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Abstract

Background

Hippocampal neurogenesis dysfunction is one of the main pathogenesis of depression. Icariin (ICA) has
significant anti-depression and anti-hippocampal damage effects but could not effectively cross the blood-brain-
barrier and accumulate in brain. Based on the proteomics of cerebrospinal fluid (CSF), this study aimed to
explore the mechanism of ICA against hippocampal neurogenesis dysfunction in depression.

Methods

In vivo, rats were exposed to 6-week CUMS and treated by ICA to observe the effects of ICA on depressive
symptoms, cognitive functions, neurogenesis and number of neurons in DG. Tandem mass tag (TMT)
proteomics were used to screen the differentially expressed proteins (DEPs) in CSF co-regulated by CUMS and
ICA. Parallel reaction monitoring (PRM) was used to validate 10 DEPs that were related to cell proliferation and
survival. In vitro, CSF was conducted on primary hippocampal neural stem cells (NSCs) to observe the
proliferation and differentiation under high-corticosterone (CORT) concentration.

Results

It was shown that ICA could alleviate depressive symptoms, learning-memory dysfunction, neurogenesis
dysfunction and neuronal loss in DG of depression rats and ICA-CSF could effectively repair the CORT-induced
damage. A total of 52 DEPs co-regulated by CUMS and ICA in CSF were screened and mainly involved in
ribosome pathway, PI3K-Akt pathway and IL-17 pathway. Rps4x, Rps12, Rps14, Rps19, Hsp90b1, Hsp90aa1 and
HtrA1 were validated by PRM.

Conclusions

These findings indicate that to regulate the expression of proteins in CSF may be involved in the effects of ICA
against hippocampal neurogenesis dysfunction in depression.

1. Introduction

Depression is one of the most common mental disorders, mainly characterized by despair, anhedonia and even
suicide attempts[1]. With the increase of life pressure and social stress, the prevalence and morbidity of
depression continue to rise. It has generated huge burdens on individuals, families and society, causing
worldwide attention. Depression is a psychologic disease with complex etiology and clinical manifestations, so
far, its pathogenesis has not been fully elucidated.

Hippocampal damage is currently recognized as one of the pathogenesis of depression, and hippocampal
neurogenesis dysfunction plays an important role in it [2-4]. It has been found by clinical autopsy that the
hippocampus volume reduced with severe neuronal loss or atrophy in depression patients[5]. Preclinical
researches proved that the branches number and the length of hippocampal neurons dendritic were reduced and
neurogenesis was impaired in depression animals[6, 7]. Therefore, how to repair hippocampal damage has
become the focus of current anti-depression treatment[8].
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Icariin (ICA) is one of the most dominating bioactive constituents in Herba epimedii. Recently, plenty of evidence
confirmed that ICA could effectively alleviate depressive symptoms and protect hippocampus by relieving
neuroinflammation and repairing hypothalamic-pituitary—adrenal axis dysfunction [9-11]. However, studies
have shown that ICA could not effectively cross the blood-brain barrier and always eliminated rapidly and thus it
accumulated very little in brain[12]. Except the mild direct effect on the brain parenchyma, whether ICA protects
hippocampus in depression by other approach.

Cerebrospinal fluid (CSF) is the ultrafiltrate from plasma, which is in direct contact with the central nervous
system (CNS). CSF is bound up with hippocampus which is adjacent to the lateral ventricle. The substances in
CSF may directly affect structure and function of hippocampus, such as regulating neurogenesis[13, 14]. CSF
plays an important role in molecular exchange and signal transmission in the CNS. Consequently, the alteration
of CSF components might result in the occurrence and development of CNS diseases [15-17]. As is known that
the proteomics of CSF changed in patients with depression and the differential expressed proteins were closely
linked to the damage and dysfunction of the CNS [18, 19].

Based on the relationship among the alteration of CSF components, depression and hippocampal damage, it
was hypothesized that ICA might influence brain parenchyma through the limbic regions of brain, such as CSF
and choroid plexus, and exert anti-depression and against hippocampal damage.

To verify this hypothesis, in vivo, chronic unpredictable mild stress (CUMS) model was applied to observe the
effects of ICA on anti-depression and hippocampal protection. The proteomics were used to screen the
differentially expressed proteins (DEPs) in CSF co-regulated by CUMS and ICA. In vitro, the stress damage of
neural stem cells (NSCs) was simulated under the high-CORT concentration, and the effect of ICA-treated CSF on
proliferation and differentiation of NSCs under high-CORT concentration was explored. Through the above
experiments, this study aimed to explore the mechanism of ICA against hippocampal damage in depression.

2. Materials And Methods

2.1 Animals

A total of 45 male Wistar rats weighing 180-220 g and aged 7—8 weeks (License No. SCXK (Yue) 2016-0041)
were obtained from the Laboratory Animal Center of Southern Medical University, Guangzhou, China. Rats were
housed (5 per cage) for 1 week for acclimation to the environment (23 +2°C; 48-60% humidity; and ona 12 h
light/12 h dark cycle) with diet and water available. All experimental procedures and protocols were approved by
the Experimental Animal Ethics Committee of Guangzhou University of Chinese Medicine of China. The
experimental procedure followed the United States National Institutes of Health Guide for the Care and Use of
Laboratory Animals (NIH Publication No. 85-23, revised 1996).

2.2 Drugs and treatment groups in vivo

After adaption for one week, all rats were solitary-housed for sucrose preference test (SPT; as described in 2.4
Sucrose preference test (SPT)). Unqualified rats were excluded according to the following SPT results: low
sucrose preference (less than 60%), location preference (preferred to drink liquid from a fixed location), drinking
too little (drinking neither sucrose solution nor pure water) and excessive drinking (total liquid consumption more
than twice the average total liquid consumption of all rats).
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Rats were randomly divided into three groups based on body weight and sucrose preference: the control group
(CON, n=15), the CUMS group (CUMS, n= 15) and the ICA group (ICA, n=15).

