no mention regarding the use of feature
selection and hyperparameter optimisation. Given the results, it is possible that the
models were overfitting due to the small amount of data available, only 20 records (see
Table 1).

Gambhir et al. [43] proposed three models (NN, Decision Tree and Naive Bayes) to
classify whether a patient had Dengue or not. The configuration of the models were
described in the paper and are summarised in Table 5. K-fold cross-validation (k = 10)
was used to validate and test the models. The NN presented the best results - 79.09%
accuracy, 55.55% sensitivity, and 88.5% specificity. However, the other models achieved
similar performance. Gambhir et al. [43] did not describe whether hyperparameter
optimisation or feature selection was applied in the data set.

Sanjudevi and Savitha [44] compared Decision Tree and SVM models to classify
whether a patient had Dengue or not. Model configurations were not described. The
WEKA tool was employed to run the experiments and calculate the metrics. The SVM
model obtained the best results achieving 100% sensitivity, 100% specificity, 100%
precision and an 99% AUC. The extremely high performance results suggest model
overfitting.

Ho et al. [45] proposed three models to classify Dengue using clinical data - a
Decision Tree, a Logistic Regression, and a CNN. Models were validated and tested
using k-fold cross-validation (k = 10). Feature selection was performed using crude odds
ratio and adjusted odds ratio analysis. From 18 available attributes, four were initially
selected - age, body temperature, white blood cell counts and platelets counts. An
additional three experiments were performed with more attributes: (1) six attributes,
the four previously mentioned plus gender and haemoglobin count; (2) 11 attributes,
the previous six and five more vital signals; and (3) the entire data set with 18
attributes. Results suggested that when using only four attributes, the AUC in all
experiments were close to 84%; the CNN performed marginally better than Decision
Tree and Logistic Regression models.

Potts et al. [55] proposed Decision Trees to classify pediatric patients into “severe” or
“non-severe” Dengue cases. The stopping rules used to create the trees were described in
the paper and are summarised in Table 5. Five scenarios were evaluated with different
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definitions of Severe Dengue: (1) Tree 1 considered Severe Dengue as DSS, and used
four attributes from 11 (WBC, HTC, MOMO%, PLT); and (2) Tree 2 defined Severe
Dengue as DHF Grade 3 or 4 or pleural effusion index (PEI) > 15, and used five
attributes (Age, WBC, PLT, NEUT%, AST); (3) Tree 3 defined Severe Dengue as DSS
or required intravenous fluid; (4)Tree 4 defined Severe Dengue as DSS or PLT less than
50,000; and (5) Tree 5 defined Severe Dengue as DSS or received fluid intervention.
Trees 3, 4 and 5 were not described in the work because, according to Potts et al. [55],
they did not obtain any significant improvement in relation to Trees 1 and 2. Both
Decision Trees 1 and 2 have the same initial splitting variable, WBC, reinforcing the
utility of this variable in distinguishing Severe Dengue. Models were validated and
tested using k-fold cross-validation (k = 5) and results3 suggested that Trees 1 and 2
achieved a sensitivity metric in excess of 90% for the “Severe” class, while the sensitivity
for the “non-Severe” class was below 50%.

Phhakhounthong et al. [56] proposed a CART Decision Tree model to classify
Dengue severity based on clinical and laboratory attributes. They performed a Logistic
Regression analysis to determine the significance of each attribute to compose the tree.
In their case, the most significant factor in predicting severe dengue was haematocrit.
The results obtained from k-fold cross-validation (k = 10) for binary classification of
Severe Dengue were 60.5% sensitivity, 65% specificity, and 64.1% accuracy.
Phhakhounthong et al. [56] state that tree pruning and tuning parameters were applied
to optimise the model but did not describe the settings used for the experiment.
Despite having performed a feature selection with Logistic Regression, the results did
not exceed 65% in the metrics evaluated.

Faisal et al. [72] sought a binary classification of Dengue risk, differentiating patients
as “high risk” or “low risk”. An MLP model was proposed for the classification task, and
a Grid Search technique was performed to optimise the model configuration, changing
four parameters: number of neurons, momentum, learning rate, and number of
iterations)4. Seven attributes were selected using Self Organizing Map (SOM) and the
model achieved 70% accuracy.

Thitiprayoonwongse et al. [49] classified a patient as DF, DHF1, DHF2 and DHF3
using a Decision Tree. Two data sets were used, one from the Srinagarindra Hospital
and another from the Songklanagarind Hospital. Three experiments were performed:
(1) using only data from the Srinagarindra Hospital; (2) using only Songklanagarind
Hospital data; and (3) using data from both hospitals. The attributes of both two data
sets were not described, but the attributes selected to compose the Decision Tree for
each experiment were presented. In Experiment (1), six attributes were selected: shock,
leakage, bleeding, platelet, liver size and je-vaccine. In Experiment (2), nine attributes
were selected: shock, leakage, bleeding, platelet, abdominal pain, rash, uri, hematocrit,
AST. In Experiment (3) eight attributes were selected: shock, leakage, bleeding,
platelet, ALT, lymp, WBC (count and minimal count). The configuration of the
Decision Tree was changed only in the degree of confidence parameter in Experiments
(1) and (2); no detail was provided for Experiment (3). Experiment (1) presented the
best overall results. It is interesting that even with the addition of one more data set,
Experiment (3) largely did not achieve superior results. The class posing the greatest
classification challenge, DHF1, reported the lowest values in all three experiments
although all were greater than 80%.

Arafiyah et al. [46] proposed and evaluated three models to classify DHF or not
DHF - Random Forest, SVM and Naive Bayes. Unfortunately, there is no information
about the model configurations. The models were trained and the metrics were

3The work did not explicitly present any metrics for evaluating the models, such as accuracy or
sensitivity. However, in the results, a table was presented with values that can be interpreted as the
sensitivity of the “Severe” and “non-Severe” classes.

4It is noteworthy that in the Grid Search technique process, each attribute was tested individually.
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calculated using the Orange tool. Random Forest achieved better results than SVM and
Naive Bayes models: 79.6% accuracy, 84.1% precision, 82.2% sensitivity, 83.1% F1-Score
and 89.8% AUC. No details on hyperparameter optimisation or feature selection were
provided.

Fahmi et al. [50] evaluated eight models for classifying Dengue into three categories:
DF, DHF and DSS. The models included NN, SVM, kNN, Decision Tree, Random
Forest, Naive Bayes, AdaBoost, and Logistic Regression. The configuration of all
models were described and are summarised in Table 5. Experiments were carried out in
two different scenarios: (1) without feature selection, and (2) with feature selection
using the ReliefF technique5. In both scenarios, the best result was obtained by the NN
model with 71.3% accuracy, 70.8% precision, and 71.3% sensitivity in Scenario (1) and
with 72 % accuracy, 71.5% precision, and 72% sensitivity in Scenario (2). Results
showed that the feature selection did provide significant improvements.

