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Abstract 14

From 8th March to 29th November 2020, we produced weekly estimates of SARS- 15

CoV-2 transmissibility and forecasts of deaths due to COVID-19 for 81 countries with 16

evidence of sustained transmission. We also developed a novel heuristic to combine 17

weekly estimates of transmissibility to produce forecasts over a 4-week horizon. We 18

evaluated the robustness of the forecasts using relative error, coverage probability, and 19

comparisons with null models. During the 39-week period covered by this study, both 20

the short- and medium-term forecasts captured well the epidemic trajectory across 21

different waves of COVID-19 infections with small relative errors over the forecast 22

horizon. The model was well calibrated with 56.3% and 45.6% of the observations lying 23

in the 50% Credible Interval in 1-week and 4-week ahead forecasts respectively. We 24

could accurately characterise the overall phase of the epidemic up to 4-weeks ahead in 25

84.9% of country-days. The medium-term forecasts can be used in conjunction with 26
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the short-term forecasts of COVID-19 mortality as a useful planning tool as countries 27

continue to relax public health measures. 28

Introduction 29

As of July 2021, more than 4 million deaths have been attributed to COVID-19 with 30

over 180 million cases reported globally [1]. The scale of the current pandemic has led to 31

a widespread adoption of data-driven public health responses across the globe. Outbreak 32

analysis and real-time modelling, including short-term forecasts of future incidence, have 33

been used to inform decision making and response efforts in several past public health 34

challenges including the West African Ebola epidemic and seasonal influenza [2–11]. In 35

the current pandemic, mathematical models have helped public health officials better 36

understand the evolving epidemiology of SARS–CoV-2 [12–14] and the potential impact 37

of implementing or releasing interventions. Short-term forecasts of key indicators such 38

as mortality, hospitalisation, and hospital occupancy have played a similarly important 39

role [15–20], contributing to planning public health interventions and allocation of crucial 40

resources [21–25]. At the same time, the unprecedented level of public interest has 41

placed epidemiological modelling under intense media scrutiny. In light of the prominent 42

role mathematical models have had in policy planning during the COVID-19 pandemic, 43

retrospective assessment of modelling outputs against later empirical data is critical to 44

assess their validity. 45

With the aim of improving situational awareness during the ongoing pandemic, since 46

the 8th March 2020 we have been reporting weekly estimates of transmissibility of 47

SARS–CoV-2 and forecasts of the daily incidence of deaths associated with COVID-19 48

for countries with evidence of sustained transmission [26]. We have developed three 49

models that are calibrated using the latest reported incidence of COVID-19 cases and 50

deaths in each country. We combined the outputs from the the three models into an 51

ensemble and estimates of transmissibility and forecasts were based on the ensemble 52

model. Ensemble models, which combine outputs from different models, are a powerful 53

way of incorporating the uncertainty from a range of models [27,28] and can produce 54

more robust forecasts than individual models [28–31]. 55

Forecasts are typically produced under the assumption that the trend in growth 56
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remain the same over the forecast horizon. This is a plausible assumption for the 1-week 57

forecast horizon that we used for our short-term forecasts. However, this assumption 58

is likely to be violated over a long forecast horizon leading to a rapidly increasing 59

uncertainty as the forecast horizon grows. We have developed a novel approach relying 60

on a simple heuristic that combines past estimates of the reproduction number, explicitly 61

accounting for the predicted future changes in population immunity, to produce forecasts 62

over longer time horizons. 63

Here we summarise the key transmission trends from our work on global short-term 64

forecasts between 8th March to 29th November 2020. We provide a rigorous quantitative 65

assessment of the performance of the ensemble model. We also present medium-term 66

forecasts using our approach and retrospectively assess the performance of our method. 67

Our results for medium-term forecasts suggest that we can accurately forecast the 68

trajectory of COVID-19 in several countries for horizons spanning up to 4 weeks. 69

Results 70

Methods for estimating transmissibility during epidemics typically rely on the time series 71

of incident cases combined with the natural history parameters of the pathogen [32, 33]. 72

