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Abstract  

 Flexible piezoelectric acoustic sensors (f-PAS) have attracted significant attention as a 

promising component for voice user interfaces (VUI) in the era of artificial intelligence of things 

(AIoT). The signal distortion issue of highly sensitive biomimetic f-PAS is one of the most 

challenging obstacle for real-life applications, due to the fundamental difference compared with the 

conventional microphones. Here, a noise-robust flexible piezoelectric acoustic sensor (NPAS) is 

demonstrated by designing the multi-resonant bands outside the noise dominant frequency range. 

Broad voice coverage up to 8 kHz is achieved by adopting an advanced piezoelectric membrane with 

the optimized polymer ratio. Deep learning-based speech processing of multi-channel NPAS is 

demonstrated to show the outstanding improvement in speaker recognition and speech enhancement 

compared to a commercial microphone. Finally, the NPAS independently identified the multi-user 

voices in a crowd condition, showing simultaneous speaker separation.    
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Introduction 

Voice user interface (VUI), the most intuitive human-machine interaction (HMI), is a 

promising technology for personalized services, such as smart home appliances, intelligent virtual 

assistant, and biometric authentication in the Artificial Intelligence of Things (AIoT) era .1–7 

Commercialized microelectromechanical system (MEMS) microphones exhibit a flat response with 

low sensitivity in the range from 20 Hz to 8 kHz 8–10. To enhance the signal-to-noise ratio (SNR) for 

far-distance detection, these capacitive microphones should be integrated with amplifying circuits, 

which results in the corresponding increase in noise and power consumption 11. Furthermore, the 

single channel of MEMS microphones generates insufficient voice information, causing low accuracy 

in voice recognition. In contrast, the human ear solves the above issue by adopting the resonant 

vibration of basilar membrane and the multi-channel voice detection with 10,000 hair cells 12–14. 

Recently, flexible piezoelectric acoustic sensors (f-PAS), mimicking the human cochlea, have 

attracted significant attention for sensing the voice spectrum by controlling resonant frequency bands 

via ultrathin trapezoidal membrane 15–19. Biomimetic f-PAS with high sensitivity and multi-channel 

signals exhibited an exceptional speaker recognition rate in miniaturized dimensions 19.  

The extremely sensitive response of lead-zirconate-titanate (PZT) based f-PAS can induce the 

significant interference between voice signals and ambient sounds 19,20. A precise detection of voice 

features (0.1 – 8 kHz), regardless of surrounding noise and environmental conditions, is crucial to 

identify the speech signals from multi-users 21–23. The previous f-PAS demonstrated the speaker 

recognition in anechoic conditions with a limited frequency coverage of up to 4 kHz 17,19. For 

commercial application, the f-PAS should prove consistent and broad frequency response with wide 

voice coverage bands in noisy environments. The conventional MEMS microphones have overcome 

the distorted voice signals via noise reduction circuits, statistical/adaptive filters, and machine 

learning (ML) based noise filtering 21,24–26. Recently, a new approach of noise-robust ML algorithms 

further improved the performance in speaker recognition and speech enhancement by treating voice 

input data like an image or calculating a weighted value for each signal 27,28. However, these noise 
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filtering and ML technologies were designed to process signals from capacitive-type MEMS 

microphones with a single-channel input 29–31. Therefore, the multi-channel f-PAS should be 

investigated based on totally different resonant mechanisms with new algorithms. 

 Herein, we report a noise-robust flexible piezoelectric acoustic sensor (NPAS) for highly 

accurate speech processing in real-life environments. The noise-robustness was realized via three 

different approaches: i) the frequency response of NPAS, ii) the image-like sound processing by 

convolutional neural network (CNN), iii) the newly designed deep U-net model for speech 

enhancement. The NPAS achieved noise-robust response by positioning the multi-resonant bands 

outside the noise dominant frequency range. To cover the entire human voice spectrum, the the 

frequency coverage of biomimetic NPAS was expanded up to 8 kHz by using Nb-doped PZT (PNZT) 

membrane. The highly sensitive NPAS proved the clear sound detection with less noise-interference, 

regardless of distance and sound pressure level (SPL), showing 35 times higher sensitivity and SNR 

than the conventional microphones. The speaker-separable characteristics of NPAS in noisy 

conditions were confirmed by visualizing the mel-frequency cepstral coefficient (MFCC) of multi-

voice signals in a t-Distributed Stochastic Neighbor Embedding (t-SNE) plot. Deep learning 

algorithms were introduced to further improve the speech processing of NPAS in noisy conditions. 

Using the CNN algorithm, the multi-channel NPAS achieved a 96% speaker recognition rate with a 

62% reduction in error rate compared to the commercialized microphone. Speech enhancement of the 

NPAS was also demonstrated by the selective processing of multi-channel signals via deep U-net 

model. Finally, the AI-based NPAS successfully separated multi-user voices from a crowd, indicating 

independent speaker’s speeches can be identified and digitalized simultaneously.  
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  Results  

Biomimetic NPAS and deep learning-based speech processing 

 Fig. 1a schematically illustrates the overall concept of deep learning-based speech processing 

via highly sensitive biomimetic NPAS. (i) The flexible piezoelectric membrane with a noise-robust 

resonant response was fabricated by mimicking the mechanism of human cochlear. The basilar 

membrane of trapezoidal shape detects multi-frequency components depending on the width, which 

can allow the human audible range from 20 Hz to 20 kHz 12–14. With a voice/noise frequency analysis, 

this biomimetic structure enables multi-tunable resonant bands for a noise-insensitive piezoelectric 

response by using the inversely proportional relationship between the resonance frequency and the 

width of NPAS 32, 

𝑓𝑓𝑟𝑟 ∝ 𝑡𝑡𝑙𝑙2�𝐸𝐸𝜌𝜌       (1) 

where 𝑓𝑓𝑟𝑟 is the resonance frequency, and 𝑡𝑡, 𝑙𝑙, 𝐸𝐸, and 𝜌𝜌 indicate the thickness, width, elastic modulus, 

