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Abstract

Background: Recent global reports show that the number of Tuberculosis (TB) cases or deaths is declining,
however, the rate of decline is not adequate to meet the World Health Organization’s (WHO’s) mitigation. TB
remains a public health problem in Ghana with a significant economic and health burden on citizens and health
infrastructure.
Aims: Consequently, there is a need for further studies about the disease aimed at accelerating the rate of
decline in cases.
Methods: In this article, we study the spatio-temporal characteristics of TB in Ghana, using data obtained
from Ghana National Tuberculosis Programme (NTP) for the 10 regions of Ghana, collected over a six-year
period. Bayesian spatial and space-time regression models are used to map the risk of TB infections across the
nation, in time and space. The study also examines some baseline predictors of TB infections to ascertain their
effects on the TB risk.
Results: Our study results showed that hot-spots of TB cases are observed in the Upper East, Upper West,
Volta, Western, and Central regions and low risk in the Northern, Ashanti, Greater Accra, Brong Ahafo,
Eastern and Western regions. We observed clustering of risk between neighboring regions. TB cure rate, TB
success rate, knowledge about TB, awareness that TB is airborne, HIV prevalence, percentage of literacy, high
income are important predictors of TB detection across the 10 regions of Ghana.
Conclusions: Most regions in Ghana have similar TB risk. Efforts for more TB cases detection should be
encouraged to increase TB success and cure rate which will lead to substantial decrease in TB spread. There is
the need for provision of adequate health facilities with easy access to these facilities irrespective of your
income status to bridge the gap between TB cases among the poor and the rich. TB cases are expected to
grow exponentially in countries with low success and cure rate. Finally, for a substantial TB cases reduction,
there is the need to adopt measures that will increase TB cases detection, TB success and cure rates, TB
awareness, knowledge about how TB spread as well adequate health facilities with easy access.

Keywords: Bayesian spatial and space-time models, Tuberculosis relative risk, baseline predictors, and TB
hot-spots.

1 Background
Tuberculosis (TB) is an infectious disease transmit-
ted by bacillus Mycobacterium tuberculosis [1]. It is a
disease that spreads across age, gender, race, healthy
and sick human populations across the globe [1]. In
2019, approximately 10 million people tested positive
for TB with an estimated 1.2 million HIV-negative
deaths [1]. Male adults (aging 15 years and above)

Correspondence: Abdul-Karim Iddrisu (karim@aims.ac.za)

Department of Mathematics and Statistics, University of Energy and

Natural Resources, +233, Sunyani, Ghana

accounted for 56% of the global infections compared

to 32% for females in the same age group. Infections

among children accounted for 12% of the total case and

about 8.2% of the reported cases were HIV-patients

[1]. Africa accounted for 25% of the infections, South-

East Asia and Western Pacific accounted for 44% and

18% (respectively) of the total infections in 2019. East-

ern Mediterranean, America and Europe accounted for

8.2%, 2.9%, and 2.5% respectively, of the total cases

[1].
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However, the World Health Organization (WHO)
has called for the development of TB vaccines [1].
Aside vaccines, there is treatment for TB patients, and
reports indicate that about 85% of patients can be
cured successfully with a 6-month drug schedule [1].
Available reports indicate that treatment drugs have
prevented more than 60 millions deaths from 2000 to
2020 [1]. Cumulatively, there was 9% reduction in cases
between 2015 and 2019, and about 2.3% reduction be-
tween 2018 and 2019 [1]. Europe has achieved 19% re-
duction in cases and 31% reduction in deaths between
2015 and 2019. Africa has achieved a 16% reduction
in cases and a 19% reduction in deaths between 2015
and 2020 [1]. More statistics on TB can be found in
[1–6].
Although, global reports on TB indicate a decreasing

trend in cases and deaths, the 2015-2020 reduction tar-
gets of the WHO, have not been achieved [1]. Apart
from Europe, all the other continents have not been
able to meet the acceptable reduction levels. Thus,
TB is still one of the top 10 causes of death espe-
cially in Africa (ranked above HIV/AIDS) [1]. Hence,
there is a need for further studies to be conducted on
the dynamics of the disease and on mitigation mea-
sures for TB in Africa. Ghana as a developing coun-
try in Africa, has been affected by the respiratory
disease and currently has challenges eradicating TB.
The country implemented policies called Directly Ob-
serve Therapy (DOT) and National Tuberculosis Pro-
grammes (NTPs) in 1994, to detect and treat TB
[1, 7–9]. The implementation of the NTP led to 100%
DOTs coverage in 2005 with more TB cases detected
for treatment every year after. For instance, TB cases
detected increased from 7,425 in 1996 to 15,286 in 2009
[10, 11]. Detailed discussion of the statistics of TB in
Ghana can be found in [1, 8–13].
Although TB cases and deaths have declined due

to the implementation of mitigation/treatment strate-
gies, TB still remains a life-threatening disease and
poses a burden on health infrastructure in Ghana.
Hence, TB has gained considerable attention as a
topic of research among researchers from diverse back-
grounds. The authors in [8, 9, 14] have studied the
dynamics of TB indicators as well as risk factors of
TB in Ghana. Osei et. al. [8, 9] studied trends of TB
detection and treatment outcomes using the logistic
regression to assess the relationship between patients
and disease characteristics. Further, Osei et. al. [8, 9]
have studied TB detection, mortality and co-infection
with HIV, using patients data collected in the Volta
Region from 2012–2016. The authors used simple and
multiple logistic regression to investigate determinants
of TB mortality in 10 districts of the Volta Region of
Ghana. Aryee et. al. [14] have studied the dynamics of

TB using Autoregressive Moving Average (ARIMA)
methods and TB data recorded by Korle Bu Teach-
ing Hospital from 2008–2017. Iddrisu et. al. [15] have
studied the temporal and geographical pattern of TB
prevalence in Ghana between 2015 and 2018.

In the discussion in this paper, we extend the lit-
erature on TB cases in Ghana, by using Bayesian hi-
erarchical spatial and space-time models to study the
relative risk (RR) of TB and associated risk factors
across the 10 Regions of Ghana. Hence, the purpose
of this study is to model the spatio-temporal risk pat-
tern of TB in Ghana, using Bayesian hierarchical and
space-time models discussed in [5, 16–19]. The relative
risk pattern of TB will be estimated and used to iden-
tify regions in Ghana that are hot-spots. We also check
for clustering of risk between regions and examine the
variability of TB risks among the regions in both space
and time. The rest of the paper is divided into four
main sections. We describe the data in Section 2 and
space-time methods in Section 3. The experimental re-
sults are presented in Section 4 and the conclusion is
drawn in Section 5.

2 Description of data
In this section, we describe the TB detection data used
as well as some selected baseline potential predictors
of TB cases in Ghana.

2.1 TB cases data

In this study we used TB detection data obtained from
Ghana Health Service and National Tuberculosis Pro-
gramme [10]. The data contain information on TB de-
tection from 2009 to 2017, for the 10 old administra-
tive regions of Ghana. These regions include, Ashanti,
Brong Ahafo, Central, Eastern, Greater Accra, North-
ern, Upper East, Upper West, Volta, and Western.