ICA (Dilger, Nanjing, China; purity=98%) was dissolved into a suspension (30 mg/mL) with normal saline. Rats in
the ICA group were intragastrically administrated with ICA at a dose of 120 mg/kg and the CON group and CUMS
group were intragastrically treated with the same volume of normal saline at 16:00 every day during CUMS
modeling.

2.3 CUMS procedures

Rats in the control group were housed 5 per cage and underwent normal feeding without any stressors. Rats in
the CUMS and ICA group were solitary-housed and subjected to CUMS for 6 weeks. According our previous
study[4], the CUMS procedures were adopted and modified. In brief, rats were randomly exposed to 1-2 of these
stimuli once a day for 6 weeks and the same stressors were not scheduled in three consecutive days (as shown
in figure 1). Stressors included white noise (85 dB, 5 hours); thermal swimming (45°C, 5 min); stroboscopic
illumination (300 flashes/minute, 5 h); soiled cage (10 h); paired with four other stressed animals (10 h); cold
swimming (4 °C, 5 min); tail pinching (3 min); restraint (12 h); water deprivation (12 hours) and food deprivation
(12 or 24 hours).

After the 6-week CUMS, behavior tests were carried out, CSF sample and hippocampus slides were prepared (as
shown in figure 2).

2.4 Sucrose preference test (SPT)

The procedure was performed to assess rats’ anhedonia according to our previous method[4]. During the SPT, all
rats were kept in single cages. The sucrose preference test was divided into four stages: sucrose training for 48
hours, baseline testing for 36 hours, food and water deprivation for 24 hours, and sucrose preference testing for
12 hours. Two bottles of liquid (1% sucrose solution and pure water) were given to each animal at the same time
during the test. In the sucrose preference test stage, after 12 hours of liquid availability (20:30-8:30 the next
day), the consumed volume of each solution was recorded to calculate sucrose preference. Sucrose preference
(%) = sucrose solution consumption/total liquid intake x 100%.

2.5 Open field test (OFT)

Open-field test was performed to assess locomotor activity referred to our previous method[4]. The rats were
transferred to the behavioral test room (soundproof darkroom) before the OFT for habituation to the environment
for 1 hour. Each rat was individually placed into the middle of the open-field apparatus (100 cm x100 cm x48
cm) and then allowed to explore freely for 5 minutes. The total traveling distance was recorded by video-tracking
system (Flydy Co.,Ltd, Guangzhou, China).

2.6 Forced swimming test (FST)

The immobility time in FST was used to evaluate the desperation. The procedure was referred to our previous
method [20]. The rats habituated an hour in the behavioral test room before the test. During FST, the rats were
individually placed in a transparent plexiglas cylinder (height: 100 cm, diameter: 30 cm) filled with 35 cm water
(25+1 °C) and forced to swim for 6 min. The immobility time during the last 4 minutes was recorded by three
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researchers blind to the experimental design. Rats were considered immobile when they ceased struggling and
remained floating motionless in the water except the movements necessary to keep their heads above the water.

2.7 T'maze test[21]

T-maze test was used to evaluate learning and memory ability. The T-maze equipment was constructed of T-
shaped elevated maze with a start arm (71cm x18 cmx30 cm) and two target arms (46cmx18 cmx30cm) made
of black and non-reflective panels. Light was avoided throughout the test. The rats were food-deprived and
received approximately 75% of common daily intake food during the T-maze test. The T-maze test was divided
into the training and testing phases. During the training phase, cheeses were placed at the end of both target
arms with both doors open. The rats were placed in the start arm and allowed to freely explore the maze and
intake cheese. During the testing phase, cheeses were placed at the end of both target arms. The door of one
random target arm namely goal arm was closed. The rat was placed in the start arm and allowed to eat the
cheese in the opened target arm. Once the rat entered the opened target arm, the door was closed immediately.
The rat was taken out after eating the cheese. Thirty seconds later, the rat was placed in the start arm again and
allowed to freely explore the maze with both doors open. If the rat entered the goal arm and finished eating the
cheese, it was scored as 1 correct time. The testing phase was repeated 10 times a day (each interval was 20
minutes) and lasted for 4 days. Accuracy (%) = correct times/10 x 100%.

2.8 CSF sample preparation

CSF sample was prepared 24 hours after the T-maze test. The rats were anesthetized and exposed the foramen
magnum. intravenous infusion needle (0.45#) was attached to syringe (1mL). CSF was collected from cisterna
magna puncture, centrifuged at 3000 rpm for 15 min at 4 °C. The supernatant of CSF was collected and frozen
at-80 °C.

2.9 Immunofluorescence of sections

Referred to our previous experimental approach[4], 5-Bromo-2-deoxyUridine (BrdU, Sigma, US) was
intraperitoneally injected (three injections, 4 hours apart, 200 mg/kg). One week later, the brain tissues (2.7mm-
6.7mm from coronal groove) were dissected and fixed in 4% paraformaldehyde for 24 hours at 4°C and then
immersed in 30% sucrose until sank to the bottom. The hippocampus was trimmed according to the coronary
sulcus (2.7mm-6.7mm from coronal sulcus), and was cut into 40 pm-thick frozen slices.