and density of NPAS membrane, respectively. Most of the voice information for speaker/speech 

recognition is distributed in frequency range of 0.1 – 8 kHz while noise sources of industry, office, 

home, and transportation environments are dominant below 0.1 kHz 33–37. These distinctive frequency 

characteristics of voice and noise signals were utilized to achieve a less-distorted NPAS by locating 

resonance frequencies outside the noise range (only in the phonetic spectrum). To cover the entire 

voice spectrum up to 8 kHz with high sensitivity, the doping technique was used to improve the 

piezoelectric coefficient of PZT membrane based on the following equation 38–40,  𝑑𝑑33 ~ 𝜀𝜀0𝜒𝜒𝑟𝑟𝑃𝑃      (2) 

where  𝑑𝑑33 is the piezoelectric coefficient, 𝜀𝜀0 is the vacuum permittivity, 𝜒𝜒𝑟𝑟 is relative permittivity, 

and 𝑃𝑃  is the polarization. The substitutional donor dopant (Nb5+) increased the dipole/domain 

mobility and the polarization of perovskite piezoelectric thin film annealed on a sapphire substrate. A 

flexible PNZT membrane with exceptional piezoelectric properties was fabricated by the detachment 

from a rigid substrate via inorganic-based laser lift-off (ILLO) method (see “Methods” and 

Supplementary Fig. 1 for fabrication details) 20,40–48. The enhanced sensitivity enabled the broad 
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frequency coverage of resonant acoustic sensors over human voice spectrum, as shown in 

Supplementary Fig. 2a. (ii) The piezoelectric signals of multi-channel NPAS were generated by 

human voice and noisy sounds, providing the sufficient data for speech processing. Deep learning 

algorithms performed the training process of noise-mixed utterance dataset for the optimization of 

multi-channel NPAS signals. Finally, noise-robust speaker recognition and speech enhancement were 

demonstrated using the CNN and deep U-net algorithms, respectively.   

 Fig. 1b shows the flexible multi-channel NPAS membrane having the high flexibility and 

durability under bending deformation, which is crucial to maximize the piezoelectric conversion of 

minute sounds by resonant vibrations. As shown in the inset optical image, the trapezoidal NPAS film 

was interconnected to a printed circuit board (PCB) with a curvilinear sound hole for the bottom port 

microphone. The curved trapezoidal structure of NPAS membrane enabled the linear distribution of 

the multi-resonant frequencies from the apex region of channel 1 to the base position of channel 7. 

The multi-resonant vibrations of NPAS film are important to enhance the piezoelectric response over 

the entire voice spectrum. Fig. 1c presents the three-dimensional nanometer-scale displacements of 

multi-channel NPAS membrane under white noise at 94 dB SPL (the reference pressure of 1 Pa). By 

using a laser Doppler vibrometer (LDV), the laser light was irradiated on the entire area of vibrating 

NPAS film during a frequency sweep from 1 Hz to 8 kHz. The oscillation displacements of 

piezoelectric membrane were measured by calculating the difference in the frequency of incident and 

reflected light. The noise-robust piezoelectric response of NPAS was verified by negligible 

movements in the noise-dominant range. The displacements of a few nanometers were generated 

below 0.1 kHz, whereas the sound waves in the phonetic spectrum induced the intensive vibrations 

of ~ 180 nm. These results indicate that the multi-channel NPAS can generate the exact sound signals 

with less-interfered piezoelectric response and entire voice spectrum coverage.  
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Characterization of flexible PNZT thin film.  

 The crystal quality of piezoelectric film is important to improve the sensitivity and detection 

distance of flexible piezoelectric acoustic sensors 20,42,49. However, perovskite materials should be 

annealed at high temperature for the crystallization, which is not compatible flexible plastic substrates 

41. Fig. 2a shows the X-ray diffraction (XRD) analysis data of the PNZT membrane on PET substrates 

measured by out-of-plane (θ-2θ) scan mode, indicating the polycrystalline perovskite structures after 

the ILLO process. The θ-2θ XRD peaks show that high-quality inorganic thin film with an identical 

orientation was achieved on a flexible substrate after the detachment from a rigid sapphire substrate 

of Supplementary Fig. 3. The XRD results as a function of annealing temperature were also analyzed 

to exhibit the {100}-oriented high crystallinity above 650℃ by comparing the full width at half 

maximum (FWHM) of the rocking curve, as depicted in Supplementary Fig. 4 40,41. The heat-treated 

1 µm thick PNZT membrane was transferred onto a flexible substrate without the mechanical damage 

of cracks and fracture, as shown in the inset cross-sectional scanning electron microscopy (SEM) 

images. SEM images of the PNZT surfaces annealed at four different temperatures represent the large 

average grain size above 650℃, as displayed in Supplementary Fig. 5. This observation suggests that 

the superior PNZT membrane can be obtained based on the relationship between grain size and 

piezoelectric properties 41,50. Supplementary Fig. 6 is the Raman spectra of the PNZT thin film for the 

characterization of perovskite phases, which reveals that the ILLO process enabled the transfer of 

piezoelectric membrane annealed at high temperature onto plastic substrates 20,40,41. The lattice 

configuration of PNZT crystalline was also maintained as depicted in the high-resolution transmission 

electron microscopy (HRTEM) images of Supplementary Fig. 7. These structural characterizations 

confirm that the highly sensitive flexible PNZT membrane was developed because the piezoelectric 

properties are dependent on crystal orientation, and polymorphic phase 40,42. Fig. 2b presents the 

surface analysis results of PNZT membrane after the ILLO process by using X-ray photoelectron 

spectroscopy (XPS). The XPS spectra obtained from the PNZT surface indicates that laser irradiation 

did not change the elemental binding energy of the piezoelectric film, compared with Supplementary 
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Fig. 8. A compositional analysis was also characterized by energy dispersive spectroscopy (EDS) 

elemental mapping, as shown in the inset of Fig. 2b (see Supplementary Fig. 9, 10 and Supplementary 

Table 1 for details). An insignificant chemical composition change (Nb: 0.08 at%) was observed on 

the laser-irradiated PNZT surface. These compositional characterizations indicate that the 

piezoelectric properties of high-temperature annealed inorganic membrane can be retained on a 

flexible PET substrate.  