Figure 1 shows the TB trends in the 10 regions from
2008 to 2017. Generally, there is a decrease in TB cases
observed in all regions (except Brong Ahafo Region
where TB cases increase) of Ghana from 2008 to 2016.
It can also be observed that TB cases in Northern and
Upper East increased remarkably between 2016 and
2017, whereas cases in Ashanti Region decreased from
50 per 100, 000 population in 2016 to 45 per 100,000
population in 2017. In the Northern Region, TB cases
increased from 24 per 100,000 population in 2016 to
52 per 100,000 population in 2017. Further, cases in
Upper East Region increased from 53 per 100,000 pop-
ulation in 2016 to 63 per 100,000 population in 2017.
However, the changes in TB cases in the other regions
are almost horizontal.

Figure 2 shows the trend of total number of TB cases
for each region from 2008 to 2017. It shows that the
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highest cases recorded was in the Greater Accra Re-
gion from 2008 to 2017. It also shows that the lowest
was recorded in the Northern Region. Volta and West-
ern Regions are second and third, respectively, with
records slightly lower than Greater Accra Region. In
addition, Figure 3 shows the trend of total TB cases
in each year/period. The figure shows that the highest
number of total TB cases was recorded in 2011 while
the lowest was in 2016. It can be observed that TB
cases decreased slowly from 2011 to 2017 with incre-
ments in 2012 and 2017.
Furthermore, the variability of TB cases from 2008 to

2017 have also been presented using box-and-whisker
plots in Figure 4. The overlapping box-and-whisker
plots imply that there is no variability in cases among
the years. The plots show that TB cases were skewed
towards larger numbers from the year 2008 to 2014,
and skewed towards smaller numbers from 2015 to
2016. Extremely small numbers were observed in 2013,
2014, 2015, and 2017. Variability across the regions
have been presented in Figure 5. None-overlap of box-
and-whisker plots imply variability between regions.
Thus, there is variability in TB cases among the re-
gions since some of the box-and-whisker plots do not
overlap. It can also be observed that TB cases in most
of the regions are skewed towards larger numbers ex-
cept Northern and Upper East Regions (especially, the
Northern Region with one extremely large value).

2.2 Baseline predictors
Some baseline regional characteristics on the risk of TB
infection have been explored in this study. The set of
baseline predictors include doctor to population ratio,
nurse to population ratio, HIV prevalence, Tuberculo-
sis cure rate, Tuberculosis success rate, wealth quan-
tiles and the proportions of men/women employed, un-
employed, educated, and uneducated. Variables also
considered in the study include proportions of people
who have heard about the TB disease, have knowledge
that TB is airborne, knowledge that TB can be cured,
and those who believe that TB status should be kept
secret. In the data analyses, all the baseline variables
are explored to obtain significant predictors of the TB
cases.

3 Methods
This section discusses the distribution of TB cases,
spatial and space-time models that will be used to es-
timate the relative risk across the 10 regions of Ghana.

3.1 Hierarchical space model
For spatial TB data, let yi, i = 1, . . . , n denote a Pois-
son random variable with probability mass function
defined as P (yi | θθθ), where θθθ = (θ1, . . . , θn) is a vector

of relative risk parameters for each region. The vari-
able yi represents total number of TB cases for region
i. It follows that the likelihood function for the Poisson
variable yi is defined as:

P (y | θθθ) =

n∏

i=1

P (yi | θθθ) ,

with assumption that the sample values of y =
(y1, . . . , yn)

′
given the parameter estimates θθθ are inde-

pendent [20]. Bayesian modeling framework requires
prior distribution of the unknown parameters in the
likelihood function for the data. The prior distribu-
tion represents the current knowledge of the parame-
ters θ before the data yi are observed [20]. Under the
Bayesian framework, all parameters are stochastic and
assigned appropriate distributions called prior distri-
butions [20]. Bayesian modeling framework combines
the likelihood function for the data and the prior distri-
butions for the parameters resulting in a distribution
known as the posterior distribution [2, 3, 5, 20]. The
posterior distribution is defined as P (θθθ | y), (i.e. prob-
ability distribution of the parameters given that the
data which is proportional to the product of the like-
lihood function) while the prior distribution is defined
as:

P (θθθ | y) =
P (y | θθθ)P (θθθ)∫

p
L(y | θθθ)P (θθθ)dθθθ

(1)

where the denominator of Equation (1) is called the
normalizing constant. It has been shown that the pos-
terior distribution can alternatively be written as:

P (θθθ | y) ∝ P (y | θθθ)P (θθθ),

from which parameter estimates are drawn using Inte-
grated Nested Laplace Approach [19, 21, 22] proposed
by H̊avard et. al.[23]. This is an approximate Bayesian
inference approach and has become an established al-
ternative to Markov chain Monte Carlo due to its speed
and ease of use via the R-INLA package.

3.1.1 Correlated and uncorrelated heterogeneity
structures

Clustering and variability of risk are are studied using
correlated and uncorrelated structures, respectively.
The use of uncorrelated heterogeneity models with
gamma or beta prior distributions for estimating the
relative risk of a given disease are useful, however, such
models have limitations. Andrew [20, P. 82-84] stated
that a gamma distributions is restrict the incorpora-
tion of covariates into the modeling process. Another
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limitation is that such models do not allow the formu-
lation of a simple and adaptable general form of the
gamma distribution with spatially correlated parame-
ters [20, P. 82-84]. Also, Wolpert and Ickstadt [24] have
given an example of correlated gamma field models
that yield poor results [25]. However, Gaussian models
permit incorporation of correlated structure (CH) into
the modeling process. Further, variability in the data
can be modeled as uncorrelated heterogeneity (UH) us-
ing a Gaussian prior distribution with a mean zero and
risk variance of the disease across the regions. Both
correlated and uncorrelated heterogeneities can be in-
corporated into the model to account for clustering
and heterogeneity of risk. These structures are intro-
duced into the modeling through a log-linear term with
additive random effects [3, 26].
Besag et. al.[27] have provided the form of the model

with CH and UH structures parameterized as follows:

exp (x′iβ + φi + ui) ,

where x′iβ is the fixed effect component, φi and ui are
the correlated and uncorrelated heterogeneity compo-
nents, respectively with separate prior distributions.
Often, the CH component is assumed to have either an
intrinsic Gaussian conditional auto-regressive (CAR)
prior distribution or a fully specified Multivariate Nor-
mal prior distribution [2, 3, 25, 27].