However, in the current pandemic, interpretation and comparison of estimates across 73

countries based on the number of cases was made difficult by the differences in case 74

definitions, testing regimes, and variable reporting across countries as well as over time 75

within each country [34]. We therefore developed three different models that relied on the 76

number of reported deaths to estimate COVID-19 transmissibility and to produce short- 77

and medium-term ensemble forecasts of deaths (1- and 4- week ahead respectively). The 78

methods underlying the individual models are illustrated in Figs. 1a to 1c (see Methods 79

and SI Sec. 2 for details). 80

Beginning 8th March 2020, we produced weekly forecasts for every country with 81

evidence of sustained transmission. As the pandemic rapidly spread across the world, 82

the number of countries included in the weekly analysis grew from 3 in the first week 83

(week beginning 8th March 2020), to 94 in the last week of analysis included in this 84

study (week beginning 29th November 2020) (SI2 Fig. 1). Our results are based on the 85

analysis done for 81 countries (see SI Sec. 5 for exclusion criterion) over the 39 week 86
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period from 8th March to 29th November 2020 . 87

Short-term forecasts and model performance 88

Overall, the ensemble model performed well in capturing the short-term trajectory of 89

the epidemic in each country. Across all weeks of forecast and all countries, an average 90

58.7% (SD 32.4%) of the observations were in the 50% credible interval (CrI) and 89.4% 91

(SD 21.7%) of the observations were in 95% CrI (for a breakdown by country and week 92

of forecast see SI2 Sec. 2.5). 93

The MRE across all countries and all weeks was 0.4 (SD 0.4) (Fig. 3). That is, on 94

average the model forecasts were 0.4 times lower or higher than the observed incidence. 95

In most countries, the reporting of both cases and deaths through the week was variable, 96

with fewer numbers reported on some days of the week (typically, Saturday and Sunday). 97

The variability in reported deaths strongly influenced the model performance. The MRE 98

scaled linearly with the coefficient of variation (ratio of the standard deviation to the 99

mean) in the reported deaths for the week of forecasting. Thus, the error in forecasts 100

was on average similar to the variability in the reported deaths (SI2 Fig. 3). The MRE 101

of the model scaled inversely with the weekly incidence i.e. the error was relatively large 102

when the incidence was low (SI2 Fig. 3), as estimates of reproduction number when the 103

incidence is low are inherently more unstable [35]. 104

The model performance was largely consistent across epidemic phases (growing, likely 105

growing, decreasing, likely decreasing and indeterminate (SI Sec. 4)) with similar coverage 106

probability and MRE (SI2 Table 1). The slightly larger proportion of observations in 107

the 50% and 95% credible intervals for the ‘indeterminate’ phase and the larger MRE 108

in this phase together suggest that the model was ‘under-confident’ with large credible 109

intervals [36]. 110

We compared the performance of the model with that of a null no-growth model. In 111

most instances, the ensemble model outperformed the null model. In 80.9% of the weeks 112

in ‘definitely decreasing’ phase and 61.4% of weeks in ‘definitely growing’ phase, the 113

absolute error of the model was smaller than the error made by the null model (Fig. 3, 114

SI2 Sec. 2.2, SI2 Table 2). The null model performed better when the trajectory of the 115

epidemic in a country was relatively stable exhibiting little to no change over the time 116
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frame of comparison. This is to be expected as the null model describes precisely this 117

stable dynamic. Indeed, in 68.1% of the weeks in the ‘likely growing’ phase and 67.1% 118

weeks classified as ‘indeterminate’ phase, the absolute error of the model was larger than 119

the error made by the null model. However, the relative error of the model remained 120

small even in countries and weeks where it did not perform as well as the null model. 121

Similarly, our model performed better than a linear growth model across all phases, 122

specifically in 96.4% of the weeks in ‘definitely decreasing’ phase and 70.3% weeks in 123