BrdU /doublecortin (DCX) double labeling was used to label the new-born precursor neurons, reflecting the
abilities of proliferation and differentiation into neuron of NSCs in DG. Sections were treated with 2M HCL for 20
minutes at 37 °C, washed thrice in phosphate buffer saline (PBS 0.1 M, pH 8.4), blocked in 5% goat serum
(containing 0.03% Triton-X-100) at room temperature for 1 hour and incubated with rat anti-BrdU antibody (1:200,
Abcam, UK) and rabbit anti-DCX antibodies (1:200, Abcam, UK) at 4° C overnight. After washed in Tris-buffered
saline with 0.01% Tween-20, the sections were incubated with AlexaFluor® 594 goat anti-rat antibodies (1:500,
Abcam, UK) and AlexaFluor® 488 goat anti-rabbit (1:500, Abcam, UK) at 37°C for 2 hours. After washed and 4',6-
diamidino-2-phenylindole (DAPI) staining, images were captured by laser confocal microscope (LSM800, ZEISS,
Germany). The number of BrdU/DCX positive cells were record.
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NeuN was used to label mature neurons and to reflect the number of neurons in DG. The sections were
rewarmed, membrane-ruptured with Triton-X, blocked with goat serum and incubated with rabbit anti-NeuN
antibody (1:1000, Abcam, UK) overnight at 4 °C. After washed in TBST, the sections were incubated with
AlexaFluor® 488 goat anti-rabbit (1:500, Abcam, UK) at 37°C for 2 hours. After washing and DAPI staining,
images were captured by laser confocal microscope (LSM800, ZEISS, Germany). Ratio of NeuN positive cells
(%)= NeuN positive cell number/total number of nucleix100%.

2.10 Culture of primary hippocampal NSCs

The embryo was removed from Wistar rats (obtained from the Laboratory Animal Center of Southern Medical
University, Guangzhou, China) at pregnant days 16—18 under sterile conditions by etherization and placed in ice-
cold sterile PBS. The bilateral hippocampus was separated, cut into T mm x 1T mm x 1T mm pieces, mixed and
gently polished with a Pasteur pipette, filtered through a 200-mesh cell sieve to obtain a single cell suspension,
and centrifuged at 1200 rpm for 5 minutes. After the supernatant was discarded, the cells were resuspend with
neural stem cell medium (DMEM/F12 supplemented with 20 ng/L EGF(Gibco, US), 20 ng/L bFGF(Gibco, US), 2%
B27(Gibco, US) and 1% Penicillin /Streptomycin (Gibco, US)). Cells were incubated at a density of 2 x 10°
cells/mL in 60 mm culture dishes at 37°C in a 5% (v/v) CO2 incubator. The culture medium was half-replenished
every 2—-3 days.

2.11 Cell Counting Kit-8 (CCK-8) test

P1-generation NSCs were collected and divided into 5 groups, control group (cultured with neural stem cell
medium (DMEM/F12 containing 20 ng/L EGF, 20 ng/L bFGF, 2% B27 and 1% Penicillin /Streptomycin)), high-
CORT concentration group (cultured with neural stem cell medium containing 100 uM CORT (Millipore, US)),
CON-CSF- group (cultured with neural stem cell medium containing 20% CON-CSF +100 uM CORT), CUMS-CSF
group (cultured with neural stem cell medium containing 20% CUMS-CSF +100 uM CORT), and ICA-CSF
group(cultured with neural stem cell medium containing 20% ICA-CSF +100 uM CORT).

Cell viability was detected by CCK-8. Referred to our previous method (Wu et.al., 2013), passagel neutrospheres
were digested into single cells by Accutase™ (Gibco, US), resuspended with neural stem cell medium and seeded
in 96-well plates at a density of 4 x 10%cells/well. Required CSF and CORT were added into each group, the final
volume of culture medium was 100 pL per well. After 72 h, 10 uL of CCK-8 (Dojindo, Japan) was added to each
well and cells were cultured for 2 h. NSCs were dispersed into single cells by enzyme, resuspended with neural
stem cell culture medium and seeded into 96-well plates at a density of 4 x10* cells per well. The optical density
(OD) was measured at 450 nm with a microplate reader (Bio-rad, US). The cell viability was calculated as
following: cell viability (%) = [OD (experiment)-OD (blank)] / [OD (control) — OD (blank)] x100%.

2.12 Immunofluorescence of primary hippocampal NSCs

Previous studies usually selected media containing 10% fetal bovine serum (FBS) as differentiation medium][8].

Considering that CSF has a certain role in promoting the differentiation of NSCs, NeuralBasal (Gibco, US)

containing 2% FBS (Gibco, US) was used as a differentiation culture medium in this study. P1-generation neural

stem cells were collected and divided into 7 groups, control group 1 (cultured with NeuralBasal containing 10%

FBS), control group 2 (cultured with NeuralBasal containing 2% FBS), control group 3 (cultured with NeuralBasal

containing 2% FBS +20% normal CSF), high-CORT concentration group (cultured with NeuralBasal containing 2%
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FBS +100 pM CORT), CSF of CON group (cultured with NeuralBasal containing 2% FBS +100 uM CORT +20%
CSF of CON), CSF of CUMS group (cultured with NeuralBasal containing 2% FBS +100 uM CORT +20% CSF of
CUMS), and CSF of ICA group (cultured with NeuralBasal containing 2% FBS +100 uM CORT +20% CSF of ICA).

Referring to our previous method[8], NSCs were dispersed into single cells by Accutase™ and resuspended with
the differentiation culture medium (NeuralBasal containing 2% FBS) and then seeded into 15 mm confocal
dishes (5000 cells/dish). After 48 h, the CORT and CSF were added as required for each group. The incubation
was continued for another 48 h, 10 uM BrdU was added to each dish. After 48 h, 4% paraformaldehyde was fixed
and BrdU/DCX was labeled by Immunofluorescence, as described in step 2.9.

2.13 Tandem mass tag (TMT) analysis of CSF proteomics

Protein was extracted from cerebrospinal fluid. After quantification and separation, 30 pL protein was taken from
each sample for proteolysis. TMT labeling was carried out in accordance with the instructions of the TMT
labeling kit (Thermo, US). High pH RP spin column was used for grading. The samples were separated by
chromatography (Thermo, US) and analyzed by mass spectrometry (Thermo, US). The original data were
identified and quantitatively analyzed by Mascot2.2 and Proteome Discoverer1.4. Proteins with a fold change
more than 1.2 or less than 0.83 as well as a statistical P-value < 0.05 between two groups were selected as
DEPs.