 Ferroelectric properties are crucial to maximize the resonant sensor performance up to 8 kHz 

by enhancing the piezoelectric coefficient 38–40. Fig. 2c depicts the relative permittivity and loss 

tangent measured to compare the ferroelectric characterizations between PZT and PNZT thin film 

over the human voice spectrum. The dielectric properties were characterized with the interdigitated 

electrodes (IDEs) deposited on the piezoelectric membrane, at an oscillation voltage of 5 mV, as 

shown in the inset optical image of Supplementary Fig. 12b. The flexible PNZT film exhibited higher 

relative permittivity and similar dielectric loss tangent δ (1000 and 0.04 at 1 kHz) compared to the 

PZT film (600 and 0.03 at 1 kHz). The improved dipole/domain mobility was attributed to the donor 

dopant reducing the oxygen vacancy with the defect dipoles of NbZr − VPb"  and NbZr − VPb"  51–53. As 

displayed in Supplementary Fig. 11, 12, the ferroelectric properties were also analyzed as functions 

of annealing temperature and Nb concentration. The maximum values of permittivity and polarization 

were shown in 4% Nb-doped PNZT membrane annealed at 650℃. These results suggest that the 

highly sensitive NPAS can be fabricated by using the optimized PNZT thin film based on Eq. (2). To 

investigate the PNZT membrane effect on acoustic sensors, the theoretical piezoelectric response at 

the first resonance was calculated via a finite element method (FEM) simulation. Fig. 2d shows the 

calculated relative sensitivity of NPAS using the FEM simulation with the following equation,  

Sens. (dBV) = 20 𝑙𝑙𝑙𝑙𝑙𝑙 𝑉𝑉𝑉𝑉0     (3) 

where Sens. is the sensitivity, dBV is the units of decibels with respect to 1 volt, 𝑉𝑉 is the root mean 

square voltage, and 𝑉𝑉0 is the reference of 1 volt. The PNZT membrane presented 4 dBV higher 

sensitivity compared to a PZT film, which proves that the Nb dopant can enhance sensor performance 



     

 9 

with superior piezoelectric properties. A broad resonant bandwidth (∆𝑓𝑓 ~ 400 Hz) of PNZT film was 

obtained with the 25 µm thick flexible substrates, indicating the low quality factor (Q factor, ~ 1.7) 

at the first resonance frequency of NPAS. The Q factor is inversely proportional to the bandwidth as 

in the following equation,  

Q =
𝑓𝑓0∆𝑓𝑓       (4) 

where  𝑓𝑓0 is the resonance frequency, and ∆𝑓𝑓 is the frequency bandwidth below 3 dB of the resonant 

peak value. The effect of polymer ratio on the bandwidth and sensitivity was also theoretically 

calculated to verify that the 25 µm thick PET could be used for broadening the detectable frequency 

range of NPAS, as depicted in Supplementary Fig. 13. These material analysis and simulation results 

indicate that the NPAS can cover the entire voice spectrum up to 8 kHz by using highly sensitive 

PNZT thin film on the optimized plastic substrates. Note that the NPAS exhibited higher figures of 

merit for sensitivity and frequency coverage compared to previous resonant piezoelectric acoustic 

sensors (see Supplementary Fig. 2b and Supplementary Table 2) 15,16,18,20,54–57. 

 

Multi-resonant characterization of NPAS.  

 The frequency components of sound sources should be analyzed to design the multi-resonant 

bands. Fig.3a shows the Fast Fourier Transform (FFT) signals of original voice (i) and noise (ii), 

comparing the frequency domain characteristics. The voice FFT response indicates the major 

components of the human voice (male/female utterance of 1088153/9014) are above 0.1 kHz while 

the dominant range of noise signals (indoor/outdoor environmental sound) are below 0.1 kHz 33–37. 

Note that the most discriminative information for speaker/speech recognition is located in the high 

frequency region (3.5 – 8 kHz) of voice spectrum 58,59. Fig.3b displays the relative sensitivity of NPAS 

with multi-resonance bands over the human voice range. The relative sensitivity refers to the 

frequency response of NPAS compared to a reference capacitive microphone (G.R.A.S. 46BE). The 

NPAS covered the entire voice spectrum up to 8 kHz by combining the improved piezoelectric 

properties of inorganic membrane and resonance bands of multi-channel, showing higher sensitivity 
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than capacitive microphone in the high frequency region. The frequency response was measured in 

the free field condition of anechoic chamber with the white noise (a mixture of frequencies with equal 

intensity) at 94 dB SPL, which could obtain the electrical output signals without external noise and 

wave reflection 60. The relative sensitivity of NPAS was plotted by acquiring the highest electrical 

signal among seven channels. The detailed frequency distribution of seven NPAS channels from 0.1 

to 8 kHz are depicted in Supplementary Fig. 15. As displayed in Supplementary Fig. 16, the NPAS 

was optimized by comparing the frequency response depending on Nb concentration, that verified the 

correlation between sensitivity and piezoelectric properties (Supplementary Fig. 12). The highly 

sensitive response of acoustic sensors is required for clear sound recognition from a far-distance since 

the sound pressure decreases as a function of the distance 61. Based on the calculation with Eq. (3), 

the maximum relative sensitivity of NPAS was 398 times (52 dBV) higher in units of voltage than 

the reference condenser microphone at the first resonance of 650 Hz. Supplementary Fig. 14 presents 

the frequency response of NPAS compared to the commercial G.R.A.S microphone over the noise-

dominant range (1 ~ 100 Hz). As depicted in the inset of Fig. 3b, the noise-robust piezoelectric 

response was confirmed by comparing the maximum output voltage of NPAS membrane over the 

noise-dominant range and the phonetic spectrum. The negligible piezoelectric voltage was measured 

below 0.1 kHz, while the sound over voice frequency range generated the significant electrical output. 