‘definitely growing’ phase (SI2 Sec. 2.3, SI2 Table 2). 124

Medium-term forecasts and model performance 125

The rapidly changing situation and the various interventions deployed to stem the growth 126

of the pandemic make forecasting at any but the shortest of time horizons extremely 127

challenging [37]. Despite these challenges, we find that our medium-term forecasts were 128

able to robustly capture the epidemic trajectory (Fig. 4) in all countries included in the 129

analysis (4). 130

Overall, the MRE remained small over a 4-week forecast horizon, with errors increasing 131

over the projection horizon (SI2 Sec. 3.1). We therefore restricted the projection horizon 132

to 4 weeks. The MRE across all countries in 1-week ahead forecasts was 0.4 (SD 0.3), 133

increasing to 2.6 (SD 28.3) in 4-week ahead forecasts (Fig. 5, SI2 Fig. 7). The MRE for 134

1-week ahead forecasts was less than 1 (indicating that the magnitude of the error was 135

smaller than the observation) in 91.1% of weeks for which we produced forecasts. The 136

corresponding figure for 4-week ahead forecasts was 66.0% (SI2 Table 3). 137

The proportion of observations in the 50% CrI remained consistent across the forecast 138

horizon and varied from 56.3% (SD 33.4%) in 1-week ahead forecasts to 45.6% (SD 139

40.9%) in 4-week ahead forecasts (SI2 Fig. 8, SI2 Fig. 9). 140

Across the 81 countries and 2210 weeks (15470 days) for which we produced both 141

short- and medium-term forecasts, the phase definition using the reproduction number 142

estimates from medium-term forecasts, RS
t (SI Sec. 3 and SI Eq. 11), was consistent with 143

that using the estimates from the short-term forecasts (Rcurr
t ) in 87.6% (13559/15470) 144

of country-days (number of countries X number of days for which we produced forecasts. 145

The phase definition using reproduction number estimates from medium-term forecasts 146
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was updated each day over the forecast horizon while the short-term forecasts assigned the 147

same phase to all days of a week.) in 1-week ahead forecasts and in 84.9% (13138/15470) 148

of country-days in 4-week ahead forecasts (Fig. 6). When the phase definitions using 149

RS
t and Rcurr

t were different, the medium-term estimates most frequently misclassified 150

them as a phase with greater uncertainty. For instance, in 253 weeks when the epidemic 151

phase was identified as ‘definitely decreasing’ using weekly estimates and incorrectly 152

characterised using medium-term estimates, it was misclassified as ‘likely decreasing’ 153

in 100% (253/253 weeks) of country-days. Similarly, in the misclassified weeks, when 154

the epidemic phase using weekly transmissibility estimates was ‘definitely growing’, the 155

medium-term classification was ‘indeterminate’ in 43.7% (1175/2688) and ‘likely growing’ 156

in 56.3% (1513/2688) of the country-days. This mis-characterisation is expected as the 157

uncertainty in estimates of RS
t grows over the forecast horizon. Crucially, none of the 158

weeks where RS
t misclassified the epidemic phase, the phase using Rcurr

t indicated the 159

opposite trend (growing classified as decreasing or vice versa). This finding shows that 160

the medium-term transmissibility estimates can be used a reliable indicator of the overall 161

direction of the epidemic trajectory. 162

Discussion 163

Models used to forecast COVID-19 cases and/or deaths vary in complexity in the data 164

used for model calibration. More complex and/or granular models rely on multiple 165

data streams including data on hospital admissions and occupancy, testing, serological 166

surveys and data on patient clinical progression and outcomes [21]. Such complex 167

location-specific models can provide crucial insights into the ongoing epidemic and 168

inform targeted public health interventions by synthesising evidence from different data 169

streams. However, scaling such analysis to include multiple geographies is challenging 170

because of the variability in availability and reliability of local surveillance data. The 171

computational time needed to fit complex models make scaling them difficult and delays 172

the timely provision of risk estimates. 173

In addition to the variable availability of surveillance data across countries, the wide- 174

scale societal and behavioural changes brought about by the pandemic impose practical 175

constraints on utilising data that are available for multiple countries. For instance, widely 176
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available data on the changes in mobility inferred from mobile phone usage released by 177