2.14 Bioinformatic analysis

Gene Ontology (GO) mapping and annotation of proteins were conducted using the Blast2GO. Kyoto
Encyclopedia of Genes and Genomes (KEGG) annotation were was performed using KAAS (KEGG Automatic
Annotation Server). Enrichment analysis was performed by Fisher's Exact Test with P-values less than 0.05 and
an FDR value less than 0.5.

2.15 Parallel reaction monitoring (PRM) quantitative analysis of target protein

The proteins of CSF samples were extracted and hydrolyzed and then separated by HPLC system (Thermo, USA).
The separated peptides were analyzed by PRM mass spectrometry (Thermo, USA). The PRM test was repeated
three times. Finally, the software Skyline3.7.0 was used to analyze the data of the original PRM file and to
quantify the target protein and target peptide.

2.16 Statistical analysis

The data were statistically analyzed using SPSS 22.0 software (IBM, USA). All results were expressed as the
mean + SEM. The data of each group were consistent with a normal distribution (Shapiro-Wilk test). An
independent samples t-test was used for comparisons between two groups with homogeneity of variancellone-
way ANOVA was used for comparisons between three or more groups with homogeneity of variance, and Welch's
test was used for heterogeneity of variance. In the pairwise comparisons, the LSD test was used to assess
results with homogeneity of variance, and the Games-Howell method was used to assess results with
heterogeneity of variance. T-maze accuracy was analyzed by repeated-measures ANOVA. The Greenhouse-
Geisser correction was used when the assumption of sphericity was not met. Comparisons of the accuracy
between groups at each individual time point were conducted using a multivariate ANOVA. P-values<0.05 were
considered statistically significant.
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3. Results

3.7 ICA could reverse the depression-like behaviors of CUMS rats
3.1.7 The effect of ICA on sucrose preference of CUMS rats

As shown in Figure 3A, compared with the CON group, sucrose preference of the CUMS group was significantly
decreased (n=15, F(2,42)=27.476, p<0.01 ); compared with the CUMS group, sucrose preference of the ICA group
was significantly increased (n=15, F(y 42)=27.476, p<0.01), indicating that ICA could alleviate the anhedonia
symptom of CUMS rats.

3.1.2 The effect of ICA on total distance in the OF T of CUMS rats

As shown in Figure 3B, compared with the CON group, CUMS significantly reduced the total traveled distance
(n=15, F(2,42)= 34.641, p<0.01) in the OFT. Compared with the CUMS group, ICA significantly elevated the total

traveled distance (n=15, F(2, 42)= 34.641, p<0.01), suggesting that ICA had a significant effect on improving the
locomotor activity of CUMS rats.

3.1.3 The effect of ICA on immobility time of the FST in CUMS rats

As shown in Figure 3C, the immobility time in rats with CUMS increased significantly (n=15, F(, 49)= 24.394,
p<0.01) compared with the control group. ICA significantly decreased the immobility time (n=15, F, 4,)= 24.394,

p<0.01) compared with the control group. It was suggested that ICA treatment could alleviate the desperation of
CUMS rats.

3.2 ICA could alleviate hippocampal damage in CUMS rats
3.2.1 Effect of ICA on T-maze accuracy in CUMS rats

As shown in Figure 4A, compared with the CON group, there was no difference in the accuracy of the CUMS
group in Day1 and a significant reduction of the accuracy in Day2-4. (n=7-10. Day2, F(2,21)=8.859, p<0.01; Day3,

F(2,21)=4.612, p<0.01; Day4, F (5 »1)=5.998, p<0.01). Compared with the CUMS group, the accuracy of the ICA
group in Day 2-4 was significantly improved (n=7-10. Day2, F(2,21)=8.859, p=0.0447; Day3, F(,, »1)=4.612, p<0.01;
Day4, F (5, 21=5.998, p=0.0234). It was suggested that ICA treatment could repair the learning and memory impair
of CUMS rats.3.2.2 Effect of ICA on neurogenesis dysfunction in DG in CUMS rats

3.2.2 Effect of ICA on number of BrdU/DCX positive ceélls in DG in CUMS rats

As shown in Figure 4B and 4C, compared with the CON group, the number of BrdU/DCX positive cells in DG of
the CUMS group reduced significantly (n=5, F(2,12)=53.44, p<0.01). Compared with the CUMS group, ICA

significantly increased the number of BrdU/DCX positive cells in DG (n=5, F, 19)=53.44, p<0.01). It was indicated
that ICA treatment could alleviate CUMS-induced neurogenesis dysfunction in DG.

3.2.3 Effect of ICA on relatively number of neurons in DG in CUMS rats

Page 8/26



As shown in figure 4D and 4E, compared with the CON group, the relatively number of neurons in DG of the
CUMS group reduced significantly (n=4-5, F, 12)=27.68, p<0.01). Compared with the CUMS group, ICA

significantly increased the relatively number of neurons (n=4-5, F(, 12)=27.68, p<0.01). It was suggested that ICA
treatment could resist neuronal reduction in DG.

3.3 Effect of ICA CSF on the proliferation and differentiation of neural stem cells under high-CORT concentration
3.3.1 Effect of ICA CSF on the proliferation of NSCs under high-CORT concentration

As shown in Figure5A, compared with the control group, the vitality of NSCs in the CORT group was significantly
reduced (n=10, F(4,45=53.41, p<0.01). Compared with CORT group, the NSCs viability of the CON-CSF group
(n=10, F(4, 45=53.41, p<0.01) and the ICA-CSF group (n=10, F4 45=53.41, p=0.021) was significantly increased.
There was no significant change between CORT group and CUMS-CSF group, suggesting CON-CSF and ICA-CSF
could promote the proliferation of NSCs under high-CORT concentration. But CUMS-CSF had no significant
effect. Compared with the CUMS-CSF group, the cell viability of NSCs in the ICA-CSF group was significantly
increased.