In summary, those studies in our sample addressing the diagnosis of Dengue
primarily focused on binary classification (11); only two studies performed multi-class
classification. Multi-class classification studies sought to Dengue subtypes [49] or
different levels of disease severity [50]. The prevalence of binary classification reflects its
simpler nature. Multi-class classification is both more complex to perform and interpret,
and consequently results are often inferior to simpler models. This is reflected in our
survey [49,50]. Tree based models (Decision Tree and derivatives) were the most
common technique used in Dengue classification (10); nine of which used simple
Decision Trees, often obtaining better results than other benchmark models. It is
important to highlight that despite tree-based learning algorithms being broadly used
for classification problems due their simplicity for implementation and interpretability
of results, the usage of imbalanced data sets can skew the performance of such models,
exacerbating inadequacies inherent in the tree splitting criterion [81]. It was noted that
a number of studies likely suffered model overfitting [42,44] however further analysis is
not possible due to the lack of detail in their publications, although it should be noted
that each of these studies used the smallest data sets (see Section 3.4). The usage of
different data sets and lack of detail regarding both model configuration, feature
selection, and hyperparameter optimisations made comparisons of these studies difficult.
For example, six of the 12 studies [41,42,44,46,51,56] did not present any description of
their proposed models thus adversely impacting future reproducibility.

3.3.2 Chikungunya

Only one study in the sample sought to classify Chikungunya. Hossain et al. [47]
proposed a Specialized Belief Rules System (BRBES) to classify Chikungunya using
clinical data containing vital signs and symptoms, and considering severity classes as
output (very high, high, medium and low). The BRBES system was compared with a
NN, an SVM and a Fuzzy Logic Based Expert System (FLBES) as well as expert
opinions. Due to the scope of our work, we consider only the ML models for analysis,
NN and SVM. The NN outperformed the SVM model, obtaining an AUC of 81.1% vs
80.8%. Notwithstanding the small difference in performance between these two ML
models, neither models outperformed the BRBES system. A significant limitation of
this study is the lack of detail on model configurations thereby adversely impacting
comparability and reproducibility.

5ReliefF is an algorithm developed by Kira and Rendell in 1992 [80] that takes a filter-method
approach to feature selection that is notably sensitive to feature interactions.
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3.3.3 Zika

In relation to the Zika classification, only one study was identified. Veiga et al. [48]
sought to classify suspected cases of CZS using clinical and non-clinical data. The
authors compared five algorithms: kNN, CART Trees, Random Forest, AdaBoost and
Gradient Boost. After performing a Grid Search, only two of the candidate models were
selected and described in the final publication - (1) the Random Forest model was used
with a data set without textual data to address a binary classification (“Discarded cases”
and “Somewhat probable”); and (2) the Gradient Boost model was used with a data set
with supplementary textual data to handle a multi-class output (“Discarded cases”,
“Somewhat probable”, “Moderately probable” and “Highly probable”). For the binary
classification, the Random Forest model obtained 91% sensitivity and and F1-Score of
83% for the “Discarded cases” class however exhibited significantly poorer results for the
”Somewhat probable” class with 50% sensitivity and an F1-Score of 61%,. During the
execution of Grid Search, the tree-based models obtained a similar performance and all
were superior to kNN. The small but better performance of Random Forest in relation
to other tree-based models is probably due to its bootstrapping process that helps to
avoid overfitting when using small data sets as per Group 1 (272 samples).

For the multi-class problem, the Gradient Boost model presented good performance
mainly for the “Discarded cases” class with 91% in all metrics (precision, sensitivity and
F1-score). As the amount of data used in this experiment is greater (1109 samples) than
the binary classification, the Gradient Boost obtained a better performance. However,
Veiga et al. [48] did not provide details on the proportion of data in each class. As such,
it is not possible to analyse whether any data imbalance impacted the models
performance. This is the only study where the code of the final models are available for
download.6

3.3.4 Differential Arboviral Diagnosis

Given the difficulties in differential diagnosis of arboviruses discussed in Section 1, it
was surprising that only one study was identified that sought to distinguish between two
different arboviral diseases, in this case Dengue and Chikungunya. Lee et al. [51]
proposed models to differentiate between DF, DHF and Chikungunya cases. Four
experiments were presented - (1) DF and Chikungunya using only clinical data; (2) DF
and Chikungunya using clinical and laboratory data; (3) DHF and Chikungunya using
clinical data only; and (4) DHF and Chikungunya using clinical and laboratory data.
For each classification, a Decision Tree model was developed using R software. Details
on model configuration were not provided. Results suggested that Decision Trees using
clinical and laboratory data outperformed the models using only clinical data.

3.3.5 Cross-validation

It is worth noting that a number of studies used cross-validation techniques to validate
and test their models. [40], [43], [45], [56] [50] and [48] used k-fold cross-validation with
k = 10; and [55] also used k-fold but with k = 5. Lee et al. [51] was the only study that
applied the leave-one-out (LOO) cross-validation. Commonly, cross-validations are
recommended when handling with small data sets, and in an attempt to minimise the
learning bias. LOO cross-validation is a type of k-fold cross-validation in which k is the
number of samples in the data set. Therefore, despite taking advantage of each data
point, LOO cross-validation can be computationally expensive, especially if the data set
is large. Note that Lee et al. had a data set composed of 1,034 samples however they

6https://github.com/rafael-veiga/Classification-algorithm-of-Congenital-Zika-Syndrome-
characterizations-diagnosis-and-validation
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did not mention anything about the computational effort needed to execute the
experiments.

3.4 What attributes are considered when applying the

Machine Learning and Deep Learning techniques?

3.4.1 Summary of Data Sets and Attributes

Table 1 summarises the data sets used by the included studies in this SLR by number of
records, number of attributes, input for models, period of the data, and location. While
the number of attributes presented in this table were described as available in a focal
data set, in some cases, the studies did not use all of them for training and testing their
proposed models (see Sub-section 3.4.2).

Table 1. Characteristics of the data sets used to evaluate ML and DL models for
arboviral diseases classification

Classification Records Attributes Input for models Period Location

Dengue
Tanner et al. [40] 1,200 41 3 and 5 Not described Singapore and Vietnam

Fathima and Hundewale [41] 5,000 29 Not described Not described India
Sajana et al. [42] 20 12 12 Not described India

Gambhir et al. [43] 110 16 16 2015 to 2016 India
Sanjudevi and Savitha [44] 108 17 Not described Not described Not described

Ho et al. [45] 4,894 18 4, 6, 11 and 18 2015 Taiwan
Potts et al. [55] 1,230 11 11 1994–97, 1999–2002, 2004–07 Thailand

Phakhounthong et al. [56] 1,180 23 5 2009 to 2010 Cambodja
Faisal et al. [72] 210 40 7 Not described Not described

Thitiprayoonwongse et al. [49] 1001 400 6, 8, and 9 Not described Thailand
Arafiyah et al. [46] 213 4 4 2005 Indonesia

Fahmi et al. [50] 14,019 16 10 2016 to 2019 Indonesia
Chikungunya

Hossain et al. [47] 250 5 5 Not described Bangladesh
Zika

Veiga et al. [48] 1,501 13 7 2015 Brazil
Dengue and Chikungunya

Lee et al. [51] 1,034 33 5 2004 and 2008 Singapore

Tanner et al. [40] used a data set composed of 1,200 patient records from Singapore
and Vietnam with acute febrile illness. The data set is composed of 15 clinical
(symptoms and vital signs) and 26 laboratory attributes. The selected attributes for the
Dengue classification model were platelet count, white blood cells and lymphocyte
count, body temperature, haematocrit count, and neutrophil count. For the
classification of Dengue severity, the selected attributes were platelet count, the
crossover value (Ct) of the real-time RT-PCR for dengue viral RNA, and the presence of
anti-dengue IgG antibodies.

Fathima and Hundewale [41] used a data set comprising 5,000 records of patients
with Dengue from Chennai and Tirunelveli, India. The data set includes details on 29
patient symptoms. The structure of the data set is not provided in sufficient detail to
infer the extent to which the data set is balanced or unbalanced; most of the data would
appear to be related to non-Dengue patients.