The multi-resonant responses of NPAS were theoretically investigated to prove that the enhanced 

piezoelectric properties improved the voice spectrum coverage. Fig. 3c illustrates the FEM results for 

the NPAS membrane to analyze the mechanical displacements under the monochromatic sound waves 

of resonance modes. At the 4th mode of 1810 Hz, the maximum displacement of 180 nm was observed 

near the region of channel 4. As the resonance frequency was increased up to the 12nd mode, the 

maximum displacement region shifted towards the narrow position of channel 7 (see Fig. 3c and 

Supplementary Fig. 17). Note that the sensor performance decreases as the IDE channel width 

becomes narrow because of the linear relationship between sensitivity and active piezoelectric area. 

However, the middle region of highly sensitive NPAS membrane was resonated intensively with the 
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13rd harmonic mode sound, which enabled the broad resonance band in the range of 6.5 – 8 kHz, as 

displayed in Fig. 3b and Supplementary Fig. 18.  

 In flexible resonant acoustic sensors, highly efficient piezoelectric conversion is crucial to 

detect minute sound without the amplification circuit that causes increase in power consumption and 

noise fluctuation, as presented in Supplementary Fig. 19 11,61. Fig. 3d presents the electrical voltage 

outputs of multi-channel NPAS under monochromatic sound waves of 94 dB SPL. As shown in 

Supplementary Fig. 17, piezoelectric signals of the 1st, 2nd, and 3rd resonances were shown at 

channels 2, 3, and 4, respectively. The high frequency response of NPAS was compared with the 

commercialized G.R.A.S microphone by measuring the sensitivity at sound waves of 2, 3, 4, 5, 6, and 

7 kHz, as depicted in the inset of Fig. 3d. The magnified sinusoidal voltages of NPAS and the 

reference microphone are displayed in Supplementary Fig. 20. The outstanding peak-to-peak voltage 

of NPAS (~ 130 mV at 1st resonance) was up to 35 times higher than the commercial condenser-type 

microphone (~ 3.7 mV). To detect far-distant voice clearly with less noise-interference, acoustic 

sensors require high sensitivity and SNR without amplification 11,61. Fig. 3e shows the sensitivity 

expressed logarithmically in units of dBV under monochromatic sound, converted from the NPAS 

voltage signal of Fig. 3d by using Eq. (3). Self-powered NPAS exhibited the exceptional sensitivity 

of – 26 dBV at the first resonance mode, providing the solution for the amplifier-induced limitations 

of MEMS microphones. Fig. 3f displays the SNRs of NPAS under the monochromatic sound waves 

of the 1st – 3rd resonances (i), and 2 – 7 kHz (ii). The SNRs of self-powered NPAS were calculated 

by subtracting the sensitivity peaks and electrical noise base line. The highly sensitive NPAS 

exhibited the exceptional SNRs of 94, 83, and 82 dBV at each harmonic frequency (Fig. 3f, i), 

showing the less-interference property compared to 63 dB of the commercial capacitive microphone. 

As presented in Fig. 3f, ii, the noise-robust characteristics were also proved at non-resonant high 

frequencies due to the broad resonant bandwidth.  

 Fig. 3g shows the sensitivity and SNR of highly sensitive NPAS as a function of distance. The 

relationship between the sound pressure level and the distance is defined by the following equation,  
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∆𝐿𝐿𝑝𝑝 = 20 log
𝑟𝑟𝑓𝑓𝑟𝑟𝑖𝑖      (5)  

where ∆𝐿𝐿𝑝𝑝 is the difference in the sound pressure level, 𝑟𝑟𝑓𝑓 is the final distance between the speaker 

and NPAS, and 𝑟𝑟𝑖𝑖  is the initially measured distance from the sound source. As described in 

Supplementary Fig. 21a, the reference pressure of 94 dB SPL was obtained from the initial position 

(𝑟𝑟𝑖𝑖), where the sensitivity and SNR of NPAS were – 26 dBV and 94 dBV, respectively. The sensitivity 

and SNR of NPAS were inversely proportional to the distance because the SPL decreased depending 

on the measurement distance 49. In addition, Supplementary Fig. 21b displays the sensitivity of NPAS 

as functions of distance and incident angle for the directional characterization. The exceptional 

sensitivity and SNR of NPAS were maintained at different distance and angle, indicating the 

capability of far-distant voice recognition without the directional distortion. The inset of Fig. 3g shows 

the linear relationship between the piezoelectric voltage and pressure at the first resonance. The output 

voltage of highly sensitive NPAS increased from 0.1 mV to 190 mV by increasing the pressure up to 

6.3 Pa. The linearity of NPAS suggests the feasibility of voice recognition in wide sound pressure 

range for practical applications.  

 

Deep learning-based noise robust speaker recognition. 

 The voice features generated by acoustic sensors should be similar to the original sound 

sources for accurate speaker recognition 21–23. Fig. 4a presents the waveform of original sound signal 

and NPAS signal by using TIDIGIT speech (man, voice of 1088153) and real-world noise (knock 

sound of Supplementary Fig. 22, 23). As displayed in Fig. 4b, the time-domain voltage signals were 

converted into the frequency-domain MFCC using a Discrete Cosine Transform (DCT) for the feature 

extraction 21. The multi-channel NPAS represented the time-varying frequency characteristics similar 

to original speech data, generating the abundant voice information with the entire phonetic spectrum 

coverage for the speaker recognition of neural network model. Fig. 4c shows the seven-channel NPAS 

flowchart of CNN-based deep learning process for the speaker recognition with multi-resonant signals. 