3.1.2 Conditional Auto-regressive (CAR) Models
CAR models provide a tool for detecting and identify-
ing regions where disease risks are clustered. The spec-
ification of CAR models provide a framework for bor-
rowing strength between neighboring regions in such a
way that, regions that share boundaries are likely to
have similar risks and regions that are distant apart are
likely to show variability with regard to risk. Waldo
Tobler’s [28] noted that ”everything is related to ev-
erything else but near-by things are more related than
distant things”. CAR models were rarely used to de-
tect and cluster risk until the 1990s [13, 17]. The mod-
els enable the influence of disease risk in neighboring
regions to be modeled and estimated [2, 3, 29]. Dis-
tances or boundaries between the regions are used to
determine neighborhood properties in the CAR mod-
els [18, 20, 30].
Let Ω = {1, 2, . . . , n} denote the study area and

Ni = {j ∈ Ω : i ∈ j} classifies regions that share
boundaries with region i. Let φi, i ∈ Ω be a stochastic
variable, then the CH structure of φi follows a normal
distribution defined as:

φi | φj 6=i ∼ N


∑

i 6=j

Wijφj , τ
2
i


 (2)

whereWij is a spatial dependence parameter for quan-
tifying the weight of each observation on the CAR
structure φi, τ

2
i is the variance of φi, and φj is a set of

all observation except φi. The spatial dependence pa-
rameterWij is non-zero if j ∈ S, but set to zero if i = j,

in order to prevent auto-correlation [3, 18, 25, 27, 31].
It can be observed from Model 2 that the φi depends
only on a set of neighbors φj provided the location j
is in the neighborhood Ni of φi.
Assume that region i hasM neighbors andWij =

1
M

for each region that is a neighbor but zero elsewhere.
The conditional expectation of φi is given by:

E [φi | φj 6=i] = µi +
∑

j∈Ni

Φij [φj − µi]

and the conditional variance is:

var (φi | φj) = τ2i .

The Gaussian processes are defined by mean and co-
variance functions [? ]. Thus, the mean and variance-
covariance functions are required to specify the CAR
model. It follows that the conditional probability dis-
tribution of the CAR structure φi is defined as [25, 27,
28]:

f (φi | φj 6=i ∈ Ω) =

√
1

2πτ2i
exp




−

[
(φi − µi)− ρ

∑
j∈Nt

Wij (φj − µj)
]2

2τ2i




,

(3)

where µi ∈ R, τ2i ∈ R+, |ρ| < 1,Wij ∈ R,Wij =
Wji,Wii = 0. The CAR conditional probability distri-
bution function can be written as [3, 25, 27]:

f (φi | φj 6=i) =
1

(2π)n/2det (B−1Σ)
1/2

×

exp

[
−
(φφφ−µµµ)′ΣΣΣ−1B(φφφ−µµµ)

2

]
,

where µµµ ∈ Rn is an n−dimensional vector with com-
ponents µµµ = (µ1, µ2, . . . , µn)

′
, Σ ∈ R+(n×n) is a sym-

metric diagonal matrix with components:

Σ = diag
(
τ21 , . . . , τ

2
n

)

and B ∈ Rn×n is an invertible matrix defined as:

B = (I− ρW ) with Bij =





1 i = j,

−ρWij j ∈ Ni,

0 otherwise.
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The symmetry of Σ implies that the covariance ma-
trix Σ−1 B = B−1Σ is symmetric such that W(ij)τ

2
j =

W(ji)τ
2
i , i, j ∈ S. The probability distribution Function

(3) can alternatively be defined as:

φi | φj 6=i ∼ N


µi + ρ

∑

j∈Ni

W(ij) (φj − µj) , τ
2
i


 ,

i ∈ Ω and φ ∼ N
(
µ,B−1Σ

)
(4)

It has been proved that the CAR structure φi follows
the Gaussian distribution by showing that Σ is sym-
metric, see [3, 32] for details.

3.1.3 Parameter estimation: CAR model
Parameters in the CAR model are estimated using
Bayesian hierarchical methods. The TB detection data
used in the study are counts (whole numbers), there-
fore, Poisson distribution is assumed for such data.
The unknown risk of TB in any region i represented
by φi. The number of cases and population risk in any
region i are denoted by yi and Ni, respectively. The ex-
pected number of cases in region i can then be written
as:

Ei = rNi,

where

r =

∑n
t=1 yi∑n
i=1Ni

represents the overall risk in the study population. The
corresponding likelihood function is defined as:

ℓ (θi) =

n∏

i=1

exp (−Eiθi) (Eiθi)
yt

yi!
= P (y,E | θθθ).

Taking natural logarithm of the likelihood function,
differentiating with respect to the disease risk θi and
equating to zero, it can be shown that the maximum
likelihood estimator θ̂i of θi is

θ̂i =
yi

Ei
,

which defines the standardized mortality ratio (SMR)
in region i. However, using the Bayesian framework,
yi ∼ Poisson (Eiθi), where the Poisson mean µi =
Eiθi, θi ∼Gamma (α, γ) with shape parameter α and
scale parameters γ, respectively. However, these formu-
lations do not incorporate covariates in the modeling
process. We introduce covariates through a linear pre-
dictor, as in the work [2, 3, 20, P. 84]. The distribution

of the response variable is specified by the exponent
of the linear predictor as yi ∼ Poisson (Ei exp (ηi)),
where µi = Ei exp (ηi) is the mean of Poisson distri-
bution. Thus, the relative risk of the disease in region
i is defined as:

θi = exp (ηi) ,

where ηi = X′βββ+φi, and φi has a CAR structure.
Using the generalized linear model with a log-link

function, we have:

log (µi) = log (Ei) +X ′βββ + φi.

Bayesian models are defined by the posterior distribu-
tion of the D parameter estimates, where the poste-
rior is the product of the data likelihood function and
the prior distribution(s) of the parameter estimates.
Hence, we define the likelihood function as:

ℓ(βββ,φφφ) =

n∏

i=1

(Ei exp (ηi))
yi exp (−Ei exp (ηi))

yi!

= P (y,E, θθθ | βββ,φφφ).

The β parameter estimates are assumed to follow the
Gaussian distribution defined:

P (β) =

(
1

2π

)P/2(
1

τβ

)P

exp

(
−
1

2

P∑

p=0

β2
p

τ2β

)
,

and the prior distribution for the CAR random effect
is defined by:

P (φ) =
[
φi | φj 6=i, τ

2
φ

]
∼ N


∑

j 6=i

wij

w+
ij

φj ,
τ2φ

w+
ij




∼ CAR
(
0, τ2φ

)

where w+
ij is the number of areas which share bound-

aries with the ith area [6] with:

wij =





1 j = i

ϕ(i, j) j ∈ Ni : ∀i, j ∈ S,wij = wji

0 otherwise

with ϕ(i, j) quantifying the proximity between regions
i and j. That is, if ϕ(i, j) = 1, then i and j share a
common boundary. The posterior distribution is can
be expressed as follows:

P
(
β, φ, τ2β , τ

2
φ | y,E, θ

)
∝ P

(
X,E, θ | β, φ, τ2β , τ

2
φ

)

× P (β)P (φ).
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The hyperprior distribution for the precision pa-
rameters τ2φ and τ2β are respectively, τ2φ ∼ Gamma

(0.05, 0.005) and τ2β ∼ Gamma (0.5, 0.05). The linear
regression coefficient distribution is defined by:

β ∼ N
(
0, τ2β

)
.

3.1.4 The Besag, York and Molli’e (BYM) Model
Clayton and Kaldor [33] were first to propose the BYM
framework, and later, Besag et. al. developed it further
[27]. The BYM ( also known as the convolution model)
unifies the CH and UH structures into the same model
that is capable of explaining clustering and variabil-
ity of the disease risk. Although various models have
been proposed for smooth risks estimation, the model
proposed by Besag et. al. (BYM) [27] have been used
extensively in literature. The BYM model is expressed
as follows:

ηi = µi + φi + ui.