Sajana et al. [42] used the data collected from various medical wards of hospitals in
Vijayawada, India; it comprises only 20 records with 12 attributes. We highlight that
the joint/muscle pain attribute used by Sajana et al. [42] was referenced in Table 3 as
joint swelling and myalgia. As no feature selection technique is referenced in the paper,
we assumed all attributes were used for model training.

Gambhir et al. [43] used clinical and non-clinical data acquired from patients in
Delhi from 2015 and 2016. The data set contains 110 records - 85 positive Dengue cases
and 25 negative Dengue cases. Each record has 16 attributes, of which nine are clinical
data (age, gender, vomit, abdomen pain, chills, bodyache, headache, weakness, and

August 10, 2021 14/35



fever) and the remainder physical examination/laboratory data (temperature, heart
rate, platelet count, dengue antigen NS1 or serology (IgM, IgG))7.

Sanjudevi and Savitha [44] used a data set composed of 108 records with 17
attributes. The attributes were not detailed in the paper and no feature selection
technique was performed.

Ho et al. [45] used data from the National University Hospital Cheng Kung
(NCKUH) in Tainan City, Taiwan. The data set comprised 4,894 records of clinical and
laboratory data including 2,942 cases of laboratory-confirmed Dengue cases and 1,952
non-Dengue cases. Ho et al. [45] analysed odds ratios to select four attributes and
create a subset of data; two additional subsets were created with six and 11 attributes
based on the initial subset. In the experiments, the data set with all attributes was also
used for comparison purposes however there was no evidence that more attributes
contributed to improved model performance.

Potts et al. [55] used data from 1,384 pediatric patients with Dengue and DHF, with
11 attributes. After initial screening, 1,230 records were included in the analysis - 208
cases of DHF, 374 of DF, and 648 of Other febrile illness (OFI). Data were collected in
Thailand for the periods 1994 to 1997, 1999 to 2002, and 2004 to 2007.

Phakhounthong et al. [56] used a data set comprising 1,225 records related to febrile
episodes in children from Angkor Hospital for Children, Cambodia. From those 1,225
records, 198 were confirmed cases of Dengue; only 38 were Severe Dengue cases. The
data set included information about demographic, clinical and laboratory data. Logistic
Regression was used and these five attributes were selected for model training.

Faisal et al. [72] used a data set with records of 210 patients with 40 attributes,
divided into demographic, clinical, laboratory and Bioelectrical Impedance Analysis
(BIA) parameters measurements to classify risk of Dengue. Laboratory data were used
to classify baseline patient risk and thus create the output attribute for model training.
This procedure was performed using an unsupervised model, SOM. After that, another
SOM model was used to perform feature selection to define the attributes to be used as
input for the proposed model; ultimately seven attributes were selected.

Thitiprayoonwongse et al. [49] used two data sets: one composed of information from
524 patients from Srinagarindra Hospital, Thailand and another with 477 patients from
Songklanagarind Hospital, Thailand to classify DF, DHF1, DHF2 or DHF3. The
Decision Tree model selected different attributes for each experiment.

Arafiyah et al. [46] used a medical data set comprising 213 records using only four
clinical data sources - temperature, presence of spotting, presence of bleeding, and
tornikuet test. The complete list of the attributes present in the data set was not
described by the authors, so there is no way to know if or how feature selection was
applied.

Fahmi et al. [50] used a data set that was provided by the Disease Prevention and
Control Division in Central Java, Indonesia to classify DF, DHF or DSS. After the
verification of the missing values, selection of relevant attributes, and data normalisation,
the final data set comprised 14,019 records with 16 attributes including demographic,
epidemiological, clinical and laboratory (hematological) information. Despite having 16
attributes available, after the application of the feature selection procedure, only ten
attributes remained for model training and testing based on their importance.

As discussed, only one study addressed Chikungunya classification. Hossain et al.
trained and tested their model using a data set comprising 250 records collected from
various hospitals in Dhaka and Chittagong, Bangladesh. The data set had five
attributes indicative of patient symptoms i.e. fever, muscle pain, joint pain, headache

7In the original work, these data were mistakenly classified. Gambhir et al. [43] considered age,
gender, vomit, abdomen pain, chills, bodyache, headache, weakness, and fever as non-clinical data; and
platelet count, temperature, heart rate, dengue antigen NS1, IgM, IgG, dengue NS1 antigen as clinical.
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and swelling in the joints, each classified as high, medium or low intensity.
In relation to Zika classification, Veiga et al. [48] sought to classify suspected cases of

CZS using clinical and non-clinical data. A data set with 1,501 records of live newborns
suspected of microcephaly reported in the Public Health Event Registry (RESP) and
the National Birth Registration System (SINASC) from Brazil was considered. This
data set contains information about demographic, epidemiological, clinical (signs),
laboratory (serological and others). From 13 attributes, seven were used as input for the
model. Additionally, there is also textual data provided by the health professional when
registering the newborns’ information in the system such as reports, descriptions and
other possible observations. Veiga et al. [48] separated the records into two groups
where Group 1 contained only clinical and non-clinical data (272 records), and Group 2
containing clinical, non-clinical and complementary textual notes (1,109 records). The
most frequent terms presented in the notes were used to assist the classification. Group
2, which considered these textual notes, obtained better results compared to Group 1.

Lee et al. [51] used demographic, epidemiological, clinical and laboratory data with
1,034 records to train and test their model to distinguish between two different arboviral
diseases: Dengue and Chikungunya. While 36 attributes are identified in the study, only
five were used for training and testing the model i.e. period of symptoms, fever, fever
(duration), bleeding and platelet count. Of the 1,034 records, 917 were related to adult
Dengue patients confirmed by PCR test, including 55 records related to DHF. 117 were
records related to Chikungunya patients confirmed by RT-PCR. The Chikungunya data
were collected in August 2008, while the Dengue data were collected during the large
2004 Dengue outbreak, both in Singapore.

It is important to note that none of the included studies explicitly describe or
discuss how they handle imbalanced data (between-class imbalance). Given how the
data sets were reported in the papers, none of the models were trained with a data set
with similar number of records per class (see Table 2. The data set used by Tanner et
al. [40] presents this imbalancing issue in which the DSS class represents only 0.016 of
the entire data set while the non-DF class presents 0.696. A similar situation is found in
the data set used by Lee et al. [51] in which DHF is 0.053 and DF is 0.833. Although
not explicitly mentioned, Lee at al. [51] applied the LOO cross-validation, as described
in sub-section 3.3.4, that can be considered an alternative when evaluating models
under imbalanced data sets. According to He et al. [81], when presented with complex
imbalanced data sets, most standard learning algorithms “fail to properly represent the
distributive characteristics of the data and resultantly provide unfavorable accuracies
across the classes of the data”. It happens essentially because ML models learn by
reducing the error and do not take into consideration the class proportion. In health,
where the minority class is commonly the positive case for the target disease (or the
rare case), it is desirable that a classifier provides high accuracy for the minority class,
without severely impacting on the performance of the majority class [81]. Three
exceptions were identified in our sample. Gambhir et al. [43] and Ho et al. [45] used
data sets in which the number of Dengue cases is larger than non-Dengue; and Fahmi et
al. [50] used a large data set, in which there were more DHF cases than DF.