Google and Apple were informative of the changes in transmission in the early phase of 178

the COVID-19 pandemic and were used in several modelling studies [38,39]. Although 179

these data continue to be available, recent evidence suggests a decoupling of transmission 180

and mobility in most countries [40,41]. Models that relied on such additional data [39] 181

or assumptions about non-pharmaceutical interventions [42] could not fit the observed 182

trajectory well as the situation continued to change over the course of the epidemic. 183

Efforts to model and forecast COVID-19 transmission dynamics must therefore meet 184

the challenges of a long and ongoing pandemic spread over an unprecedented scale. 185

Modelling groups around the world have attempted to meet one or both challenges with 186

various analyses conducted at a sub-national scale [43], at a national scale for a specific 187

country [22, 44–46], and for several countries across the globe [47–49]. In contrast to 188

models built for a region or country and calibrated using local data, models that aim to 189

provide a global overview must be sufficiently general to describe the epidemic trajectory 190

in a range of countries/regions using widely available data that are consistently available 191

over time. 192

We have produced short-term forecasts and estimates of transmissibility for 81 193

countries for more than 65 weeks at the time of writing implementing three simple 194

models that use only the time series of COVID-19 cases and deaths. We have thus 195

traded particularity for generality, to allow us to carry out analysis for a large number 196

of countries over a long period of time. As our methods make few assumptions and use 197

routine surveillance data, they can be easily used during any other future outbreaks. 198

Despite the challenges inherent in forecasting a fast-moving pandemic in the presence 199

of unprecedented public health interventions, our ensemble model was able to successfully 200

capture the short-term transmission dynamics across all countries included in the analysis 201

with small relative error in the weekly forecasts across different COVID-19 waves in 202

each country. The variable performance of our model in weeks and countries with fewer 203

deaths and/or large variability in reported deaths over weeks reflects this trade-off. 204

In the absence of more detailed data, we assumed that epidemiological parameters 205

such as the delay from onset of symptoms to death were the same across all countries 206

and throughout the period of analysis. These parameters are likely to vary over time 207

and between countries and using country-specific parameters could lead to moderate 208

10, 2021 7/25



improvements in the model fits and forecast performance. 209

Due to the variability in testing and reporting of cases across different countries and 210

over time within countries, using the reported number of cases to estimate transmissibility 211

and produce forecasts is difficult without using more complex models. For these reasons, 212

we primarily used deaths to estimate the reproduction number as we assumed that 213

reporting of COVID-19 deaths was more complete and consistent over time and across 214

different country surveillance systems. Although this assumption is unlikely to hold for 215

many countries [50–52], our methods are robust to a constant rate of under-reporting 216

over time as this would not alter the overall epidemic trends. A limitation of our work is 217

that our estimates reflect the epidemiological situation with a delay of approximately 19 218

days (the delay from an infection to a death [42]). Nevertheless, our short-term forecasts 219

and transmissibility estimates provide a valuable global overview and continuous insights 220

into the dynamic trajectory of the epidemic in different countries. They also provide 221

indirect evidence about the effectiveness of public health measures. Future research 222

could investigate integrating more data streams into the models. In addition to the 223

weekly reports that we publish, our work has also contributed to other international 224

forecasting efforts [22, 36, 44]. 225

We developed a simple heuristic to combine past estimates of transmissibility and a 226

decline in the proportion of susceptible population to produce medium-term forecasts. 227

We were able to achieve good model performance in forecasting up to 4 weeks ahead. 228