As indicated in the previous section, the TB cases fol-
low the Poisson distribution, thus, we have yi ∼ Pois-
son (Ei exp (ηi)) , where µi = Ei exp (ηi) . The lin-
ear link function is ηi = X′β+φi+ui. The log relative
risk is log (θi) = ηi. Therefore, the relative risk for area
i is defined by:

θi = exp (X′β + φi + ui) .

The log log-link function is defined as:

log (µi) = log (Ei) + (X′βββ + φi + ui) , (5)

= log (Ei) + log(θi)

= log(Eiθi),

where y, βββ,E and θθθ are vectors of responses, pa-
rameter estimates, the expected number of TB cases
and the relative risk of TB, respectively. The ui is the
region-specific random effect quantifying the variabil-
ity of relative risk of the disease.

3.1.5 Parameter Estimation: BYM
Parameters in the BYM are estimated using the same
formulations discussed in Section 3.1.3, however, ui is
required to be a Gaussian prior distribution given by:

P (uuu) =

(
1

2π

)n/2(
1

τu

)n

exp

(
−

n∑

i=1

u2i
2τ2u

)
.

The resulting posterior distribution can be written as
follows:

P
(
βββ,uuu,φφφ, τ2β , τ

2
u , τ

2
φ | y,E, θθθ

)

∝ P
(
y,E, θ | βββ, u,φφφ, τ2β , τ

2
u , τ

2
φ

)
× P (βββ)P (uuu)P (φφφ).

The distributions for the hyper-prior precision param-
eters are as follows: τ2u ∼ Gamma(0.5, 0.005), τ2φ ∼

Gamma(0.5, 0.005) and τ2β ∼ Gamma(0.5, 0.01) re-
spectively. The regression coefficients β follow Gaus-
sian distributions stated as follows;

β ∼ N
(
0, τ2β

)
.

The estimates, τ2u and τ2φ are precision-variance esti-
mates for u and φ, respectively, and are used to mea-
sure the level of variability of risk among the regions
and to cluster risk between neighboring regions [3, 29].
In subsequent sections, we will compare the perfor-

mance of the CAR with the BYM model using the De-
viance Information Criterion (DIC) proposed by [34].
The smaller the DIC, the better the model and vice
versa. The TB data used in study are collected over
time and hence spatial models alone will not be enough
to model the space-time pattern of the relative risk
of the disease. The spatial models are constrained for
identifying heterogeneity and clustering of risk at a
single time point. Several methods have been proposed
to account for spatial and temporal patterns of disease
risks [26, 27, 35–37].

3.2 Space-time models
In this section, space-time models are presented based
on three modeling frameworks developed by Knorr-
Held et. al. [19, 38], Bernardineli et. al.[26] and Waller
et. al.[38]. These models differ with regards to their
space-time interactive structures and inclusion of co-
variates. Consider region i, in year t, that recorded yit
TB cases. The cases follow the Poisson distribution,
i.e.:

yit ∼ Poisson (Eit exp (ηit)) ,

where the unknown relative risk at region i in time t
is:

θit = exp (ηit) ,

and Eit is the expected number of TB cases in region
i in time t. The expected number of TB cases repre-
sents the number of cases expected if the population
of region i has statistical behavior comparable to the
standard population Ns

it. We express the crude rate of
TB cases for region i in time t as:

rsit =
ysit
Ns

i

,

and the number of TB cases expected in region i in
time t, as:

Eit = rsitNit =
ysit
Ns

it

Nit,
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where Nit denotes the observed population, ysit is the
TB cases in the standard population. Thus, the overall
crude rate of TB cases is given by:

r =
n∑

i

T∑

t

ysit
N3

it

and the overall number of expected TB cases is defined
by:

E =

N∑

i

T∑

t

rsitNit =

N∑

i

T∑

t

ysit
Ns

it

Nit.

Our first space-time model formulations is based on
the framework developed by Bernardineli et. al.[26],
where the linear predictor ηit is:

ηit = µ+ φi + ui + (̺+ δi)× t, (6)

where φi + ui follows the BYM specifications [27]
(See Section 3.1.4) with spatial structure (φi) and un-
structured random effects (ui) , ̺vt is the global linear
time trend, viδi is the interactive term between space
and time [19, 26]. The term vt represents a vector of
temporal weights and the intercept µ quantifies the
average TB rate in all the 10 regions. Since the risk
takes the form θit = exp (ηit) then:

θit = exp (ηit) = exp [µ+ φi + ui + (̺+ δi)× t] .

It follows that the Poisson mean is

µit = Eit exp [µ+ φi + ui + (̺+ δi)× vt]

and logarithm of the mean is given by:

log (µit) = log (Eit) + µ+ φi + ui + (̺+ δi)× t.

These formulations suggest that each spatial unit
has its own time trend with a spatial intercept
(µ+ φi + ut) and a slope (̺+ δi). This model assumes
a linear time trend in each spatial unit. The parame-
ters to be estimated are ϕ = {̺, φ, u, δ} and the hyper-
parameters ψ = {τφ, τu, τδ}.
Adjusting for risk factors Xi of TB cases detection,

the model 6 can be written as model7. Now the pa-
rameters to be estimated are ϕ = {β, ̺, φ, u, δ} and
the hyper-parameters are ψ = {τφ, τu, τδ}.

ηit = µ+
∑

βiXi + φi + ui + (̺+ δi)× t (7)

It is known that if δi < 0 the region-specific trend is
less steep than the mean trend. On the other hand,

δi > 0 implies that the region-specific trend is steeper
than the mean trend. Further, δi ∼ Normal (0, τδ) .
The second space-time model is based on Waller et.

al.[? ] dynamic non-parametric formulation on the lin-
ear predictor:

ηit = µ+ φi + ui + ϑt + ωt, (8)

where the terms µ, φi, ui follow the same formula-
tion as in the first model. ϑt and ωt structures de-
note the temporally structured and unstructured ran-
dom effect, respectively. This model assumes a non-
parametric time trend. Covariates are incorporated
into Model 8 to estimate ϕ = {µ, β, φ, u, ϑ, ω} and
ψ = {τφ, τu, τϑ, τω} . The model with the covariates
can now be written as:

ηit = µ+
∑

βiXi + φi + ui + ϑt + ωt (9)

The ϑt quantifies temporal-structure effect and it is
modeled using a random walk through a neighboring
structure [19] defined as:





ϑt | ϑ−t ∼ N(ϑt+1, τϑ) t = 1

ϑt | ϑ−t ∼ N
(

ϑt−1+ϑt+1

2 , τθ2

)
t = 2, . . . , T − 1

ϑt | ϑ−t ∼ N(ϑt−1, τϑ) t = T.