Additionally, the combination of imbalanced data and small sample size issue was
also found in this SLR. For example, Gambhir et al. [43] used a data set composed of
110 records with 85 positive cases of Dengue and 25 negative cases. Other works also
presented a small data set, such as [42,44, 46,47, 72], having less than 250 records each,
however none of them described the distribution of the classes. As stated by He et
al. [81], in this case, “traditional learning algorithms often fails to generalise inductive
rules over the sample space” and when samples are limited, the rules formed can become
too specific, leading to overfitting. This is likely to be the case in Sajana et al. [42] and
Sanjudevi and Savitha [44]. To address these issues, some methods, such as sampling,
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Table 2. Distribution of samples per classes.

Classes Samples Proportion*

Dengue
Tanner et al. [40] Non-DF 836 0.696

DF 173 0.144
DHF 171 0.142
DSS 20 0.016

Gambhir et al. [43] Non-Dengue 25 0.227
Dengue 85 0.772

Ho et al. [45] Non-Dengue 1,952 0.398
Dengue 2,942 0.601

Potts et al. [55] OFI 648 0.526
DF 374 0.304
DHF 208 0.169

Phakhounthong et al. [56]** Dengue 160 0.808
Severe Dengue 38 0.191

Thitiprayoonwongse et al. [49] DF 488 0.487
DHF 1 222 0.221
DHF 2 229 0.228
DHF 3 62 0.061

Fahmi et al. [50] DF 4,870 0.347
DHF 8,540 0.609
DSS 609 0.043

Dengue and Chikungunya
Lee et al. [51] DF 862 0.833

DFH 55 0.053
Chikungunya 117 0.113

*Numbers were rounded. **There are 982 samples of non-Dengue cases in this data set with an overall
total of 1,180 records as shown in Table 1, but as this class was not considered in the problem, we did

not use it for calculating the proportion.

cost-sensitivity, kernel-based and active learning [81] are available in the literature.

3.4.2 Attributes of the data sets

Figure 3 presents the types of attributes found in the data sets described previously.
Demographic, epidemiological and clinical (symptoms, signs and co-morbidities) data
were grouped as resource-limited attributes following the terminology presented by Lee
et al. [51]; specific equipment is not specified for these data as they were collected at the
time of the appointment. Laboratory attributes (hematological, biochemical and
serological) and others are grouped as well-resourced attributes because they require
specific equipment to be performed.

Figure 3. Attributes found in the data sets.

Table 3 presents a summary of all demographic, epidemiological and clinical data
present in the data set used by the 15 included studies. Despite the focus on studies
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that used clinical data as input for the classifiers as per [46,47], we also found cases in
which clinical data was used together with other types of data
e.g. [40,42,43,45,48–51,55,56,72]. Fathima and Hundewale [41] and Sanjudev et al. [44]
neither provided details about the data set nor the attributes used in their studies.
Thitiprayoonwongse et al. [49] only described the final selected attributes in the data set.

Age, gender, weight and residence (state) were the demographic information present
in the data set described in [43,45,48,50,51,55,72]. The most common clinical data used
to classify arboviral diseases were: abdominal pain, fever, temperature, and bleeding.

Table 4 presents the summary of all non-clinical (laboratory and others) data found
in this Systematic Literature Review (SLR). As expected, none of the 15 primary
studies used only non-clinical data (since these works were excluded from our
Systematic Literature Review (SLR)).

The non-clinical data present in the Table 4 is quite diverse. The most common
attribute used as input for models was the PLT used in nine studies
- [40,42,43,45,49–51,55,56]. For model training, most non-clinical data hematological in
nature e.g. PLT, WBC and HTC. Dengue IgM, Dengue IgG and Dengue NS1 antigen
were used by Gamhbir et al. [43]; ZIKV RT-PCR, TORCHS serology (others except
Zika) and neuroimaging reports (US, CT, MRI) were used by Veiga et al. [48]. The
biochemical data used in the models were ALT, creatinine and liver size.

Lee et al. [51] compared two cases in relation to the attributes present in their data
set: (1) a resource-limited case in which only data available at the time of hospital
presentation was used (clinical data), and (2) a well-resourced case in which clinical and
laboratory data were used for classification. As per Sub-section 3.3.4, the majority of
the best results of the classification of DF, DHF or Chikungunya was obtained using a
set of clinical and laboratory data. These results demonstrate that the restricted usage
of clinical data for multi-classification may not be as satisfactory as when clinical and
non-clinical data is combined. Based on their results, we also highlight that the use of
few attributes (they considered only five attributes) is feasible for the classification of
DF, DHF and Chikungunya with good performance. Regarding the number of
attributes, a similar conclusion was found by Ho et al. [45]. They stated that the
addition of more attributes did not provide any expressive improvement in the results in
any of their models, so the subset with only four attributes was able to provide as much
essential information as possible and can be easily collected with minimal cost. Ho et
al. [45] highlight two major findings: (1) their “high-sensitivity models can be an
effective surveillance tool in the pre-epidemic period” to complement clinical diagnosis,
and (2) high-specificity models, as in their proposal, can be exploited to identify
laboratory-confirmed dengue cases at outbreak sites for real-time monitoring of
epidemic trends.

It is interesting to note that the data sets used are quite different with regard to the
number of samples and attributes. In addition, the included studies did not use similar
attributes for training and testing their proposed models. In general, the included
studies did not describe clinical and non-clinical data in a standardised way, making it
difficult to summarise these data without a health professional. Another challenge when
analysing the data sets is related to the lack of detailed description in the included
studies. Data description and experiment methodology are fundamental for replicability
of studies; in half of the cases, there is no information about the model configuration.
Additionally, although all studies used data sets, none of these are available for usage
further adversely impacting reproducibility.
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Table 3. Summary of all demographic, epidemiological and clinical data presented in
data set used by the primary studies.

Attributes [40] [41] [42] [43] [44] [45] [55] [56] [72] [49] [46] [50] [47] [48] [51]

Demographic data

Age ∅ - ∅ X⋆ - X⋆ X⋆ X ∅ ∅ ∅ X⋆ ∅ X X

Gender ∅ - ∅ X⋆ - X X⋆ X X ∅ ∅ X ∅ X⋆ X

Weight ∅ - ∅ ∅ - ∅ X ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅

Residence (state) ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X ∅

Epidemiological data

Period of symptoms ∅ - ∅ ∅ - ∅ ∅ X ∅ ∅ ∅ X⋆ ∅ ∅ X⋆

Epidemiological week ∅ - ∅ ∅ - X ∅ ∅ ∅ ∅ ∅ ∅ ∅ X ∅

Severity ∅ - ∅ ∅ - X ∅ X ∅ ∅ ∅ ∅ ∅ X ∅

Japanese encephalitis vaccine ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ X⋆ ∅ X ∅ ∅ ∅

Clinical data

Symptoms

Abdominal pain ∅ - X⋆ X⋆ - ∅ X X X⋆ X⋆ ∅ ∅ ∅ ∅ X

Fever ∅ - ∅ X⋆ - X⋆ ∅ ∅ X ∅ ∅ ∅ X⋆ ∅ X⋆

Headache X - X⋆ X⋆ - ∅ X X X ∅ ∅ ∅ X⋆ ∅ X

Myalgia X - X⋆ X⋆ - ∅ ∅ ∅ X ∅ ∅ ∅ X⋆ ∅ X

Vomiting X - X⋆ X⋆ - ∅ X X X ∅ ∅ ∅ ∅ ∅ X

Arthalgya X - X⋆ ∅ - ∅ ∅ ∅ X ∅ ∅ ∅ X⋆ ∅ ∅

Fever (duration) ∅ - ∅ ∅ - ∅ X X ∅ X⋆ ∅ ∅ ∅ ∅ X⋆

Diarrhoea X - X⋆ ∅ - ∅ ∅ ∅ ∅ X ∅ ∅ ∅ ∅ X

Retroorbital pain X - X⋆ ∅ - ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅

Weakness X - ∅ X⋆ - ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅

Chills ∅ - ∅ X⋆ - ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅

Taste alteration X - X⋆ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Joint swelling ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ X⋆ ∅ ∅

Anorexia X - ∅ ∅ - ∅ X ∅ X ∅ ∅ ∅ ∅ ∅ X

Nausea X - ∅ ∅ - ∅ X ∅ X ∅ ∅ ∅ ∅ ∅ X

Conjunctivitis X - ∅ ∅ - ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅

Cough ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

Dizziness ∅ - ∅ ∅ - ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅

Itching ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅

Jaundice ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅

Sore throat ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

Skin sensitivity X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Signs

Temperature X⋆ - X⋆ X⋆ - X ∅ X ∅ X X⋆ ∅ ∅ ∅ X

Bleeding X - ∅ ∅ - ∅ X X X⋆ X⋆ X⋆ ∅ ∅ ∅ X⋆

Tornikuet test ∅ - ∅ ∅ - ∅ X⋆ ∅ ∅ X X⋆ X⋆ ∅ ∅ ∅

Hepatomegaly ∅ - ∅ ∅ - ∅ ∅ X X⋆ X⋆ ∅ X ∅ ∅ ∅

Shock ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ X⋆ ∅ X⋆ ∅ ∅ ∅

Heart rate X - ∅ X⋆ - X ∅ X ∅ X ∅ ∅ ∅ ∅ X

Rash X - ∅ ∅ - ∅ ∅ X X X⋆ ∅ ∅ ∅ X✝ X

Pleural effusion ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ X ∅ X⋆ ∅ ∅ ∅

Ascites ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ X ∅ X⋆ ∅ ∅ ∅

Glasgow Coma Score ∅ - ∅ ∅ - ∅ ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Gestacional age ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X⋆ ∅

Head circumference ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X⋆ ∅

Plasma leakage ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ X⋆ ∅ ∅ ∅ X⋆ ∅

Blood Pressure ∅ - ∅ ∅ - X ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅

Respiratory rate ∅ - ∅ ∅ - X ∅ X ∅ X ∅ ∅ ∅ ∅ ∅

Flush face ∅ - ∅ ∅ - ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅

Palpable lymphadenopathy X - ∅ ∅ - ∅ ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅

Birthwieght ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X ∅

Capillary refill time ∅ - ∅ ∅ - ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅

Comorbidities

Hypertension (HT) ∅ - ∅ ∅ - X ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

NCDs (except HT) ∅ - ∅ ∅ - X ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Upper respiratory infection ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅

X: data available in the data set; ∅: data not available in the data set; ⋆: data used as input for the
models; -: data set not described; ✝: maternal history of rash. Some atributes were generalized based
on knowledge of the authors. Equivalent terms: Gender [43,45,51,72] or sex [46,48,55,56]; Period of
symptoms [50,56] or time since onset [51]; Severity (non-hospitalized, hospitalized, ICU admission and

death); Myalgia [51,72], bodyache [43,72] or muscle pain [40,42,47]; Artralgya [51] or joint
pain [40,42,47]; Fever (duration) [51,55,56] or days of defervescence [49]; Retroorbital pain [40,56] or
pain behind eyes [42]; Weakness [43,56] or drowsiness [40]; Taste alteration [40] or metallic taste [42];

Anorexia [51,55,72] or loss of apetite [40]; Conjunctivitis [49] or red eyes [40];
Bleeding [40,46,49,51,55,72], spotting [46], petechial rash [72], bruising [49], or hematuria [56];

Rumpel-Leed test [50], R/L test [50] or tornikuet test [46,49,55]; Hepatomegaly [50,72], grown liver [49]
or liver enlargement [56]; Heart rate [43,45], pulse rate [40,56] or tachycardia [51]; Rash [40,49,51,56],
macular [72], or maternal history of rash [48]; Pleural effusion [49,50] or pleural effusion index [55];

Respiratory rate [45,56] or dyspnea [49]; Palpable lymphadenopathy [40] or lymph node
enlargement [49]; Non-communicable diseases (NCDs) include heart disease, stroke, renal injury, severe

liver disease or cancer.
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Table 4. Summary of all non-clinical data (laboratory and others) presented in the
data set used by the primary studies.

Attributes [40] [41] [42] [43] [44] [45] [55] [56] [72] [49] [46] [50] [47] [48] [51]

Laboratory data
Hematological

PLT X⋆ - X⋆ X⋆ - X⋆ X⋆ X⋆ X X⋆ ∅ X⋆ ∅ ∅ X⋆

WBC X⋆ - X⋆ ∅ - X⋆ X⋆ X ∅ X⋆ ∅ ∅ ∅ ∅ X⋆

HTC X⋆ - ∅ ∅ - ∅ X⋆ X⋆ X X⋆ ∅ X⋆ ∅ ∅ X

LYMPH X⋆ - ∅ ∅ - ∅ X X ∅ X⋆ ∅ ∅ ∅ ∅ X

HGB X - X⋆ ∅ - X ∅ ∅ ∅ ∅ ∅ X⋆ ∅ ∅ X

NEUT X⋆ - ∅ ∅ - ∅ X X ∅ ∅ ∅ ∅ ∅ ∅ X

LYMPH% X - ∅ ∅ - ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

NEUT% X - ∅ ∅ - ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

MONO% X - ∅ ∅ - ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

ALYMPH% ∅ - ∅ ∅ - ∅ X ∅ ∅ X ∅ ∅ ∅ ∅ X

MONO X - ∅ ∅ - ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

EOSBAS X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

EOSBAS% X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

MCH X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

MCHC X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

MCV X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

MPV X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

PDW X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

PLCR X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

RBC X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

RDW X - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Biochemical
ALT ∅ - ∅ ∅ - ∅ X⋆ X X X⋆ ∅ ∅ ∅ ∅ X

AST ∅ - ∅ ∅ - ∅ X⋆ ∅ X X⋆ ∅ ∅ ∅ ∅ X

Creatinine ∅ - ∅ ∅ - ∅ ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅ X

Albumin ∅ - ∅ ∅ - ∅ X ∅ ∅ X ∅ ∅ ∅ ∅ X

Protein ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ X ∅ X ∅ ∅ X

Urea ∅ - ∅ ∅ - ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅ X

ALP ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

Bilirubun ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

Potassium ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

Sodium ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

Serological
Dengue IgM (ELISA) ∅ - ∅ X⋆ - X X X* ∅ ∅ ∅ X ∅ ∅ ∅

Dengue IgG (ELISA) X - ∅ X⋆ - ∅ X ∅ ∅ ∅ ∅ X ∅ ∅ ∅

Dengue NS1 antigen (ELISA) ∅ - ∅ X⋆ - X ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅

TORCHS serology‡ ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X⋆ ∅

Zika serology ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X⋆ ∅

Dengue antiboties (HAI) ∅ - ∅ ∅ - ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

JEV and Dengue IgM (ELISA) ∅ - ∅ ∅ - ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅

Molecular biology
Dengue RT/PCR X - ∅ ∅ - X ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

Dengue viral load X - ∅ ∅ - X ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Chikungunya RT/PCR ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X