3.3.2 Effect of ICA CSF on the proliferation of NSCs into neurons under high-CORT concentration

As shown in Figure 5B, 5C and 5D, compared with the control group 1 (10% FBS), the number of BrdU positive
cells (n=5-6, F (g 29)=48.32, p=0.22) and the proportion of BrdU/DCX double-positive cells (n=4-7, F (5 29)=15.34,
p<0.01)in the control group 2 (2% FBS) were significantly reduced, while there was no significant difference in
control group 3 (2% FBS + 20% normal CSF). Compared with the control group 2, the number of BrdU positive
cells (n=4-7, F 5 59)=48.32, p=0.03) and the ratio of BrdU/DCX double-positive cells (n=4-7, F 5 29)=15.34, p=0.12)
in the control group 3 increased significantly. It was suggested that normal CSF could promote the proliferation
and differentiation of NSCs.

Compared with the CORT group, the number of BrdU positive cells (n=4-7, F(6,20)748.32, p<0.01) and the ratio of
BrdU/DCX double-positive cells (n=4-7, F 79=15.34, p<0.01) in the CON-CSF group were significantly increased
but CUMS-CSF group showed no significant change.

Compared with the CON-CSF group, the number of BrdU positive cells (n=4-7, F6,20)=48.32, p<0.01) and the ratio
of BrdU/DCX double-positive cells (n=4-7, F (s 79y=15.34, p<0.01) in the CUMS-CSF group were significantly
reduced while there was no significant change in the ICA-CSF group. Compared with the CUMS-CSF, the number
of BrdU positive cells (n=4-7, F g 29)=48.32, p<0.01) and the ratio of BrdU/DCX double-positive cells (n=4-7, F g,

29)=15.34, p<0.01) in the ICA-CSF group were significantly increased.

3.4 TMT proteomics screening results
3.4.1 DEPs in the CSF of CUMS rats

It was showed that 1935 DEPs were screened between the CON group and the CUMS group. According to the
standard of fold change (CUMS/CON or ICA/CUMS)=1.2 (or <0.83) and P-value<0.05, 100 significantly DEPs
were selected (shown in Table 1). Among them, 66 proteins were upregulated compared with the CON group and
34 proteins were downregulated (See Table S1 for details). The results of the GO annotation of these 100
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proteins showed that these proteins were involved in binding, catalytic activity, structural molecule activity,
molecular function regulator and transcription regulator activity. The biological process they mainly participated
in were cellular process, metabolic process, biological regulation, regulation of biological process and response
to stimulus. The result of the KEGG pathway annotation indicated that these 100 DEPs were mostly involved in
ribosome, fluid shear stress and atherosclerosis, transcriptional misregulation in cancer, aminoacyl-tRNA
biosynthesis and estrogen signaling pathway (as shown in Figure 6).

3.4.2 DEPs regulated by both CUMS and ICA

52 DEPs regulated by CUMS and ICA were identifiediFigure 7A and Table 18. Among them, 44 DEPs were up-
regulated by CUMS and down-regulated by ICA; 8 DEPs were down-regulated by CUMS and up-regulated by ICA.
The results of the GO annotation of these 52 DEPs showed that they were involved in the formation of cellular
components such as cytoplasm, organelles, and cell membrane. They mainly participate in molecular functions
such as nucleic acid binding, protein binding, structural composition of ribosomes, and biological processes
such as stress response, biological metabolism and gene expression (Table S2). The result of the KEGG pathway
annotation indicated that these 100 DEPs were mostly involved in the ribosome pathway, PI3K-Akt signaling
pathway and IL-17 signaling pathway (Figure 7B).

3.4.3 Quantification of target proteins by PRM

Based on the results of GO annotation and KEGG enrichment analysis, 10 cell proliferation relating DEPs (Rps3,
Rps12, Rps4x, Rps14, Rps19, Hsp90b1, Hsp90aa1, Calm1, Cpd and HtrA1) were selected to be analyzed by PRM.
The results showed that Rps4x, Rps12, Rps14, Rps19, Hsp90b1 and Hsp90aa1 were up-regulated by CUMS and
down-regulated by ICA; HtrA1 was down-regulated by CUMS and up-regulated by ICA (Table 2). The PRM results
of such 7 proteins were consistent with TMT results, indicating the TMT results were reliable. In addition, Rps3,
Calm1 and Cpd were not validated by PRM in this study.

4. Discussion

Depression is highly prevalent in the general population and is associated with grave consequences, including
excessive mortality, disability, secondary morbidity and high socioeconomic costs. However, the efficacy of
current antidepressant is not optimistic —almost 40% of patients do not recover following an antidepressant
trial[4]. Scholars have been devoting themselves to exploring the pathogenesis of depression in an attempt to
find more effective and safer antidepressants. Currently, there is an increasing interest in anti-depression effects
of natural compounds due to their lower toxicity and diverse biological properties. In this study, it has been
observed that ICA showed significant anti-depressant efficacy in depressive-like rats by alleviating typical
depressive symptoms such as anhedonia, decreased locomotor activity and despair.

The hippocampus is vulnerable to be damaged from a variety of psychological stressors[22]. Clinically,
depressed individuals exhibit cognitive impairment such as memory and learning deficits, implicating
hippocampal dysfunction in the pathophysiology of depression. Hippocampal neurogenesis dysfunction is one
of the main pathogenesis of depression. Therefore, how to alleviate hippocampal damage is currently a concern
of anti-depression research. In this study, ICA showed significant effect in repairing hippocampal damage,
learning-memory deficit, hippocampal neurogenesis dysfunction and neuron deletion in DG of depression rats.
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ICA could not effectively cross through the blood-brain barriers and accumulate in the brain[12]. Therefore, how
ICA exerts anti-depression and anti-hippocampal damage effects has aroused our interest. CSF is the pivot that
connects CNS with the periphery and other brain regions, in which substances might directly regulate
hippocampal neurogenesis. It was speculated that ICA probably protected hippocampal neurogenesis and
promoted neuronal survival by changing CSF components.