The forty speakers were randomly selected from the standard TIDIGITS dataset for recording the 
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voice information (20 men and 20 women speakers, 77 speeches per each speaker, a total of 3080 

voice data). The 2800 speech data were used to train the CNN classifier while 280 voice data were 

utilized to evaluate the performance of speaker recognition. The MFCC features were extracted after 

the Short-Time Fourier Transform (STFT) process was performed in each frame of the noisy speech 

signal 21. The CNN algorithm was trained with the MFCC features by minimizing the objective 

function of cross-entropy loss,  𝑙𝑙 = −∑ 𝑦𝑦𝑖𝑖log (𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖))𝐶𝐶𝑖𝑖=1      (6) 

where 𝑙𝑙  is the cross-entropy loss function, 𝐶𝐶  is the number of speakers, 𝑦𝑦𝑖𝑖  is the label, 𝑓𝑓𝑖𝑖  is the 

probability predicted by the CNN model, and 𝑥𝑥𝑖𝑖 is the MFCC input. As illustrated in Supplementary 

Fig. 24, the speaker recognition was conducted using an attention method that automatically applies 

the weighted values in the crucial channels of NPAS under noise levels from – 10 dB to 20 dB.   

 To verify the noise-robust voice detection, the NPAS speech signals were compared with 

MEMS microphone. Fig. 4d displays the MFCC features visualized in the scatter t-SNE plots by using 

the test datasets of the commercial microphone (i), and NPAS (ii). The t-SNE plots embedded the 

high-dimensional voice characteristics of 40 speakers into a two-dimensional (2D) space, which 

showed the probability distributions of similar speech clusters even under the extremely noisy 

conditions of – 10 dB SNR. The noise level, SNR, is defined by the following equation,  

SNR = 20log
𝑉𝑉𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑉𝑉𝑠𝑠𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛   

where 𝑉𝑉𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙 and 𝑉𝑉𝑠𝑠𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛 are the voltage of signal and noise, respectively. Compared to the complexly 

mixed distribution of MEMS features, the NPAS features were clearly separated into different speaker 

clusters, indicating the higher recognition performance with noise-robustness. Fig. 4e shows the 

superior noise-robust characteristics of NPAS by comparing the decrease in speaker recognition rate 

as a function of noise levels. The NPAS exhibited only 8% reduction in recognition rate under the 

high noisy level of – 10 dB with 10 noises, whereas the accuracy of commercialized microphone 

decreased from 91% to 68%. It is noteworthy that the difference in accuracy rate was higher as the 

noise level increased. In addition, the recognition rate of NPAS outperformed the MEMS microphone 
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for both clean speech signal and single noisy signal (Supplementary Fig. 25, 26). Fig. 4f presents the 

speaker recognition error rate of the MEMS microphone and NPAS depending on the number of 

noises. The NPAS achieved a 61% reduction of error rate under the harsh conditions of – 10 dB with 

40 noises, compared to commercial MEMS microphone. The outstanding speaker recognition was 

successfully demonstrated using noise-robust and highly sensitive frequency response of multi-

channel NPAS with the channel attention-based CNN architecture.  

 

Speech enhancement via deep learning model.  

 Fig. 5a shows a flow chart of Deep U-net based Speech Enhancement (DEEP-SEA) model to 

extract the de-noised speech signal from a time-domain noisy waveform. The DEEP-SEA model was 

newly designed to improve the performance by using the attention block and Gated Recurrent Unit 

(GRU) between the encoder and decoder. The TIDIGITS dataset was utilized to investigate speech 

enhancement under 3 different SNR levels from – 5 to 5 dB. The encoder layers of DEEP-SEA model 

transformed the TIDIGITS signals, providing the voice features to the decoder through the skip 

connections and the attention module (see “Methods” for detailed process). To enhance the speech 

quality of output data from the decoder, the DEEP-SEA model was trained by minimizing the 

following loss equation,  𝐿𝐿𝑆𝑆𝐸𝐸(𝑤𝑤,𝑤𝑤�) = ‖𝑤𝑤 − 𝑤𝑤�‖1 +
1𝑁𝑁∑ 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑁𝑁𝑠𝑠=1 (𝑤𝑤,𝑤𝑤�)   (7) 

where 𝐿𝐿𝑆𝑆𝐸𝐸  is the speech enhancement loss function, 𝑤𝑤 is the ground clean waveform, 𝑤𝑤�  is the de-

noised waveform, ‖∙‖1 is the Manhattan distance, N is the number of STFT losses, and  𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠  is the 

n-th resolution of multi-resolution STFT loss. End-to-end speech enhancement was performed with a 

single waveform by averaging the multi-channel signals or selecting one channel data among the 

seven NPAS signals. Supplementary Fig. 27 presents the waveforms of MEMS and NPAS signals 

(man, voice of 11292OO, and 5 noises mixture) comparing the time-domain data before and after 

speech enhancement. The clean voice waveform was obtained with the DEEP-SEA model by 

removing other sound signals, as shown in Supplementary Movie 1. As displayed in Fig. 5b, the STFT 
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algorithm was utilized to represent the speech information as a function of frequency. The speech-

enhanced STFT spectrograms of MEMS microphone and NPAS showed the similar frequency 

components contained in voice signals. The NPAS exhibited more distinct voice features than the 

commercial microphone in the STFT spectrogram even without the noise filtering process, indicating 

the noise-robust characteristics of voice-resonant NPAS.  

 The objective measures were evaluated to compare the de-noised speech quality of MEMS 

and NPAS signals as a function of noise level. A high score in the objective evaluation means that the 

enhanced speech signals are high-quality sound without noise 62. As presented in Fig. 5c, the standard 

metrics based on human auditory perception are the perceptual evaluation of speech quality (PESQ), 

and short-time objective intelligibility (STOI). A high PESQ indicates that the de-noised output 

signals are similar to the original clean data while the STOI measures the comprehensibility of speech 

data by comparing the time-frequency components. The NPAS achieved a higher score in both PESQ 

and STOI than the commercialized microphone (32% and 8% improvement, respectively), that proved 

the clear and unmodulated speech signal after the enhancement processing. Fig. 5d displays the 

evaluated composite measure for signal distortion (CSIG) of the commercial microphone and NPAS. 