Others
Dengue antigen NS1 ∅ - ∅ X⋆ - X ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Urine protein ∅ - ∅ ∅ - ∅ ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Blood in stool ∅ - ∅ ∅ - ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅

Dengue viral isolation ∅ - ∅ ∅ - ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Urine red blood cells ∅ - ∅ ∅ - ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅

Medical imaging
Neuroimaging report ∅ - ∅ ∅ - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ X⋆ ∅

Chest radiography ∅ - ∅ ∅ - ∅ X ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Bioeletrical impedance
Extracellular Water ∅ - ∅ ∅ - ∅ ∅ ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅

Body Cell Mass ∅ - ∅ ∅ - ∅ ∅ ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅

Reactance ∅ - ∅ ∅ - ∅ ∅ ∅ X⋆ ∅ ∅ ∅ ∅ ∅ ∅

Others‡ ∅ - ∅ ∅ - ∅ ∅ ∅ X ∅ ∅ ∅ ∅ ∅ ∅

X: Data available in the data set; ∅: Data not available in the data set; ⋆: Data used as input for the
models; -: Data set not described; †: PLT; WBC; HTC; HGB; NEUT; NEUT%: neutrophil percent;

LYMPH; LYMPH%: lymphocite percent; ALYMPH%: atypical lymphocite percent; MONO; MONO%:
monocyte percent; EOSBAS; EOSBAS%: eosinophile basofile percent; MCH; MCHC; MPV; PDW; PLCR;

RBC; RDW; ALT; AST; ALP; IgM; IgG; ELISA; HAI; JEV; RT-PCR; *This article searched Dengue’s
antibodies on cerebrospinal fluid samples; TORCHS;Others features as dataset models on article [72] were

resistance, phase angle, body capacitance, TRT = TBW/W, intracellular water, total body water,
extracellular water, fat mass, body mass index, lean body mass, (ERB) = (ECM/BCM), basal metabolic
rate, ERI = ECW/ICW. To confirm arboviruses diagnosis, some articles used WHO Dengue’s criteria [49],

or used database unpublished [46], or inaccessible [72], or didn’t specify how the procedure was
made [42,47,72]. Some atributes were generalized based on knowledge of the authors. Equivalent terms:

PLT [40,42,45,51,55,56,72], maximum and minimum PLT [49], or thrombocytes [50];
WBC [40,42,45,55,56], maximum and minimal count WBC [49], or leucoyte count [51]; High and low

hematocrit [49,56], initial or diagnosis hematocrit [50], or when just one measure was
made [40,42,43,45,51,55]; RDW CV or SV [40]; Protein [51], hypoproteinemia [50] or globuline [49]; Dengue

viral load [45] or Crossover threshold of DENV RT-CR [40].
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3.5 What are the metrics being used to evaluate the

performance of the Machine Learning and Deep Learning

techniques?

The common metrics used to evaluate a classifier are calculated based on a confusion
matrix. The confusion matrix is a cross table that records the number of occurrences
between the true classification and the classification predicted by the model [82]. It is
composed of four values:

• True Positive (TP): The number of values of the principal class that the model
predicts right.

• False Positive (FP): The number of values of the principal class that the model
predicts wrong.

• True Negative (TN): The number of values of the secondary class that the model
predicts right.

• False Negative (FN): The number of values of the secondary class that the model
predicts wrong.

Figure 4 presents the metrics used to evaluate the proposed models in the literature.
Some works used more than one metric, so some of them are duplicated in the graph.
The evaluation metrics used by the works found in this Systematic Literature Review
(SLR) are: sensitivity, accuracy, specificity, precision, Receiver Operating Characteristic
(ROC) and Area Under the Curve (AUC) and F1-score. Sensitivity and accuracy were
used in most works. Next, we describe each metrics.

Figure 4. Metrics used to evaluate the models proposed in the literature.

3.5.1 Sensitivity

Sensitivity, also know as recall, was used by seven
works: [45], [40], [49], [41], [51], [56], [42], [43], [46], [44], [50] and [48]. It defines how
well a model correctly predicted TP cases, being calculated as the number of TP
divided by the sum of TP and FN, as shown in Eq. 1.
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sensitivity =
TP

TP + FN
(1)

3.5.2 Accuracy

Accuracy was the most common metric used among the works found in this Systematic
Literature Review (SLR): [45], [40], [72], [49], [42], [41], [43], [46], [44], [50] and [48]. It is
used to find out how much a model is right. It is calculated as the sum of TP and TN
divided by the total of samples, as shown in Eq. 2.

accuracy =
TP + TN

TP + TN + FP + FN
(2)

3.5.3 Specificity

Specificity was used by five works found in this Systematic Literature Review
(SLR): [45], [40], [49], [41], [51], [56], [43] and [44]. This metric determines how well the
model correctly predicted TN cases. It is calculated by the number of TN divided by
the sum of TN and FP. Being calculated as presented in Eq. 3.

specificity =
TN

TN + FP
(3)

3.5.4 Precision

Precision was used in [56], [42], [46], [50] and [48]. This metric defines how many cases
classified as TP actually are TP, and is calculated as the number of TP divided by the
sum of TP and FP, as shown in Eq. 4.

precision =
TP

TP + FP
(4)

3.5.5 ROC and AUC

These metrics were used in four works, [51], [46], [44] and [47]. The ROC curve is a
graph to analyse the discriminating ability of the model, that is, how well the model is
able to divide between two classes. It is a graph with the True Positive Rate (TPR), the
sensitivity, in the x axis and the False Positive Rate (FPR), the complement of the
specificity, in the y axis. Based on ROC, it is possible to calculate the Area Under the
Curve (AUC). The AUC summarises the ROC curve in a single value, aggregating all
the ROC thresholds. Its result varies between 0 and 1; an AUC of 0.5 represents a test
without discriminating ability, while an AUC of 1.0 represents a test with perfect
discrimination [83].

3.5.6 F1-Score

The F1-score is the harmonic mean between two metrics: precision and sensitivity. It is
used when the objective is to seek a balance between these two metrics, being calculated
as presented in Eq. 5. This metric was used in [42], [46] and [48].

F1− score = 2×
precision× sensitivity

precision+ sensitivity
(5)

To address the imbalanced data issues mentioned earlier, more informative
assessment metrics can be used to evaluate models. These include AUC, precision-recall
curves and cost curves. Notwithstanding suspected imbalances, most of the included

August 10, 2021 22/35



studies employed traditional metrics such as accuracy, sensitivity and specificity.
Relatively few (3) used AUC [40,44,47].

4 Discussion

In this SLR on the use of ML and DL to support the clinical diagnosis of arboviral
diseases, we found 963 publications, 15 of which fulfilled the inclusion criteria and were
subsequently analysed in detail. We have reported our findings in five main categories:
(1) disease focus, (2) machine learning and deep learning technique, (3) machine
learning and deep learning model design, (4) data sets and attributes, and (5)
evaluation metrics. Comparing the selected studies, even within these categories, due to
the variation in focal disease and region, ML and DL technique, and ML and DL model
configuration. Results are not uniformly presented. Six of the
studies [41,42,44,46,51,56] did not provide sufficient detail on their proposed models,
none of the selected studies provided access to their data, and only one study [48]
provided details of their models online for download.