Consistent with findings from other modelling studies [22], we found that the model 229

error was unacceptably high beyond 4 weeks, suggesting that forecasting beyond this 230

horizon is difficult. Importantly, our characterisation of the epidemic phase using 231

weighted estimates of transmissibility were largely in agreement with that using short- 232

term transmissibility estimates. Thus, our method was successful at capturing the 233

broad trends in transmission up to 4 weeks ahead. The medium-term forecasts can 234

therefore serve as a useful planning tool as governments around the world plan further 235

implementation or relaxation of non-pharmaceutical interventions. 236

Our method incorporates the depletion of susceptible population and hence can in 237

principle be extended to account for increasing population immunity as vaccination is 238

rolled out across the world. However, inclusion of vaccine induced immunity depends 239

on the availability of reliable data on vaccination coverage. Further, even if such data 240
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were available, teasing apart the impact of vaccination on transmission and mortality 241

could be non-trivial. In light of these issues, it might be challenging to extend our 242

approach to rigorously assess the effect of vaccination on epidemic trajectory on a global 243

scale. However, our latest estimates of transmissibility indirectly reflect the impact of 244

vaccination on transmission, allowing for the delay from vaccination to full immunity, 245

and from infection to death. As we continue to track COVID-19 transmissibility globally, 246

any temporal changes in transmissibility would implicitly account for the changes due to 247

differential vaccination coverage. 248

Mathematical modelling and forecasting efforts have supported data-driven decision 249

making throughout this public health crisis. Our work has aimed to improve global 250

situational awareness. Using relatively simple approaches, we were able to produce 251

robust forecasts for COVID-19 in 81 countries and provide crucial and actionable insights. 252

This effort is being continued [26] as the world continues to grapple with renewed waves 253

of COVID-19 cases. 254

Methods 255

The instantaneous reproduction number is frequently used to quantify transmissibility. 256

It is defined as the average number of secondary cases that an individual infected at 257

time t would generate if conditions remained as they were at time t [53]. When applied 258

to the incidence of deaths (rather than cases), the instantaneous reproduction number 259

RD
t represents the average number of secondary deaths “generated by” the death of a 260

primary case at time t. We developed three different models, each of which estimated 261

transmissibility in the recent past and produced forecasts of COVID-19 deaths (SI Sec. 2.1 262

to 2.3). We then combined the outputs of these models to build an unweighted ensemble 263

(SI Sec. 2.4). We produced short-term forecasts (i.e. 1-week ahead), for which changes 264

in the population immunity level could be ignored. Over the course of the epidemic, the 265

effect of the potential depletion of the susceptible population on the trajectory of the 266

epidemic may become more pronounced. Inherently, by estimating transmissibility in 267

real-time, our models account for any general decrease in the proportion of population 268

being susceptible. However, the forecasts produced do not account for any further 269

decrease in this proportion, which may become substantial when forecasting over a 270
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medium- to long-term time horizon. 271

We also produced medium-term forecasts (up to 4-weeks ahead) accounting for 272

the depletion of the susceptible population due to the increased levels of natural host 273

immunity. In order to estimate transmissibility for medium-term forecasts, we combined 274

past estimates of transmissibility into a single weighted estimate as follows. Let T denote 275

the last time point in the existing incidence time series of cases or deaths and let Rcurr
T 276

refer to the the most recent estimate of reproduction number for a given model. Starting 277

with the transmissibility estimates of Rcurr
T from the ensemble model, we went back one 278

week at a time, for as long as the 95% credible interval (CrI) of Rcurr
T ′ (where T ′ < T ) 279

overlapped the 95% CrI of Rcurr
T . We then sampled from the posterior distribution 280

of Rcurr
T ′ in each of those weeks, with a probability that decays exponentially in the 281

past to favour the more recent estimates (Fig. 1d). Each week, the rate of decay β was 282

optimised by minimising the relative error in the predictions for the previous week. As 283

the weighted reproduction number Rw
t already accounts for the population immunity at 284

time t, we first estimated an effective reproduction number defined as the reproduction 285

number if the entire population were susceptible (SI Eq. 10). We then estimated the 286

reproduction number RS
t accounting for the effect of population immunity at time t due 287

to infection (SI Eq. 11). 288

Forecast horizon 289

The short-term forecast horizon was set to be 1 week. We produced forecasts for the 290

week ahead (Monday to Sunday) using the latest data up to (and including) Sunday. 291