To prove this hypothesis, in vitro, the chronic stress-induced damage of NSCs was simulated under the high-
CORT concentration. It was observed that high-CORT concentration could significantly inhibit the proliferation
and differentiation of NSCs. The CSF of CUMS rats could not repair the CORT-induced injuries, while the CSF of
ICA rats could effectively resist the damage. The results suggested that ICA might adjust some components in
CSF to regulate the proliferation and differentiation of NSCs.

Proteins are the specific executor of life activities and biological functions. Changes in CSF proteomics may be
involved in the regulation of ICA on the proliferation and differentiation of NSCs. A total of 52 significantly
differential expressed proteins in CSF co-regulated by CUMS and ICA were screened in CSF proteomics in this
study. Among these proteins, 44 were up-regulated in CUMS exposure and down-regulated after ICA intervention,
while 8 were the down-regulated in CUMS exposure and up-regulated after ICA intervention.

The GO annotation and KEGG pathway enrichment of common DEPs indicated that three possible pathways
were involved in the efficacies of ICA in anti-depression, against dysfunctional neurogenesis and neuron deletion,
namely ribosome pathway, PI3K-Akt signal pathway and IL-17 signal pathway. To support the TMT analysis
results, PRM quantitative analysis was conducted on 10 DEPs that were closely connected with cell proliferation
and survival. It had been verified that the regulatory trends of 7 DEPs (Rps4x, Rps12, Rps14, Rps19, Hsp90b1,
Hsp90aa1 and Htra1) were consistent with the TMT results.

(1) Proteins related to ribosome pathway

Among the 52 significantly DEPs co-regulated by CUMS and ICA, 11 of them were enriched into the ribosome
pathway, which was the most enriched KEGG pathway. All these 11 proteins in CSF were up-regulated by CUMS.

A large number of studies have confirmed that abnormal ribosomal proteins expression or transcription exists in
patients with depression and animal models. Most of such studies have observed that the expression of
ribosomal proteins is up-regulated or increased transcription in blood, liver, hippocampus and other tissues of
depressed individuals[23-25]. It has been also observed that the expression of ribosomal proteins in the
hippocampus of rats was significantly down-regulated under 3-week exposure to CUMS|[26]. According to our
previous study [4], although rats showed depression-like behaviors after 3-week exposure to CUMS, rats were still
in the stress compensation stage, which did not cause hippocampal damage. Different brain regions may not
respond to mental stress simultaneously and may react differently towards various stressors. Nevertheless,
abnormal expression or transcription of ribosomal proteins is found in both central and peripheral regions of
depressed individuals.

It is worth noting that in PRM analysis, the expressed differences of ribosomal proteins showed higher
significance than in high-throughput TMT results. It was suggested that these ribosomal proteins might play an
important role in the development and remission of depression.
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Ribosomes are consisting of ribosomal RNAs and ribosomal proteins and are the main sites for intracellular RNA
translation controlling protein synthesis. During the stress process, to cope against stress-induced damages, the
assembly of ribosomes and synthesis of proteins speed up as the demand for proteins increases[27-29]. In this
study, more up-expressed DEPs rather than down-expressed ones were observed in the CSF of CUMS rats.

However, ribosome assembly requires extremely high rates, coordinated synthesis and assembly of
macromolecules across cellular compartments. Ribosomal synthesis dysfunction may easily appear under
stimulates during the assembly process, resulting in rapid accumulation of ribosomal proteins[30-32]. In
addition, numerous studies have shown that multiple cellular stresses could directly act on the nucleus and
trigger the overexpression of ribosomal proteins. Therefore, the overexpression of ribosomal proteins may
indicate ribosomal assembly dysfunction under stress[33, 34].

Ribosomes control the translation of all proteins in cells, the normal synthesis of ribosome is essential for cell
survival, growth and proliferation. In the process of ribosome synthesis, either over-expression or under-
expression of ribosomal protein could disrupt ribosome synthesis, lead to ribosomal assembly dysfunctions and
cause cell cycle arrest, senescence or apoptosis[35]. In addition, the accumulation of ribosomal proteins caused
by the ribosome synthesis dysfunction could lead to protein folding homeostasis collapse, inhibiting cell
growth[31, 32]. It may also cause cell cycle arrest or apoptosis through extraribosomal functions of ribosomal
proteins[36]. For example, Rps14 activates p53 pathway to inhibit cell proliferation and induce apoptosis[37]. In
the CNS, the normal synthesis of ribosome also plays an important role in the development of neurons. Some
forms of synaptic plasticity require rapid, local activation of protein synthesis in ribosome[38]. Dysfunction in
ribosomal gene expression may be associated with a decrease of proliferation in DG[39].

In this study, multiple increased ribosomal proteins (including Rps4x, Rps12, Rps14, Rps19) in CSF of depression
rats suggested ribosomal synthesis dysfunction in depression rats, which may be related to neurogenesis
dysfunction and neuronal loss in DG. ICA could significantly down-regulate the expression of such ribosomal
proteins in CSF of depression rats, promote the normal synthesis of ribosome, provide more proteins needed for
the repair of neurons, proliferation and differentiation of NSCs.

In summary, ribosomal synthesis dysfunction may affect cell proliferation and survival by abnormal expression
of ribosomal proteins. ICA may resist neurogenesis dysfunction and neuronal loss in rats with depression by
repairing ribosomal synthesis dysfunction.

(2) Proteins related to PI3K-Akt pathway and IL-17 pathway

PI3K-Akt pathway is one of the classical pathways regulating cell cycle, which is of great significance in
promoting the survival of neurons and neurogenesis [40]. It is also one of the effective pathways of many
antidepressants[41, 42]. Hsp90b1 and Hsp90aa1 are important proteins and targets in the PI3K-Akt pathway.
Abnormal expression of Hsp90b1 and Hsp90aa1 could both inhibit PISK-Akt pathway activity [43, 44]. Chronic
stress could cause overexpression of HSP90 family proteins in the brain of depression animals[45], and
overexpressed Hsp90b1 and Hsp90aa1 would combine with HIFT1a to promote NDRG2 expression and play a key
negative regulatory role in PI3K-Akt signaling[43].