Finally φt is specified by means of a Gaussian ex-
changeable prior: ωt ∼ N (0, τω). Finally φt is speci-
fied by means of a Gaussian exchangeable prior: ωt ∼
N (0, τω).
The third space-time Model 10 is an extension of

Model 9 that enables a space-time interaction in order
to explain the difference in the time trend of TB cases.
It is expressed as follows:

ηit = µ+ φi + ui + ϑt + ωt + πit (10)

In this model, we estimate ϕ = {µ, φ, u, ϑ, ω, π} and
ψ = {τφ, τuτϑ, τωτπ}, where πit is interaction between
φi and ui. The model assumes that there is no in-
teraction between φi and ϑt, hence, πit ∼ N (0, τπ) .
Incorporating covariates into Model 10, yields Model
11:

ηit = µ+
∑

βiXi + φi + ui + ϑt + ωt + πit. (11)

Hence, we now have to estimate θ = {µ, β, φ, u, ϑ, ω, π}
and ψ = {τφ, τuτϑ, τω, τπ} . For the interaction term
πit, it is assumed that there is spatial or temporal
structure on the interaction, then δit ∼ N(0, τδ) [38].
In this study, all the precision parameters are assumed
to follow the gamma distribution [19].
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In Section 4, we assess and compare the performance
of the three modeling frameworks (presented in this
section) in estimating the relative risk of TB cases
in Ghana. We use the Deviance Information Criterion
(DIC) proposed by Spiegelhalter [34]. The smaller the
DIC, the better the accuracy of the model and vice
versa. We report only the results of the most accurate
model.

4 Data Analysis and Results
In this section, we analyze the TB cases data described
in Section 2, using the hierarchical space and space-
time models introduced in Sections 3.1 and 3.2 respec-
tively. The models are implemented in theR-software

via the Integrated Nested Laplace Approach (INLA)
package [19, 22].

Moreover, we performed accuracy experiments for
the space-time models using the Deviance Information
Criterion (DIC) developed by Spiegelhalter, in order
to ascertain the most accurate model for predictive
studies. In the discussion, only results obtained from
significant predictors are reported and discussed. Fur-
ther, in the analysis here, a risk value higher than 1 is
classified as high risk while risk lower than 1 is classi-
fied as low risk. Risk is classified as normal if it has a
value of 1.

Furthermore, the space-time models our discus-
sion here, involve the classical parametric framework
(7) (presented by [26]), the dynamic non-parametric
framework presented in [38] for the linear predictor
Equations (9), and Model (10). Model (10) (is an ex-
tension of Model (9) ) to incorporate interactions be-
tween space and time. This enables us to explain the
differences in the time trend of the TB cases across the
regions. We refer to Equation (7) as Model I, Equa-
tion (9) as Model II and Equation (10) as Model

III. Results are reported for experiments that involve
adjustment and non-adjustment of covariates.

4.0.1 Results: Spatial BYM without covariates
adjustment

In this section, we implemented BYM without covari-
ate adjustments (defined as ηi = µ + φi + ui.). The
posterior estimates are presented in Table 1. The maps
of the posterior mean for the region-specific relative
risks ζi = exp (φi + ui) presented Figure 6 are used
to identify regions with high risk. High risk is visual-
ized by computing p (ζi > 1 | y) , for details see [19].
The left panel of the Figure 6 shows that five of the
ten regions have high risk of TB cases. The risk profile
for TB in Ghana are shown in the figure-legends. In
the regional map of Ghana, the darker the region the
higher the risk and vice versa. It can be observed that

Upper East and Upper West Regions have the high-
est risk (with values in the range 1.8-3.4), followed
by Volta, Western and Central Regions with risk be-
tween 1.1-1.8. The rest of the regions have low risk of
TB detection, specifically, Northern and Ashanti Re-
gions have the lowest risk (with values in the range
0.3-0.6), followed by Greater Accra and Brong Ahafo
Regions with values between 0.6-0.9. Eastern Region
has normal risk (with a value in the range 1-1.1).

The right panel of the Figure 6 shows that Upper
East, Upper West, Volta and Central regions have the
highest posterior relative risk (0.8-1) of TB detection.
The regions have similar risks, however, none of them
has risk higher than the national risk 1. Moreover, low
relative risk (0-0.2) of TB detection is observed in the
Northern, Brong Ahafo, Ashanti, and Greater Accra
regions, followed by Eastern and Western regions that
have relative risk values in the range (0.2-0.8).

The results in Table 1 confirm the similarity or clus-
tering of risk in the neighboring regions. This is indi-
cated by the low variability captured by the precision
of the spatial structure τφ. We compute the estimate of
the posterior marginal variance to capture the amount
of variability explained by the spatial structure. We es-
timated the spatial structure effect empirically using:

s2φ =

∑n
i=1

(
φi − φ̄

)2

n− 1
(12)

(where v̄ is the average of φ) and compare with the
posterior marginal variance for the unstructured effect,
provided by σ2

u :

frac spatial =
s2φ(

s2φ + σ2
u

) .

The estimated proportion of spatial structure variance
is approximately 10%, implying that only 10% of the
variability is explained by the spatial structure. It fur-
ther explains the remaining higher variability captured
by the unstructured random effect ui component of the
BYM. The precision τu of the unstructured component
of the BYM model indicates that risk is heterogeneous
among regions. The exponent of the posterior mean
µ (overall mean effect) shows that there is approxi-
mately a 3-fold increase in TB infections rate across
the 10 regions of Ghana. The corresponding 95% cred-
ible interval ranges from 2.21 to 4.66.

4.0.2 Results: BYM with covariate adjustments

In this section, we present results obtained from exper-
iments conducted with seven (7) covariate adjustments
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of the BYM:

ηit = µ+

7∑

i=1

βiXi + φi + ui.

Among the baseline predictors stated in Section 2.2,
the significant predictors for TB cases in Ghana that
yield acurate models include: HIV prevalence, Tuber-
culosis cure rate, Tuberculosis success rate, propor-
tion of people with knowledge about TB, proportion
of those who know that TB is airborne, proportion in
high income group and literacy. Table 2 presents pos-
terior estimates of the overall mean, fixed effects (i.e.
β1, . . . , β7) as well as random effects (i.e. τu and τπ)
for the unstructured and structured components of the
BYM. The maps of the posterior mean for each re-
gion’s relative risk (i.e. ζi = exp(φi + ui +

∑7
p=1 βp))

are presented in Figure 7. We can visualize risk by
computing P (ζi > 1 | y) [19].
It can be observed in the left panel Figure 7 that

Upper East, Brong Ahafo and Western Regions have
high and similar detection risks ranging from 1.1-1.8.

The adjusted risk, with the covariates adjustment, is
less than the unadjusted risk (risk without covariates
in Figure 6). Upper East Region is still among the
Regions with high risk of TB detection after covari-
ates adjustment. Upper West Region does not belong
to the high risk class while Brong Ahafo and Western
Regions have moved to the normal risk class after the
covariate adjustments. Greater Accra and Central Re-
gions are the second highest in the high risk class, with
risk ranging from 1-1.1. Upper West, Northern, Volta,
and Eastern Regions are in the normal risk class, with
risk ranging from 0.9-1. Further, Ashanti Region is
in the low risk class (with values in the range 0.6-

0.9) after covariate adjustments. The right panel of
the Figure 7, showed that Brong Ahafo and Western
Regions have the highest and similar relative risk (0.8-
1), while Ashanti Regions has the lowest relative risk
(0.0-0.2). The rest of the Regions have similar relative
risks ranging from 0.2-0.8.
Table 2 presents the posterior estimates of fixed

and random effects of the BYM with covariate ad-
justments. It can be observed that TB cure rate in-
creases the risk of TB cases by approximately 8%.
This observation implies that as more cases are de-
tected, more cases are cured and hence TB cases will
in general decrease over time. This explains why TB
success rate leads to 14% reduction of detection. The
results also revealed that knowledge about TB signif-
icantly increases TB detection by approximately 5%.
This behavior is expected because, as people become
aware of TB, preventive measures are taken (see the
results in Section 4.2). High income is associated with