The CSIG score of MEMS microphone was up to 3.9 at the low noise level of 5 dB, whereas the 

NPAS exhibited the less-distorted sound signal with the score of 4.1 in the extremely noisy condition 

of – 5 dB. Fig. 5e shows the comparison of the speech signals between the commercial microphone 

and the NPAS by calculating a composite measure for background noise intrusiveness (CBAK). An 

outstanding improvement of 109% was achieved with the two-averaging NPAS signals, showing 

superior voice enhancement of multi-resonant NPAS compared to the MEMS microphone. The 

exceptional speech quality was attributed to the selective data processing of multi-channel NPAS 

signals, as displayed in Supplementary Fig. 28, 29. The NPAS data for single channel 3 and two-

averaging showed the high score in CSIG and CBAK, respectively. Note that the single channel 3 has 

the notable high frequency characteristics over the range of 4 ~ 5 and 7 ~ 8 kHz. Fig. 5f presents the 

enhancement in composite measure for overall speech quality (COVL) of NPAS via the intentional 
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channel selection. The COVL score of MEMS microphone, seven-averaging, two-averaging, and 

single channel 3 were rated as 2.6, 3.0, 3.5, and 3.6 at the high noisy level of – 5 dB SNR, respectively. 

The NPAS channel 3 exhibited a 40 % increase in COVL score compared to the commercialized 

microphone. The exceptional quality of speech-enhanced NPAS signals was enabled by the noise-

robust STFT features and multi-channel voice data.  

 Fig. 5g schematically illustrates the speaker separation using the multi-channel NPAS. In the 

experiment, the speakers and crowd were located at 2 m and 3 m distant from the NPAS, respectively. 

The voices of different speakers can be regarded as noisy data due to the interference among speech 

signals. The multi-user signals were detected based on the frequency response and directional 

characteristics of NPAS (Supplementary Fig. 13, 18). The independent vector analysis (IVA) 

algorithm was utilized to separate the voice waveform of each speaker by real-time processing 

(Supplementary Movie 2). Note that the IVA algorithm requires a microphone array to separate the 

multi-speaker with high accuracy 63. Fig. 5h shows the comparison of signal-to-distortion ratio (SDR), 

and signal-to-interference ratio (SIR) for each speaker depending on the number of NPAS channels. 

The high SDR and SIR are important metrics of speaker separation, representing clear speech data 

without the voice of each other user. As the number of channels was increased from 1 to 7, the SDR 

and SIR of speaker A were improved up to 6 and 9.3, respectively. The separated speech signals of 

speaker B exhibited more distorted but less interfered voice information compared to speaker A, that 

was analyzed by 1.8 dB lower SDR, and 0.5 dB higher SIR, respectively. These results suggests that 

the multi-channel NPAS could be used as an acoustic sensor array for separating multi-speakers in a 

crowd. Fig. 5i displays the separation performance of seven-channel NPAS by measuring the SDR 

and SIR of speaker A as a function of iterations. The SDR and SIR values of separated speech signals 

were enhanced by ~ 1.6 times (3.6 dB and 4.3 dB, respectively) when the number of iterations was 

10. This efficient data processing was attributed to the multi-channel speech signals of the single 

NPAS chip, indicating the potential of NPAS in real-time IoT applications of multi-speaker separation 

and recording.   
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 Discussion 

 In summary, we developed a noise-robust and broad spectrum-covering NPAS for deep 

learning-based speech processing by mimicking the multi-resonant mechanism of human cochlear. 

The multi-channel NPAS with voice-resonant bands achieved the insensitive response to noise 

components over the entire voice spectrum up to 8 kHz. The broad frequency coverage of NPAS was 

enabled by using the optimized PNZT membrane of superior piezoelectric properties. The biomimetic 

NPAS membrane detected the far-distant and minute voice signals without the distortion and 

interference while showing outstanding sensitivity and SNR (- 26 and 94 dBV) at the first resonance 

mode of 650 Hz. The noise-robust and speaker-separable characteristics of NPAS were visualized in 

a t-SNE plot using the MFCC features of multi-voice signals. The NPAS with multi-channel attention 

CNN achieved a 61% reduction in speaker recognition error rate compared to the commercialized 

microphone in the condition of 40 noises mixture and – 5 dB noise level. The DEEP-SEA model was 

developed to enhance the noise filtering performance by adding the attention block for the 

optimization of NPAS signals. The selective channel processing of DEEP-SEA model improved the 

objective quality metric of NPAS speech signals up to 109% compared to the conventional MEMS 

microphone. Finally, the multi-speaker separation was successfully processed by using NPAS and 

IVA algorithm.  
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Methods 

Fabrication of the NPAS 

A PNZT chemical solution (QUINTESS Co. Ltd., 0.4 M) was spin-coated on rigid sapphire substrates 

(Hi-Solar Co.), followed by a rapid thermal annealing (RTA) procedure for crystallization. The 

deposition process was repetitively conducted to form a 1 µm thick PNZT film. Subsequently, the 

surface of PNZT membrane was treated with O2 plasma using inductively coupled plasma-reactive 

ion etching (ICP-RIE, SNTEK Co.). The ultraviolet (UV) sensitive polyurethane (PU, Norland 

Optical Adhesive) was spin-coated to attach a 25 µm thick PET to the crystallized PNZT thin film. 

The PNZT membrane was transferred onto flexible substrates by irradiating XeCl laser (wavelength 

of 308 nm) on the transparent mother substrates. After the ILLO process, seven IDEs channels (Cr/Au, 

thickness of 10 and 100 nm) were patterned on the surface of detached PNZT thin film using 

conventional microfabrication. The multi-channel NPAS was covered with a PU passivation layer to 

prevent mechanical and electrical damage. Finally, a poling process was conducted to align the 

piezoelectric dipoles after interconnection of NPAS and PCB.  