We did not model the potential changes in the population immunity levels as any such 292

change is not expected to affect the trajectory of the epidemic over this short time 293

horizon. 294

The medium-term forecasts were made over a 4-week horizon using RS
t . Since 295

estimates of the weighted reproduction number could only be obtained once we had 296

sufficient weekly estimates to combine, medium-term forecasts were produced from 29th 297

March to 29th November 2020. 298
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Epidemic Phase 299

Following Abbott et al. [47], we defined the epidemic phase in a country at time t 300

as ‘likely growing’, ‘definitely growing’, ‘likely decreasing’, ‘definitely decreasing’ or 301

‘indeterminate’ using the distribution of the reproduction number at t (Rcurr
t for the 302

short-term forecasts and RS
t for the medium-term forecasts, SI Sec. 4). 303

Assessing model performance 304

The model forecasts were validated against observed deaths as these became available. 305

To quantitatively assess the performance of the model for both short- and medium-term 306

forecasts, we used the mean relative error (MRE) and the coverage probability i.e. the 307

proportion of observations that are in a given credible interval of the distribution of 308

forecasts (SI2 Sec. 2). We compared the absolute error of the model (the absolute 309

difference between the forecasts and observations averaged across simulated trajectories) 310

with the error of a model that used (i) the average of the last 10 observations as a 311

forecast for the week ahead (no growth) [54], and (ii) forecasted using a linear model 312

fitted to the last 10 observations (linear growth). 313

Data 314

We used the number of COVID-19 cases and deaths reported by the World Health 315

Organisation (WHO) [1]. Any data anomalies were corrected using data published by 316

the European Centre for Disease Prevention and Control [55], or other sources. All 317

data used in the study are available at the github repository associated with this article 318

(https://github.com/mrc-ide/covid19-forecasts-orderly). 319

Code 320

All analysis was carried out in R version 4.0.2. The code for the analysis is available as 321

orderly [56] project at https://github.com/mrc-ide/covid19-forecasts-orderly. 322

DeCa model is available as an R package at https://github.com/sangeetabhatia03/ 323

ascertainr. The accompanying R package https://github.com/mrc-ide/rincewind 324

contains utility functions for creating the figures and processing model outputs. 325
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Supporting information 326

S1 1. Supplementary Methods. The supplementary file contains a description of 327

the methods and details on data, epidemiological parameters, and code. 328

S1 2. Supplementary Results. The supplementary file contains additional results 329

on model performance. 330

S1 3. Web tool. An interactive web-tool available at https://shiny.dide.imperial. 331

ac.uk/covid19-forecasts-shiny/ presents both short- and medium-term forecasts, 332

and reproduction number estimates for all countries included in the analysis. 333
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Figures 524

(a)
(b)

(c) (d)

Fig 1. Schematic of the models (a) Model 1 assumes a single value for R[T−τ+1, T ].
The model is fitted using only the data in this window (T −τ+1 to T ) to jointly estimate
the initial incidence of deaths and R[T − τ + 1, T ]. For details, see SI Sec. 2.1. (b)
Model 2 optimises the window over which Rt is assumed to be constant by minimising
the cumulative predictive error over the entire epidemic time series. Estimates from
R[T − τ∗ + 1, T ] are used to forecast into the future, with τ∗ the window of optimal
length. See also SI Sec. 2.2. (c) Model 3 uses data from both cases and deaths (SI
Sec. 2.3). The dashed blue curve represents the incidence of reported cases weighted
by the case-report to death delay distribution, where µ is the mean delay. ρt is the
ratio of the observed deaths and the weighted cases at time t and is analogous to an
observed case fatality ratio. Forecasts of deaths are obtained by sampling from a binomial
distribution using the most recent estimate of ρT . See also SI2 Fig. 3. (d) To obtain
medium-term forecasts, we combine the most recent transmissibility estimate Rcurr

T

(shown in dark blue) with estimates of transmissibility in the previous weeks to produce
a weighted estimate of transmissibility Rw

T (filled in pink) at time T . Estimates from
previous weeks are combined with the most recent estimates if the 95% CrI of estimates
in week k, Rcurr