Firstly, given the low number of studies, it is important to note that there is a
clearly a dearth of research in the use of ML and DL to support clinical diagnosis of
arboviral diseases as a whole. This paucity of research is further exacerbated when one
considers that only three arboviral diseases (Dengue, Chikungunya, and Zika) feature in
the selected studies, and most of the papers (12) focus on one disease, Dengue.
Arboviruses, such as yellow fever, which did not feature in any of the selected studies
have significant burdens. 47 countries in Africa, Central and South America have
regions that are endemic for yellow fever. For example, in 2013, the burden of yellow
fever in Africa alone was estimated at 84,000–170,000 severe cases and 29,000–60,000
deaths. While Dengue, Chikungunya, and Zika undoubtedly require further study, there
exists a significant need for research in the wider spectrum of arboviral diseases. In
particular, given the similarity in symptoms across arboviruses, there is noteworthy lack
of research on ML and DL to support differential diagnosis using clinical data. While
some studies pursued multi-class classification, this was limited. Again, this may prove
to be a fruitful avenue of research.

Systems identified for ML and DL diagnosis of arboviruses using clinical data were
generally found to be effective. However, these findings must be tempered with caution.
In some cases, for example Sanjudevi and Savitha [44] and Sajana et al. [42], the
extremely high performance metrics suggest model overfitting. In both cases, there is a
lack of detail on model configuration, feature selection, and hyperparameter
optimisation. In the case of Sajana et al. [42], the data set is very small.

There is an increasing range of both ML and DL techniques that can be applied
effectively in bio-medical use cases. Our findings suggest that, to date, these techniques
have not been explored fully with a significant emphasis on tree-based models. In
particular, we note that only one paper made use of a deep learning architecture, a
CNN [45], and no papers made use of ensemble methods combining DL and ML. DL
methods are attracting significant attention in health due to their improved
performance, reduced manual feature engineering, and ability to accommodate the large
and complex data sets characteristic of the wider health domain, when compared to
traditional machine learning [84]. Future research should consider benchmarking the
performance of a wider set of DL architectures, both discretely and as part of ensembles,
including RNNs, DBNs, and DSNs, amongst others. In particular, LSTM and GRU,
both types of RNNs, may prove fruitful.

While ML and DL techniques represent a significant opportunity for research and
practice, they pose their own challenges. Two significant challenges are transparency
and data availability. ML and DL are often referred to as black box models as their
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inner workings is too complex for a human to comprehend. As such they have been
criticised for their lack of interpretability, comprehensibility, and transparency. For
legal, ethical, and scientific reasons, this is a significant issue for high stakes decisions
such as clinical diagnosis [85,86]. As such, there has been numerous calls for research on
explainable machine learning and AI (sometimes referred to as XAI) [85–87] and some
small but significant progress has been made in the use of XAI in clinical diagnosis,
albeit not in arboviruses, the focus of this paper (see for example [88]).

A second significant challenge in the diagnosis of arboviral diseases using clinical
data is more logistical and is related to the size of available data sets. Having a
sufficient data set to train and validate ML and DL models is critical. Firstly, none of
the studies in the sample explicitly describe or discuss imbalanced data, a common
feature across the studies. Secondly, our findings suggest that most of the data sets in
the selected studies were relatively small. One might argue, too small. The largest,
presented in Fahmi et al. [50] comprised only 14,019 records, while the smallest
comprised 20 records [42]. This both impacts confidence in results and generalisability
but also has practical implications for their future operational use. Overcoming these
problems requires a coordinated effort by health surveillance systems and researchers
worldwide and greater sharing of clinical data.

Feature selection and hyperparameter optimisation are key steps in the selection and
optimisation of ML and DL models. A significant issue in many of the selected studies
was the lack of detail on whether feature selection and hyperparameter optimisation was
used and if so, what techniques. Only Fathima and Hundewale [41], Faisal et al. [72]
and Veiga et al. [48] reported using a hyperparameter optimisation technique, the grid
search, to find better model configurations. Others [45, 49–51,56, 72] explicitly reported
applying feature selection techniques to find the attributes that provided the best
results for their models. Eight studies provide no detail at all [40, 43–48,55]. Assuming
these studies did not use these search and optimisation techniques, this represents an
opportunity for further performance improvement.

Our review focused on studies that made use of clinical data in their ML and DL
models. In some cases, this was not sole data source. For example, most of the selected
studies used clinical data with other types of data, such as laboratory test results to
support the diagnosis of a given arbovirus [40,42,43,45,48–51,55,56,72]. Arboviral
diseases are common in some of the poorest and remote regions of the world. Diagnosis
based on laboratory tests requires both the availability of specialised equipment and
staff to operate it. Even if available, in some instances this may add to the lapsed time
and complexity of diagnosis. In contrast, a decision support tool based on clinical data
using ML and DL is low-cost and rapid without the need of specialised resources.

In their guidelines for developing and reporting ML models in biomedical research,
Luo et al. [89] suggest that the following evaluation metrics should be reported
sensitivity, specificity, positive predictive value, negative predictive value, AUC, and
calibration plot. Our analysis suggests a significant gap between the selected studies
and these guidelines. While most studies evaluated sensitivity, specificity and predictive
values, few studies offered comprehensive evaluation across all metrics. For example,
only four studies measured performance using ROC and AUC.

5 Conclusions

This SLR presented an overview of the current literature that applies ML and DL
models for the classification of arboviral diseases as a support for clinical diagnosis. Of
the wide range of arboviruses, ML and DL research to diagnose arboviruses based on
clinical data is limited to the three most common infections - Dengue, Chikungunya and
Zika. We identified the main goals were largely binary classifications. In the case of
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Dengue, there is evidence of more nuanced attempts at multi-class classification e.g.
Dengue severity and risk. Similarly, there is some evidence of differential diagnosis both
within viruses (e.g. Dengue/Severe Dengue or Zika/Congenital Zika) however such
studies are the exception. Although a limited sample, the majority of included studies
focused on ML techniques rather than DL. Of the former, most were tree-based models
(Decision Tree, Adaboost, Gradient Boost, Random Forest). The solitary DL model was
a CNN, DenseNet. The most common evaluation metrics were accuracy, sensibility and
specificity. Despite evidence of imbalanced datasets, only three included studies used
AUC. In summary, ML and DL research to diagnose arboviruses is at a nascent level of
maturity.

We suggest that having an efficient and comprehensive arboviral diseases clinical
decision support system can improve the quality of the entire arboviral diseases clinical
process thereby increasing the accuracy, precision and throughput of diagnosis (and
mitigating the risk of misdiagnosis) and associated treatment. It would also help the
physicians in their decision making process and, as a consequence, improving resource
utilisation and patient quality of life as a whole. However, this requires a sustained,
focused, and systematic approach to research that places differential diagnosis and
reproducibility at its core. This implies greater coordination and sharing of data sets
and greater detail regarding model configuration, feature selection, and hyper-parameter
optimisation.

ML, and DL more specifically, have significant legal, ethical, and scientific
limitations particularly with respect to healthcare decision making, not least the black
box nature of many DL techniques. In terms of future research based on the results and
open challenges of a Systematic Literature Review (SLR), we highlight the following
directions, regarding the diagnosis and classification of arboviral diseases using ML and
DL: (1) use of different data types and sources including clinical and demographic data,
structured and unstructured data, for training and testing models; (2) applications of
techniques to address imbalanced data; (3) greater exploration and evaluation of DL
models and ensemble models, comprising ML and DL models, for arboviral classification;
(4) greater focus on differential diagnosis within and across a wider range of arboviruses;
(5) application of feature selection and hyperparameter optimisation techniques to
fine-tune models; (6) consistent use of a more comprehensive set of evaluation metrics
to accommodate imbalanced data, and (7) an easy-to-access diagnosis decision support
system in remote regions allowing for intermittent connectivity.