5% reduction in TB cases while literacy is associated
with 12% increase in cases. High income increases the
use of health facilities and testing for TB, thus, lead-
ing to a reduction of TB cases. HIV prevalence lead to
55% reduction in cases.
After adjusting the covariates, we observed similar-

ity/clustering of risk between neighboring regions, (see
Figure 7) with low variability of risk among the Re-
gions. This observation is captured by the precision τφ
of the spatial structure in Table 2. Heterogeneity of
risk across the regions has reduced after the covariates
adjustment.
Furthermore, we computed the posterior marginal

variance to determine the amount of variability ex-
plained by the spatial structure using the formula-
tions in Equation (12). The results showed that the
estimated proportion of spatial structure variance is
approximately 5%. This implies that only 5% of the
variability is explained by the spatial structure. Much
of the variability remaining is captured by the un-
structured random effect ui component of the BYM.
The precision τu of the unstructured component of the
BYM indicates that risk is heterogeneous across re-
gions.
The posterior mean of the exponent µ (overall mean

effect) gives an indication that there is approximately
9-fold increase in TB infections rate across the 10 re-
gions in Ghana.

4.1 Result: Space-time models without covariates
adjustments

Table 3 presents the DIC, mean deviance D̄ and ef-
fective number of parameters pD components for the
three space-time models. The performance indicators
show that the classical parametric formulation (see
Equation (7) introduced by Bernardinelli et. al. [26] is
the most accurate among the three space-time models.
Hence, further discussion will include only the results
from that model.
The results in Table 4 show that there is about 8%

increase in risk of TB detection across the 10 regions
of Ghana. However, this increase is statistically not
significant at 5% significance level. As observed in the
BYM, TB cases do not significantly increase with time.
The precision parameter τu shows some level of vari-
ability in the risk of TB among the regions, while there
is clustering of risk between neighboring regions exhib-
ited by the high precision parameter τφ for the spatial
structure. High precision characterized by τδ indicates
low variability associated with δi. This further indi-
cates that there is less interaction between space and
time, as well as global trend ̺ and areas-specific trend
δi. Hence, the area-specific trend δi is less remarked
than the mean trend.
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The left panel of Figure 8 shows the map of spa-
tial trend ζi, for the 10 regions and the right panel
is the map of the posterior probabilities defined as
p (ζi > 1 | yi) . The left panel of the Figure 8 shows
that there is high risk of TB in the Eastern and West-
ern regions. There is high risk (i.e. in the range 1.1-

1.8) and clustering among the neighboring regions;
Volta, Northern, Central, and Greater Accra regions.
Upper East and Ashanti regions have the lowest risk
(0.2,0.6) followed by Upper West and Brong Ahafo
(0.6-0.9). The results account for the high variability
captured by the unstructured component and the low
variability captured by the structured component of
the area-specific trend. The posterior probabilities in
the right panel of Figure 8 indicate low risk (below 1)
and relatively low level of associated uncertainty [19].
The time effect is not significant and there is no sig-
nificant interaction between space and time. This ob-
servation accounts for the inacuracy of Model II (i.e.
Equation (10)) and Model III (i.e. Equation (9)) for
the TB data.
Next, we will discuss the posterior probabilities of

each region by year. Time has no significant effect on
the space-time pattern of TB cases as shown in the
maps presented in Figure 9 for 2008, 2010, 2011, and
2012 in the top-left panel, top-right panel, bottom-left
panel, and bottom-right panel respectively. The risk of
TB infection is almost the same across the 10 regions.
In the year 2008, there was relatively high risks (in the
range 0.8-1) in the Northern, Volta, Eastern, Western,
Central, and Greater Accra regions, while Upper East,
Upper West, Brong Ahafo, and Ashanti regions have
low relative risk (i.e. between 0-0.2). The results ex-
hibit clear clustering of risk among neighboring regions
associated with low variability or uncertainty. In the
year 2010, all the regions had risks in the range 0.2-

0.8. Similar observations can be made in year 2011 and
the rest of the years shown in the figure. The results
imply that it is sufficient to use only spatial models to
estimate the risk of TB across the 10 regions of Ghana.
Next, we will adjust the covariates in the space-time
models and study their effects in the next section.

4.2 Results: Space-time models with covariate
adjustments

It can be observed in Table 5 once more, that Model

I of the space-time models has the lowest DIC, mean
deviance D̄ and a high number of effective parameters
pD. The indicators show that the classical parametric
formulation of [26] (see Equation 7) is still the most
accurate model among the three space-time models,
for the TB data. Thus, we proceed further in the dis-
cussion with results obtained with this model. Table
6 shows negligible risk of TB across the 10 regions of

Ghana. Similarly, the TB cases over time is statisti-
cally insignificant as observed previously. The preci-
sion parameter τu indicates very low variability in the
risk of TB detection among the regions and much clus-
tering of risk between neighboring regions exhibited
by high precision parameter τφ values for the spatial
structure. High precision characterized by τδ indicates
lower variability associated with δi. This further indi-
cates that there is no significant interaction between
space and time as well as global trend ̺ and areas-
specific trend δi. Hence, the area-specific trend δi is
less remarked than the mean trend.
The results in Table 6 also revealed that TB suc-

cess rate significantly increases TB cases by 11%. Also,
knowledge about TB significantly reduces TB cases by
approximately 2%, while increasing TB cure rate, sig-
nificantly reduces detection by 8%. Awareness that TB
is airborne increases TB detection by approximately
25%. That is, more people are willing to participate
in TB testing to know their status leading to more
case detections. We also observed that HIV prevalence
and high income significantly increases TB detection
by 27% and approximately 4%, respectively. Literacy
significantly reduces the risk of TB detection by ap-
proximately 14%.
The left panel of the Figure 10 shows the spatial

trend ζi for the 10 regions and the right panel shows
the posterior probabilities defined by p (ζi > 1 | yi) .
The left panel shows that TB cases risk is higher and
clustered in the Volta, Brong Ahafo, Ashanti, Eastern,
Western and Greater Accra regions (ranging from 1-

1.1) while there is low risk in the Upper East, Upper
West, Northern, and Central regions. Thus, there is
high and similarity/clustering of risks among neighbor-
ing regions. After covariates adjustments, there is low
risk (0.6, 1) in the Upper East, Upper West, Northern
and Central regions. These observations account for
the low variability captured by both the unstructured
and structured components of the area-specific trend.
It can be observed (in the right pane of Figure 10)

that all the regions have low relative risks (i.e. in the in-
terval 0.2-0.8) after adjusting the covariates. Since the
time effect is negligible, there is no interaction between
space and time. This observation accounts for the in-
accuracy of Model II (10) and Model III (9) for the
TB data. The posterior probabilities of the region af-
ter covariates adjustments (in the period 2008-2017),
showed that the risks of TB across the 10 regions are
the same/clustered in the range 0.2-0.8.