 

Material Characterizations 

The crystallographic properties of the PNZT thin film were characterized by a multipurpose thin-film 

X-ray diffractometer (D/MAX-2500, RIGAKU), a high resolution Raman/PL system (LabRAM HR 

Evolution Visible/NIR, HORIBA), and a field emission transmission electron microscope (Talos 

F200X, FEI). The compositional analyses of PNZT on both sapphire and PET plastic substrates were 

conducted using a multi-purpose X-ray photoelectron spectroscope (Sigma Probe, Thermo VG 

Scientific) and an energy dispersive X-ray spectroscope (SU5000, Hitachi). The morphological 

images were investigated with a focused ion beam scanning electron microscope (Helios G4, FEI), a 

field emission scanning electron microscope (SU5000, Hitachi), and an optical microscope (VHX-

1000E, Keyence). The polarization-electric field hysteresis was analyzed using a ferroelectric 

measurement system (Precision Premier II, Radiant Technologies).  
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Mechanical and Electrical Signal Measurement 

The mechanical displacements of the NPAS were characterized using an LDV (He-Ne laser, 

wavelength of 633 nm) with the frequency sweep of a mouth simulator (type 4227-A, Bruel & Kjaer).  

Electrical signals were measured via a National Instruments (NI) Sound Module under white noise 

and monochromatic sinusoidal sound waves generated with a function generator and mouth simulator. 

The NPAS characteristics were compared with a commercialized reference microphone (G.R.A.S. 

46BE, condenser type) under the same conditions of 94 dB SPL. The TIDIGITS dataset was recorded 

by NPAS and a commercial phone (Samsung, Galaxy S8) under the same conditions to compare the 

speaker recognition and speech enhancement results.  

 

Resonance Simulation  

FEM simulation (COMSOL Multiphysics 5.2 software) of the NPAS was conducted to theoretically 

calculate the sensitivity, spectrum bandwidth, resonant frequencies, and vibrational displacements. 

The curvilinear membrane shape was constructed as an actual NPAS structure (5 mm of w1, 20 mm 

of w2, and 30 mm of l). The resonant frequency (Eq. (1)) was simulated to investigate the resonance 

distribution, and oscillation displacement in the NPAS membrane. The sensitivity of PZT and PNZT 

thin film for the frequency response of NPAS was compared by using the Eq. (3). The resonant 

bandwidth was also calculated as a function of the polymer to piezoelectric film ratio.  

 

Speaker Recognition  

A deep learning-based network (CNN) was utilized to classify 40 speakers for both data collected 

using a commercial cellular phone (Samsung, Galaxy S8) and the multi-channel NPAS. The noisy 

voice dataset was prepared by mixing 10 ~ 40 types of noises (indoor and outdoor sound sources) 

with clean TIDIGTIS speeches. After the waveforms were sliced into multiple frames through a pre-

emphasis filter, a window function was applied to each frame. The filter banks were computed by 

using the STFT-converted frames, which enabled extraction of the MFCC features with a DCT 
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method. The CNN classifier was trained for 3000 epochs until the convergence with MFCC features 

extracted from Phone S8 and NPAS. Error rates were compared by calculating the simple equation of 

(100 – recognition rate (%)).  

 

Speech Enhancement  

De-noised voice signals were extracted via end-to-end speech enhancement using a single noisy 

waveform with a sampling rate of 16 kHz. To produce an input waveform, the single voice signal was 

generated by averaging or selecting the NPAS signal from seven IDEs. The model consists of two 

main components: i) encoder and decoder networks composed of 1D convolutional layers with 

standard U-net skip-connections; ii) an attention layer followed by Gated Recurrent Unit (GRU) 

blocks between the encoder and decoder. Both the encoder and decoder networks are composed of L 

layers, a kernel size of K, and stride equal to S (L=5, K=8, and S=4 in this model). The i-th encoder 

layer includes two 1D convolutional layers with the number of channels as in the equations below,   𝐶𝐶𝑖𝑖𝑠𝑠,𝑖𝑖 = 48 × 2𝑖𝑖−2, 𝐶𝐶𝑛𝑛𝑜𝑜𝑡𝑡,𝑖𝑖 = 2𝐶𝐶𝑖𝑖𝑠𝑠,𝑖𝑖 = 48 × 2𝑖𝑖−1    (7) 

where 𝐶𝐶𝑖𝑖𝑠𝑠 is the number of input channels, and 𝐶𝐶𝑛𝑛𝑜𝑜𝑡𝑡 is the number of output channels (𝐶𝐶in,1 = 1, and 

1 ≤ 𝑖𝑖 ≤ L). The Exponential Linear Unit (ELU) activated the outputs of the first convolutional layer, 

which was then passed to the second convolutional layer and Gated Linear Unit (GLU) activation. 

The outputs of each encoder layer were passed to the subsequent layer and the corresponding decoder 

layer via skip connection, providing the output of the encoder (denoted as X) to the attention layer. 

After the output of the attention layer was passed over the two GRU layers with a hidden size 

of  48 × 2𝐿𝐿−1 , the latent representation was produced as  Z =  X + GRU(Attention(X)) . This 

representation was further passed to the decoder network having transpose convolutional layers 

constructed in the same manner as the encoder layers. In contrast with the encoder, the layers in the 

decoder network were numbered in a reverse direction from L to 1. The skip connections connect the 

i-th decoder input with the output of the i-th encoder. The DEEP-SEA model was trained utilizing a 

multi-resolution STFT loss,  
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𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠 (𝑤𝑤,𝑤𝑤�) = 𝐿𝐿𝑆𝑆𝐶𝐶(𝑤𝑤,𝑤𝑤�) + 𝐿𝐿𝑀𝑀𝑠𝑠𝑠𝑠(𝑤𝑤,𝑤𝑤�)     

=
‖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤�)‖𝐹𝐹‖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)‖𝐹𝐹 + ‖𝑙𝑙𝑙𝑙𝑙𝑙|𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)|− 𝑙𝑙𝑙𝑙𝑙𝑙|𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤�)|‖1  (8) 

where 𝐿𝐿𝑆𝑆𝐶𝐶  is the spectral convergence loss, 𝐿𝐿𝑀𝑀𝑠𝑠𝑠𝑠 is the magnitude loss, ‖∙‖𝑆𝑆 is the Frobenius norm, 

and |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(∙)|  is the STFT magnitudes of waveform. The ranges of STOI, PESQ, and 

CSIG/CBAK/COVL were 0 ~ 100, - 0.5 ~ 4.5, and 1 ~ 5, respectively (a high score indicates the high 

quality of de-noised sound wave). 