T−7k overlaps the 95% CrI of Rcurr
T . Estimates for weeks where the 95% CrI

overlap are shown in light purple, and where the 95% CrI do not overlap in grey. The
dashed horizontal lines represent the 2.5th and 97.5th quantile of Rcurr

T . We combine
the estimates by sampling from the posterior distribution of Rcurr

T−7k with probability

proportional to e−β∗k, where β is a rate at which the probability decays as we go back
in time.
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Fig 2. Short-term forecasts. The short-term forecasts and observed deaths for six
countries: Brazil, India, Italy, South Africa, Turkey and the United States of America
(USA). For each country, the top panel shows the observed deaths in gray; the solid green
line shows the median forecast. The shaded interval represents the 95% CrI of forecasts.
The forecasts were produced using the most recent estimates of Rcurr

T assuming that the
transmissibility remains constant. The bottom panel for each country shows the effective
reproduction number (Rcurr

T ) used to produce the forecasts. The solid green line in the
bottom panel for each country is the median estimate of Rcurr

T while the shaded region
represents the 95% CrI. The dashed red line indicates the Rcurr

T = 1 threshold. Note
that the y-axis is different for each subfigure. See SI 3 for results for all other countries.
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(a) (b)

Fig 3. Short-term forecasts MRE and comparison with null model (a) The
mean relative error of the ensemble model for each week of forecast (x-axis) and for each
country (y-axis). Dark blue cells indicate weeks where the relative error of the model
was greater than 2. (b) The ratio of the absolute error of the model to the absolute
error of a no-growth null model that uses the average of the last 10 days as a forecast
for the week ahead. Shades of green show weeks for a given country where the ratio was
smaller than 1 i.e., the ensemble model error was smaller, and weeks where the ratio was
greater than 1 i.e. the ensemble model error was larger than the null model error are
shown in shades of red (yellow to red). Dark blue indicates weeks when the ratio was
larger than 2. In order to present a representative sample, we first ranked all countries
by the percentage of weeks in which ensemble model error was smaller than the null
model error. We then selected every third country from the top 75 countries in this list.
Results for the selected 25 countries are shown here. See SI2 Fig. 1 for the results for
other countries. Ordering of countries in the figure reflects the order in the ranked list
i.e. countries with the highest percentage of weeks with model error smaller than null
model error are shown on the top.
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Fig 4. Medium-term forecasts. The medium-term forecasts and observed deaths for
six countries: Brazil, India, Italy, South Africa, Turkey and the United States of America
(USA). For each country, the top panel shows the observed deaths in grey; the solid
green line shows the median the 4-weeks ahead forecast. The shaded interval represents
the 95% CrI of forecasts. The bottom panel for each country shows the median (solid
black line) and the 95% CrI (grey shaded area) of weekly estimate of Rcurr

t from the
short-term forecasts and the median (green line) and the 95% CrI (shaded green area )
of RS

t i.e. the reproduction number accounting for depletion of susceptible population
from the medium-term forecasts over a 4-week horizon ( Methods). The dashed red line
indicates the RS

t = 1 threshold. Note that the y-axis is different for each subfigure. The
forecasts were produced every week over a 4-week forecast horizon. The figure shows all
non-overlapping forecasts over the course of the pandemic. See SI 3 for results for all
other countries and weeks.
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Fig 5. Relative error of medium-term forecasts. The mean relative error of the
model in 1-week, 2-week, 3-week and 4-week ahead forecasts for each week when a
forecast was made (x-axis) and for each country (y-axis). Blue cells indicate weeks where
the relative error of the model was greater than 2. For ease of presentation, results
are shown for the same 25 countries as Fig. 2. See SI2 Sec. 2 for the results for other
countries.
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Fig 6. Characterisation of the epidemic phase. For a given classification of
epidemic phase using the weekly estimates of the reproduction number from the short-
term forecasts(x-axis), the figures in the cell show the percentage of days for which the
characterisation was consistent using the medium-term reproduction number estimates
(show on the y-axis)
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