5 Discussion and conclusion
In this discussion, we have modelled the risk of Tu-
berculosis (TB) across the 10 regions of Ghana using
space-time and Bayesian hierarchical space modelling
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frameworks. The TB data were obtained from Ghana
Health Service (GHS) and National Tuberculosis Pro-
gramme (NTP) [10, 11]. The models were implemented
in the Integrated Laplace Approach (INLA) [19, 22] in
R software, and used to study the spatial and space-
time patterns of TB risk in Ghana. The study also
identified some significant predictors of TB risk.
The spatial model used is based on the BYM [27] for-

mulation. The results from this model (without covari-
ates adjustments) showed that hot-spots of TB cases
are located in five (5) regions, i.e.; Upper East, Upper
West, Volta, Western, and Central regions. Northern,
Ashanti, Greater Accra, Brong Ahafo, Eastern and
Western regions have low risk of TB detection. An-
other notable result is the clustering of risk between
neighboring regions (i.e. nearby regions have similar
risk). The results also revealed that the unstructured
component of BYM (that explains variability of risk
among the regions) is significant because the spatial
structure only explains a small proportion of risk vari-
ability among regions. The results also show that after
covariates adjustments, the number of high risk re-
gions reduced from five (5) to three (3) (i.e. Upper
East, Brong Ahafo and Western regions). The poste-
rior probabilities in the BYM (with and without co-
variates adjustments) showed that there is clustering
of risk between regions.
Further, our study also revealed that TB cure rate,

TB success rate, knowledge about TB, awareness that
TB is airborne, HIV prevalence, percentage of liter-
acy, high income are important predictors of TB de-
tection across the 10 regions of Ghana. Heterogene-
ity/variability of the risk reduced across the regions
after covariate adjustments. The reduction in hetero-
geneity is due to low variance of the unstructured com-
ponent and clustering due to low variability of the spa-
tial or structured component of the BYM. Clustering
of risk is evident from Figure 7, where almost all the
regions have similar risk.
Furthermore, the study showed that the classi-

cal parametric formulation (i.e. Equation (7) called
Model I) is the most accurate space-time model for
the TB data. This model yeilds the lowest DIC, lowest
mean deviation and highest effective number of param-
eters with or without covariate adjustments. Hence, it
was selected for further experiments. Results from this
model show that the risk of TB does not significantly
increase over time. There is some level of heterogene-
ity in risk over time indicated by the precision of the
unstructured component. There is relatively high level
of clustering among neighboring regions as well. The
results shows that there is less interaction of risk be-
tween space and time, as well as global trend and
area-specific trend. Hence, the area-specific trend is
less remarked than the mean trend.

Clustering of risk is evident per the relative risk pro-
file in Figure 8. The space-time model classifies East-
ern, Western, Volta, Northern, Central and Greater
Accra regions as the hot-spots of the disease over time.
Three of the regions (i.e. Volta, Western and Central
regions) are classified as high risk regions, by the BYM
without covariate adjustments and the Model I with-
out covariate adjustments. The posterior probability
in Figure 8 clearly shows clustering of risk and low
level of associated uncertainty. The posterior proba-
bilities over the study period are shown in Figure 8.
The figures show that the risk of TB does not change
over time.
Moreover, after covariate adjustments, statistical in-

ferences remained unchanged and the classical para-
metric formulation (in Equation 7) remains the most
accurate model for the TB data. The posterior sum-
mary statistics in Table 6 showed negligible risk of TB
across the 10 regions. Precisions of both the unstruc-
tured and structured components indicate clustering
of risk among the regions. Therefore, all the regions
exhibit similar risk. There is no significant space-time
interaction due to low variability captured by τδ. The
results identify the risk factors under the BYM as sig-
nificant predictors of TB detection.
Therefore, our study has characterized the spatio-

temporal pattern of Tuberculosis (TB) in Ghana, us-
ing hierarchical space-time models. The key findings
include the identification of hotspots, significant base-
line predictors, heterogeneity/clustering of risk across
regions and insignificant dependance of TB risk on
time.

Acknowledgments

Thank you to the Ghana Health Service and National Tuberculosis Program

for making data available for the study.

Funding

This study receives no funding.

Availability of data and materials

The data can be found in: https://africaopendata.org/dataset/

the-health-sector-in-ghana-facts-and-figures-2018/resource/

0bcf9b54-3e35-4543-95cd-fd4de953edff,

https://ghanahealthservice.org/downloads/Monitoring_and_

evaluation_plan_for_NTP_0.pdf and

https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_

&entity_type=%22country%22&lan=%22EN%22&iso2=%22GH%22.

Authors’ contributions

All authors carried out the literature review. AI wrote Statistical

Methodology and performed statistical analyses. AI drafted the manuscript.

EAA and FKB also contributed to the writing and the reviewing of the

manuscript and also provided consultation regarding analysis and

interpretation of findings. All authors read and approved the final version of

the manuscript.

Competing interests

The author declares that he has no competing interests.

Consent to publish

Not applicable.



Abdul-Karim Iddrisu∗,1, Emmanuel A. Amikiya2 and Francis Kwame Bukari1 1Department of Mathematics and Statistics, University
of Energy and Natural Resources, Sunyani, Ghana. 2Department of Management Science, Ghana Institute of Management and Public

Administration,Ghana. Page 12 of 14

Ethics approval (and consent to participate)

Not applicable

References

1. World, H.O.: Global tuberculosis report 2020: executive summary.

World Health Organization 20(2), 2–45 (2020)

2. Iddrisu, A.-K., Alhassan, A., Amidu, N., et al.: Investigating

spatio-temporal pattern of relative risk of tuberculosis in kenya using

bayesian hierarchical approaches. Journal of Tuberculosis Research

6(02), 175 (2018)

3. Iddrisu, A.-K., Amoako, Y.A.: Spatial modeling and mapping of

tuberculosis using bayesian hierarchical approaches. Open Journal of

Statistics 6(3), 482–513 (2016)

4. Kuupiel, D., Vezi, P., Bawontuo, V., Osei, E., Mashamba-Thompson,

T.P.: Tuberculosis active case-finding interventions and approaches for

prisoners in sub-saharan africa: a systematic scoping review. BMC

infectious diseases 20(1), 1–14 (2020)

5. Otiende, V., Achia, T., Mwambi, H.: Bayesian modeling of

spatiotemporal patterns of tb-hiv co-infection risk in kenya. BMC

infectious diseases 19(1), 1–13 (2019)

6. Zumla, A., Petersen, E., Nyirenda, T., Chakaya, J.: Tackling the

tuberculosis epidemic in sub-saharan africa–unique opportunities

arising from the second european developing countries clinical trials

partnership (edctp) programme 2015-2024. International Journal of

Infectious Diseases 32, 46–49 (2015)

7. Amo-Adjei, J., Awusabo-Asare, K.: Reflections on tuberculosis

diagnosis and treatment outcomes in ghana. Archives of Public Health

71(1), 1–8 (2013)

8. Osei, E., Oppong, S., Adanfo, D., Doepe, B.A., Owusu, A., Kupour,

A.G., Der, J.: Reflecting on tuberculosis case notification and

treatment outcomes in the volta region of ghana: a retrospective pool

analysis of a multicentre cohort from 2013 to 2017. Global health

research and policy 4(1), 1–13 (2019)

9. Osei, E., Oppong, S., Der, J.: Trends of tuberculosis case detection,

mortality and co-infection with hiv in ghana: A retrospective cohort

study. Plos one 15(6), 0234878 (2020)