Hsp90b1 and Hsp90aa1 are also important members of the IL-17 pathway. HSP90 functions as a chaperone
that facilitates the folding and assembly of its client proteins. Loss of HSP90 chaperone function results in the
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degradation of its client proteins—Act1. As Act1 is required for IL-17 signaling and is a client protein of heat
shock protein 90 (Hsp90) family proteins, so that Hsp90 activity is required for IL-17 signaling[46]. Epithelial
cells, endothelial cells and glial cells are all target cells of IL-17. IL-17 is activated after binding to the receptors
of target cells and ultimately promotes the release of large amounts of inflammatory cytokines from target cells,
which is one of many causes of neuronal death in individuals with depression[47]. In addition, some
pathological phenomena induced by IL-17 can be reversed by inhibiting the activity of Hsp90 family proteins[48].

In this study, PI3K-Akt pathway and IL-17 pathway were enriched, Hsp90b1 and Hsp90aa1 were overexpressed in
CSF, neurogenesis dysfunction and hippocampal neuronal loss were observed in depression rats. It was
suggested that the overexpressed Hsp90b1 and Hsp90aa1 might inhibit PI3K-Akt pathway and activate IL-17
pathway in hippocampus, causing neurogenesis dysfunction and neuronal loss in depression rats. The efficacy
of ICA in repairing neurogenesis dysfunction and neuronal loss may be related to the reduction of Hsp90b1 and
Hsp90aat in CSF.

In addition, though not enriched in KEGG pathway, some DEPs co-regulated by CUMS and ICA may be involved in
repairment of dysfunctional neurogenesis and neural reduction. For example, HtrA serine peptidase 1 (HtrA1) is
abundantly expressed in astrocytes. Down-expressed HtrA1 is related to a variety of neurological diseases. HirA1
could mediate transforming growth factor-8 hydrolysis and bone morphogenetic protein inhibition to prevent
neural stem cell proliferation and differentiation inhibition[49]. In this study, the treatment of ICA reversed CUMS-
induced Htra1 reduction in CSF, neurogenesis dysfunction and neuronal loss in DG, suggesting that the anti-
hippocampal damage effect of ICA may be related to the regulation of Htra1 content in CSF.

In conclusion, 6-week ICA intervention could significantly alleviate the hippocampal neurogenesis dysfunction,
neuronal loss in DG and memory and learning deficits in depression rats. Such efficacies of ICA may be related
to its regulation of Rps14, Hsp90b1, Htra1 and other proteins in CSF. The pathways involved mainly include
ribosome pathway, PI3K-Akt pathway and IL-17 pathway. It was suggested that ICA might protect hippocampus
by changing CSF proteomics (as shown in Figure 8).

Conclusions

This study showed prospect of ICA as a potential antidepressant, but there remain some problems. The
pathways and targets of ICA in anti-hippocampal damage screened in this study need to be further verified. As
we known, brain metabolites could directly transfer into the CSF. It cannot be ruled out that a small amount of
ICA crossing the blood-brain barrier might affect brain regions' metabolism and lead to the changing of CSF
proteomics.
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Table 1 Differentially expressed proteins of CSF regulated by CUMS and ICA
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Accession

ENSRNOP00000002394
ENSRNOP00000004386
ENSRNOP00000012286

ENSRNOP00000016389

ENSRNOP00000027860
ENSRNOP00000059194
ENSRNOPO00000070498
ENSRNOP00000071077
ENSRNOP00000001397

ENSRNOPO00000001518

ENSRNOP00000004278
ENSRNOP00000004867
ENSRNOP00000008509

ENSRNOP00000009249

ENSRNOP00000009556

ENSRNOP00000009649

ENSRNOP00000010674

ENSRNOP00000013375

ENSRNOP00000015598

ENSRNOP00000017234
ENSRNOP00000019162
ENSRNOP00000019247
ENSRNOP00000021048
ENSRNOP00000022184

Protein Name

chordin

myocilin
UDP-GIcNAc:betaGalbeta-1,3-

N-
acetylglucosaminyltransferase
2

transforming growth factor,
beta induced

HtrA serine peptidase 1
angiopoietin-like 1
carboxypeptidase D

collagen type Il alpha 1 chain

transmembrane p24
trafficking protein 2

ribosomal protein lateral stalk
subunit PO

ribosomal protein S4, X-linked
small ubiquitin-like modifier 2

eukaryotic translation
initiation factor 1A, X-linked

proteasome 26S subunit, non-
ATPase 6

heat shock protein HSP 90-
alpha

proteasome 26S subunit,
ATPase 6

tyrosyl-tRNA synthetase
eukaryotic translation
initiation factor 2 subunit
alpha

RAB11a, member RAS
oncogene family

heparin binding growth factor
ribosomal protein L35
ribosomal protein L27a
myosin light chain 12A

ribosomal protein S12

Page 18/26

Gene Name
Chrd

Myoc
B3gnt2

Tgfbi

Htra1
Angptl1
Cpd
Col2a1
Tmed?2

Rplp0

Rps4x
Sumo?2

Eif1ax

Psmd6

HSP9O0AA1

Psmc6

Yars

Eif2s1

Rab11a

Hdgf
Rpl35
Rpl27a
Myl12a
Rps12

CON/CUMS
1.330657
1.237837
1.346536

1.246915

1.246935
1.294498
1.320809
1.836686
0.473675

0.696513

0.353676
0.746357
0.658648

0.550629

0.730779

0.718329

0.556245

0.465363

0.730942

0.771831
0.61251

0.673251
0.495839
0.255554

ICA/CUMS
1.251991
1.321273
1.214411

1.206508

1.239292
1.220162
1.340595
1.680284
0.404166

0.706795

0.372436
0.557202
0.648145

0.486541

0.665003

0.621687

0.649364

0.499192

0.70133

0.595331
0.58689

0.666698
0.518126
0.234153




ENSRNOP00000022603
ENSRNOP00000023935
ENSRNOP00000024430
ENSRNOP00000025217
ENSRNOP00000026528
ENSRNOP00000026696

ENSRNOP00000027246
ENSRNOP00000033144
ENSRNOP00000033950

ENSRNOP00000034657

ENSRNOP00000034846

ENSRNOP00000038448
ENSRNOP00000044296
ENSRNOP00000056260
ENSRNOP00000060949
ENSRNOP00000064424
ENSRNOP00000066331
ENSRNOP00000067217