Acronyms

ALP Alkaline phosphatase. 20

ALT Alanine transaminase. 20

AST Aspartate aminotransferase. 20

AUC Area Under the Curve. 10, 12, 21–25

BIA Bioelectrical Impedance Analysis. 15

BRBES Specialized Belief Rules System. 12

CART Classification and Regression Tree. 6, 10, 11, 13

CNN Convolutional Neural Network. 6, 9, 10, 23, 25

CZS Congenital Zika Syndrome. 3, 5, 13, 16
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DALYs disability-adjusted life years. 2

DBNs Deep Belief Networks. 23

DDM Dengue Diagnostic Model. 10

DF Dengue Fever. 5, 9, 11–13, 15–18

DHF Dengue Hemorrhagic Fever. 5, 9, 11–13, 15–18

DHF1 Dengue Hemorrhagic Fever 1. 5, 9

DHF2 Dengue Hemorrhagic Fever 2. 5, 9

DHF3 Dengue Hemorrhagic Fever 3. 5, 9

DL Deep Learning. 1, 3, 4, 6, 8, 9, 14, 23–25

DSNs Deep Stacking Networks. 23

DSPM Dengue Severity Prediction Model. 10

DSS Dengue Shock Syndrome. 5, 9, 11, 12, 15–17

ELISA Enzyme-linked immunoassay. 20

EOSBAS Eosinophile basofile count. 20

FLBES Fuzzy Logic Based Expert System. 12

FN False Negative. 21

FP False Positive. 21, 22

FPR False Positive Rate. 22

GRU Gated Recurrent Units. 23

HAI Hemagglutination-inhibition assay. 20

HGB Hemoglobin. 20

HTC Hematocrit. 11, 18, 20

ID3 Iterative Dichotomiser 3. 6

IgG Immunoglobulin G. 20

IgM Immunoglobulin M. 20

JEV Japanese encephalitis virus. 20

kNN K-Nearest Neighbors. 6, 8, 12, 13

LOO leave-one-out. 13, 16

LSTM Long Short-Term Memory. 23

LYMPH Lymphocite count. 20
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MCH Mean corpuscular hemoglobin. 20

MCHC Mean corpuscular hemoglobin concentration. 20

ML Machine Learning. 1, 3, 4, 6, 8, 9, 14, 23–25

MLP Multilayer Perceptron. 7, 8, 10, 11

MONO Monocyte count. 20

MPV Mean platelet volume. 20

NEUT Neutrophil count. 20

NN Neural Networks. 6, 8, 10, 12

NTDs Neglected tropical diseases. 1

OFI Other febrile illness. 15, 17

PDW Platelet distribuition width. 20

PLCR Platelet large cell ratio. 20

PLT Platelet count. 11, 18, 20

RBC Red bllod cells count. 20

RDW Red cell distribuition width. 20

RNNs Recurrent Neural Networks. 23

ROC Receiver Operating Characteristic. 21, 22, 24

RT-PCR Reverse transcription polymerase chain reaction. 14, 18, 20

SLR Systematic Literature Review. 1, 3, 7, 14, 16, 18, 21–25

SOM Self Organizing Map. 11, 15

SVM Support Vector Machine. 6, 7, 10–12

TN True Negative. 21, 22

TORCHS Toxoplasmosis, Rubella, Cytomegalovirus, Herpes Symplex, and Syphilis
infections. 20

TP True Positive. 21, 22

TPR True Positive Rate. 22

WBC White blood ceels. 11, 18, 20
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Table 5. Overview of the primary studies.
Primary studies Year Target classification ML and/or DL Model configuration Software Metrics Hyperparameter optimisation Feature selection

Tanner et al. [40] 2008 (1) Dengue or not Decision Tree Not described Not described Sensitivity, specificity Not applied Decision Tree
(2) Severity of Dengue error rate, AUC

Fathima and Hundewale [41] 2012 Dengue or not Naive Bayes Default values from the package e1071 R Accuracy, sensitivity, Not applied Not applied
specificity, rate risk

SVM Not described Grid Search
Sajana et al. [42] 2018 Dengue or not Decision Tree Not described Not described Accuracy, precision, Not applied Not applied

recall, F-Measure
NN Not described

Gambhir et al. [43] 2018 Dengue or not NN hidden layers = 3 Not described Accuracy, sensitivity Not applied Not applied
lr = 0.3 specificity, error rate
momentum = 0.25

Decision Tree criterion = Information Gain
size of split = 2
min leaf size = 2
min gain = 0.01
max depth = 20
confidence = 0.5

Naive Bayes estimation method = greedy
min bandwidth = 0.01
num of kernels = 10

Sanjudevi and Savitha [44] 2019 Dengue or not Decision Tree Not described WEKA Accuracy, sensitivity, Not applied Not applied
specificity, AUC

SVM Not described
Ho et al. [45] 2020 Dengue or not Decision Tree criterion = gini Not described ROC, AUC Not applied Crude odds ratios

min leaf size = 20 Adjusted odds ratios
xval = 10
cp = 0.01

Logistic Regression solver = lbfgs
CNN hidden layers = 16

Potts et al. [55] 2010 Severity of Dengue Decision Tree criterion = gini SPSS Answer Tree 3.0 Sensitivity, specificity Not applied Decision Tree
min samples split = 0.05
max depth = 5
min impurity decrease = 0.0001

Phakhounthong et al. [56] 2018 Severity of Dengue Decision Tree Not described WEKA Accuracy, sensitivity, Applied but not described Logistic Regression
specificity

Faisal et al. [72] 2010 Risk of Dengue NN neurons = 10 Not described Accuracy Grid Search SOM
lr = 0.1
momentum = 0.99
iterations = 20.000

Thitiprayoonwongse et al. [49] 2012 DF, DHF1, DHF2 or DHF3 Decision Tree (1) confidence = 0.4 Not described Accuracy, sensitivity, Not applied Decision Tree
specificity

(2) confidence = 0.3
(3) Not described

Arafiyah et al. [46] 2018 DHF or not Random Forest Not described Orange Accuracy, sensitivity Not applied Not applied
SVM Not described
Naive Bayes Not described

Fahmi et al. [50] 2020 DF, DHF or DSS NN neurons = 100 Orange Accuracy, sensitivity, Not applied ReliefF
activation = Relu precision
solver = Adam
reg alfa = 0.0001
iterations = 200

Decision Tree criterion = Information gain
min leaf = 5
min instances = 2
max deph = 100

SVM c = 100
kernel = rbf
tolerance = 0.0010
max iteration = 100

KNN k = 5
distance metric = euclidean
weight = uniform

Random Forest n estimators = 10
size of split = 5
criterion = gini

Naive Bayes Not described
AdaBoost base estimator = Decision Tree

n estimators = 50
lr = 1.0
algorithm = SAMME.R
loss function = linear regression

Logistic Regression Default configuration
Hossain et al. [47] 2019 Chikungunya or not NN Not described Matlab AUC Not applied Not applied

SVM Not described
Veiga et al. [48] 2021 Zika (CZS) or not Random Forest n estimators = 100 Sensitivity, precision Grid search Applied but not described

max depth = 5 F1-score
size of split = 40

Gradient Boost max depth = 8
size of split = 5

KNN Not described
Decision Tree Not described
Adaboost Not described

Lee et al. [51] 2012 DF, DHF or Chikungunya Decision Tree Binary recursive partitioning R Sensitivity, specificity Pruning Logistic Regression
AUC
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