  

Speaker Separation  

An independent vector analysis (IVA) was used to investigate the separation of the multi-users voices 

with the NPAS. The test was conducted by setting parameters such as the input sound sources (~ 14), 

the number of iterations (~ 30), the distance between NPAS and sound sources (2 ~ 3 m), and the 

number and sensitivity of the NPAS channels. The frequency bins of each voice signal were regarded 

as a single vector, representing the mixture of multi-speaker voices as the multiplication of mixing 

matrix and each voice matrix. The algorithm was processed to find the de-mixing matrix for obtaining 

the original voice of each speaker. The speaker was separated with a small amount of computations 

by minimizing the mutually common information among NPAS channels. The performance was 

evaluated by calculating the SDR and SIR with the original and separated voice sources.    
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Fig. 1: Overall concept of biomimetic NPAS and deep learning-based speech processing.  

 

a Schematic illustration of biomimetic self-powered acoustic sensor and deep learning-based 

speech processing under noise condition: (i) Basilar membrane-inspired NPAS fabricated with highly 

sensitive PNZT thin film to include multi-resonant frequency bands into the human voice range from 

100 to 8000 Hz. (ii) Noise-robust speaker recognition and speech enhancement of the NPAS using 

deep learning algorithms. b Photograph of the flexible multi-channel NPAS membrane bent by human 

fingers. Inset shows the NPAS attached on a PCB. c Multi-resonant displacement of the NPAS thin 

film measured by LDV under a frequency sweep from noise-dominant range to human voice spectrum. 
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Fig. 2: Structural, compositional, and piezoelectric characterizations of flexible PNZT thin film.  

 

a XRD patterns of PNZT thin films on plastic substrates. The asterisks denote the specific 

peaks from each substrate. Insets show cross-sectional SEM images of the PNZT membrane on 

sapphire and PET substrates, respectively. b XPS analysis of the PNZT membrane after ILLO transfer. 

Insets display EDS elemental mapping results (Scale bar: 3 µm). c Dielectric and loss properties of 

the PZT and 4% Nb-doped PZT thin films. d Comparison of resonant frequency bands between PZT 

and PNZT membranes on 20 µm thick polymer. 
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Fig. 3: Electrical characterizations of NPAS.  
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a FFT response of male/female voices (i), and indoor/outdoor noise sounds (ii) from 1 Hz to 

8 kHz. b Frequency response of NPAS and reference microphone over the human voice spectrum 

with white noise input. Relative sensitivity of the NPAS plotted by selecting the highest value among 

multi-channel bands. Inset shows the maximum piezoelectric voltage of the NPAS membrane from 1 

Hz to 8 kHz under white noise condition. c Multi-resonance of the curved NPAS thin film investigated 

by FEM simulation. d The piezoelectric voltages of the NPAS membrane at the first, second, and 

third resonance frequencies. The inset shows the output voltage of the other resonances, compared to 

a reference microphone. e Sensitivities of the resonant frequencies expressed in units of dBV under 

monochromatic sound waves. Red, orange, and green indicate the first, second, and third resonances, 

while blue and purple denote 6 single frequencies from 2 kHz to 7 kHz. f The calculated SNRs of the 

first, second, third resonances (i) and other monochromatic sinusoidal sound (ii) by the deviation in 

the sensitivities and electrical noise baseline.  g The sensitivity and SNR of NPAS calculated as a 

function of distance at first resonance. Inset displays the output voltage of NPAS at first resonance 

under different pressure conditions. 

  

  



     

 35 

Fig. 4: Deep learning-based noise robust speaker recognition of NPAS.  
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a Comparison of original and NPAS sound waveform including voice and background noises. 

b MFCC features of the original and NPAS signals, presenting the similarity in both the time and 

frequency domains. c Deep learning-based flow chart of training/test procedures for speaker 

recognition by using 2800/280 voice dataset of TIDIGITS. d MFCC features visualized in a t-SNE 

plot using 280 test datasets (40 people, 7 utterances) for a commercial MEMS microphone (i) and 

NPAS (ii). The t-SNE plot presents the high-dimensional data of similar speakers in 2D space with 

probability distribution. e Recognition rate of the NPAS exhibiting superior noise-robustness in the 

condition of 10 noises, compared to a commercial phone. f Speaker recognition error rate of the NPAS 

surpassing the commercialized MEMS microphone according to the number of noises.  
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Fig. 5: Comparison of speech enhancement between NPAS and commercial MEMS microphone.  

 

 
 

 a DEEP-SEA model flow chart of overall process for extracting the de-noised voice signal 

from recording input. b Comparison of speech enhancement signals between MEMS microphone and 

NPAS. Speech enhancement was analyzed using STFT spectrogram. c-f The objective measures to 

investigate the filtering performance of NPAS and commercialized phone. The calculated PESQ and 

STOI values showing higher speech quality and intelligibility of NPAS compared to the commercial 

MEMS microphone (c). The CSIG evaluation indicating the signal distortion under noise levels from 

-5 dB to 5 dB (d). Comparison of the background noise in the speech signals between NPAS and 

commercial phone by measuring CBAK score (e). The COVL measures to calculate the overall effect 

on the speech quality of the extracted signal (f). g-i Experiment of separating each speaker’s voice 

from the crowd by using the multi-channel NPAS. Schematic illustration of the speaker separation 

condition (g). The evaluated SDR and SIR for the separated speech signals according to the number 

of NPAS channels (h). Analysis of SDR and SIR as a function of iterations (i). 
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