ENSRNOPO00000070331
ENSRNOPO00000070868
ENSRNOP00000071233

ENSRNOP00000072016

ENSRNOPO00000073493

ENSRNOP00000074005

ENSRNOP00000074688
ENSRNOP00000075909

calmodulin 1
ribosomal protein S3
vimentin

ribosomal protein L17
ribosomal protein S5

heat shock protein family A
member 9

ribosomal protein S19
ribosomal protein s25

ubiquitin-like modifier
activating enzyme 1

ubiquitin-like protein fubi and
ribosomal protein S30-like

heat shock protein 90 beta
family member 1

seryl-tRNA synthetase
actin, beta
ribosomal protein S14

ribosomal protein L34

histone cluster 1 H2a family
member | like 1

protein kinase N3
tubulin, alpha 1B

spectrin, beta, non-erythrocytic
>

TATA-box binding protein
associated factor 15

RAB1A, member RAS
oncogene family

dyskerin pseudouridine
synthase 1

ubiquitin C

NFKB activating protein

Calm1
Rps3
Vim
Rpl17
RpsS

Hspa9

Rps19
Rps25
Uba1l

LOC100360647

Hsp90b1

SerRS

Actb

Rps14

Rpl34
AABR07065778.2
AABR07065750.2
Hist1h2ail1

Pkn3
Tubalb
Sptbn1

Taf15

Rab1a

DkcT

Ubc
Nkap

0.636832
0.519405
0.727629
0.482482
0.414189
0.679796

0.452858
0.364721
0.787971

0.392441

0.735841

0.517425
0.783141
0.523183
0.150869
0.593477
0.581222
0.491005

0.455886
0.689164
0.670589

0.693424

0.579087

0.13148

0.733036
0.291945

0.5501
0.502597
0.691827
0.50053
0.469701
0.621869

0.524735
0.310551
0.715948

0.374892

0.802234

0.483297
0.768301
0.572311
0.172269
0.614344
0.541466
0.388903

0.407136
0.596259
0.628294

0.622737

0.532868

0.139895

0.750576
0.260421
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Table 2. PRM quantitative analysis of target proteins.

Protein Name Gene Name PRM results TMT results
CUMS / ICA/CUMS  CUMS/ ICA/CUMS
CON CON
HtrA serine peptidase 1 Htra1 0.3347 1.7893 0.8020 1.2393
ribosomal protein S4, X-linked Rps4x 3.4306 0.8016 2.8274 0.3724
heat shock protein HSP 90-alpha LOC103692716  3.6841 0.3606 1.3684 0.6650
ribosomal protein S12 Rps12 6.4356 0.4176 3.9131 0.2342
ribosomal protein S19 Rps19 11.4161 0.1136 2.2082 0.5247
heat shock protein 90 beta family Hsp90b1 3.4992 0.4571 1.3590 0.8022
member 1
ribosomal protein S14 Rps14 15.7618 0.0882 1.9114 0.5723
Figures
9:00 White noise (5 h) 9:00 Thermal swimming (5 min)  7:00 Paired with three other 9:00 White noise (5 h)
17:00 Tail pinching (3 min) 19:00 Water deprivation (12 h) animals (10 h) 20:00 Restraint (12 h)

19:00 Food deprivation (12 h)

DAY 2 DAY 4 DAY 6
DAY 1 DAY 3 DAY 5 DAY 7
9:00 Cold swimming (5 min) 9:00 Soiled cage (10 h) 9:00 Cold swimming (5 min)
20:00 Restraint (12 h) 22:00 Stroboscopic illumination (5 h) 15:00 Tail pinching (3 min)

Figure 1

CUMS procedure. One or two arbitrary mild stressors were randomly applied for 6weeks and the same stressors
were not scheduled in three consecutive days.
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Figure 2

Experiments procedure.
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Figure 3

The effect of ICA on behaviors. A)Sucrose preferencellSPTH. B) Total traveling distancellOFTE. C) Immobility time
(FST). Data were expressed as the mean + SEM (n = 15 per group). *pi0.05, **pk0.01.
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Figure 4

The effect of ICA on hippocampal damage. A) T-maze accuracy (n=8 per group). B) BrdU/DCX positive cells in
DG, red: BrdU, green: DCX, blue: DAPI. C) Numbers of BrdU/DCX positive cells in DG (n=5 per group). D) NeuN
positive cells in DG, green: NeuN, blue: DAPI. E) Relatively number of neurons in DG (n=5 per group). Data were
expressed as the mean + SEM. *pl0.05, **pl0.01, vs. control. #pl0.05, ##pk0.01, vs. CUMS.
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Figure 5

The effect of CSF on primary hippocampal NSCs' proliferation and differentiation into neurons under high-CORT
concentration. A) Cell viability (n=10 per group). B) BrdU/DCX positive cells, red: BrdU, green: DCX, blue: DAPI. C)
Number of BrdU positive cells (n=5 per group). D) Number of BrdU/DCX double positive cells (n=5 per group).
Data were expressed as the mean = SEM. *pl0.05, **pi0.01.
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Figure 6
The result of the GO annotation and KEGG pathway enrichment of differentially expressed proteins between the

CON and CUMS group. A) GO annotation (TOP 20). B) KEGG pathway enrichment.
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Figure 7

Differentially expressed proteins regulated by both CUMS and ICA, A) VEEN map. B) KEGG pathway enrichment.
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The possible mechanism of ICA against hippocampal neurogenesis dysfunction via CSF in depression.
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