10. Service, G.H.: The Health Sector in Ghana Facts and Figures 2018

(2021). https://africaopendata.org/dataset/

the-health-sector-in-ghana-facts-and-figures-2018/

resource/0bcf9b54-3e35-4543-95cd-fd4de953edff

11. Service, G.H.: National Tuberculosis Programme, Monitoring and

Evaluation (2021). https://ghanahealthservice.org/downloads/

Monitoring_and_evaluation_plan_for_NTP_0.pdf

12. WHO: Treatment of Tuberculosis: Guidelines vol. 20, pp. 2–45 (2010)

13. Ghana: Tuberculosis profile: Ghana (2021).

https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_

&entity_type=%22country%22&lan=%22EN%22&iso2=%22GH%22

14. Aryee, G., Kwarteng, E., Essuman, R., Agyei, A.N., Kudzawu, S.,

Djagbletey, R., Darkwa, E.O., Forson, A.: Estimating the incidence of

tuberculosis cases reported at a tertiary hospital in ghana: a time series

model approach. BMC public health 18(1), 1–8 (2018)

15. Abdul, I.W., Ankamah, S., Iddrisu, A.-K., Danso, E.: Space-time

analysis and mapping of prevalence rate of tuberculosis in ghana.

Scientific African 7, 00307 (2020)

16. Aronis, J.M., Ferraro, J.P., Gesteland, P.H., Tsui, F., Ye, Y., Wagner,

M.M., Cooper, G.F.: A bayesian approach for detecting a disease that

is not being modeled. PloS one 15(2), 0229658 (2020)

17. Fouarge, E., Monseur, A., Boulanger, B., Annoussamy, M., Seferian,

A.M., De Lucia, S., Lilien, C., Thielemans, L., Paradis, K., Cowling,

B.S., et al.: Hierarchical bayesian modelling of disease progression to

inform clinical trial design in centronuclear myopathy. Orphanet

Journal of Rare Diseases 16(1), 1–11 (2021)

18. Lawson, A., Lee, D.: Bayesian disease mapping for public health. In:

Handbook of Statistics vol. 36, pp. 443–481. Elsevier, ??? (2017)

19. Blangiardo, M., Cameletti, M., Baio, G., Rue, H.: Spatial and

spatio-temporal models with r-inla. Spatial and spatio-temporal

epidemiology 4, 33–49 (2013)

20. Lawson, A.B.: Bayesian Disease Mapping: Hierarchical Modeling in

Spatial Epidemiology. CRC press, ??? (2018)

21. Lindgren, F., Rue, H., et al.: Bayesian spatial modelling with r-inla.

Journal of Statistical Software 63(19), 1–25 (2015)

22. Schrödle, B., Held, L.: A primer on disease mapping and ecological

regression using inla. Computational statistics 26(2), 241–258 (2011)

23. Rue, H., Martino, S., Chopin, N.: Approximate bayesian inference for

latent gaussian models by using integrated nested laplace

approximations. Journal of the royal statistical society: Series b

(statistical methodology) 71(2), 319–392 (2009)

24. Wolpert, R.L., Ickstadt, K.: Poisson/gamma random field models for

spatial statistics. Biometrika 85(2), 251–267 (1998)

25. Best, N., Richardson, S., Thomson, A.: A comparison of bayesian

spatial models for disease mapping. Statistical methods in medical

research 14(1), 35–59 (2005)

26. Bernardinelli, L., Clayton, D., Pascutto, C., Montomoli, C., Ghislandi,

M., Songini, M.: Bayesian analysis of space—time variation in disease

risk. Statistics in medicine 14(21-22), 2433–2443 (1995)
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Figures

Figure 1: Trend of TB cases detection per 100,000
by region for 10 years from 2008 to 2017 in Ghana

Figure 2: Trend of the total TB cases detection
per 100,000 for each region from 2008 to 2017 in

Ghana

Figure 3: Trend of the total TB cases detection
per 100,000 population for each year
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Figure 4: Box-and-whisker plot of TB cases
detection per 100,000 population for each year

Figure 5: Box-and-whisker plot of TB cases
detection per 100,000 population by the 10 old

administrative Regions in Ghana

Figure 6: Regional distribution of posterior
relative risk of TB in Ghana, using BYM: Relative

risk of TB ζi = exp (φi + ui) (left panel) and
Posterior probabilities p (ζi > 1 | yi) in the model

(right panel)

Figure 7: Regional posterior relative risk of TB in
Ghana, using BYM with adjusted covariates:

Relative risks of TB ζi = exp (φi + ui) (left panel)
and Posterior probabilities p (ζi > 1 | yi) (right

panel)

Figure 8: Spatial and uncertainty of TB risk, using
space-time models: Spatial TB risk

ζi = exp (φi + ui) (left panel) and Uncertainty of
spatial effects p (ζi > 1 | yi)(right panel)

Figure 9: Spatial pattern of TB cases from 2008 to
2012

Figure 10: Posterior probabilities and relative risk
of TB in the ten regions of Ghana, using Model I

with covariates adjustments.

Tables

Table 1: Summary statistics: posterior mean,
standard deviation (Sd) and 95% credible interval for

the fixed and random effects of the BYM.
Fixed effects Estimate sd 25% 50% 95% CI
µ 3.022 3.25 2.21 3.02 4.66

Random effects
τu 4.00 1.80 1.45 3.69 8.37
τφ 78.21 84.74 3.28 51.49 306.00

Table 2: Summary statistics: posterior mean,
standard deviation (Sd) and 95% credible interval for

the fixed and random effects of the BYM model.
Fixed effects Estimate Sd 25% 50% 95%

µ 9085.51 16.54 30.70 9115.48 2653723
β1 1.081 1.027 1.024 1.081 1.141
β2 0.855 1.040 0.789 0.855 0.927
β3 1.046 1.017 1.010 1.046 1.083
β4 0.897 1.055 0.806 0.897 1.000
β5 0.450 1.297 0.266 0.450 0.762
β6 0.946 1.017 0.914 0.946 0.979
β7 1.116 1.045 1.022 1.116 1.219

Random effects Estimate Sd 25% 50% 95%

τu 25.80 20.62 3.83 20.41 80.01
τφ 1834.88 1810.43 121.58 1299.34 6656.65

Table 3: Performance indicators for space-time
models

Model D̄ pD DIC
Model I 518.6 17.81 536.42
Model II 547.1 10.56 557.62
Model III 546.8 11.00 557.76

Table 4: Summary statistics: posterior mean,
standard deviation (Sd) and 95% credible interval for

the fixed and random effects of the Model I.
Fixed effects Estimate sd 25% 50% 95% CI
µ 1.084 1.192 0.763 1.084 1.539
t 1.004 1.007 0.991 1.004 1.017

Random effects Estimate sd 25% 50% 95% CI
τu 3.87 1.75 1.39 3.57 8.12
τφ 1847.48 1842.46 124.71 1301.61 6692.95
τδ 934.11 940.92 153.67 655.19 3397.82
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Table 5: Performance indicators of space-time models
with adjusted covariates

Model D̄ pD DIC
Model I 520.02 17.65 537.67
Model II 547.46 10.62 558.07
Model III 547.17 11.06 558.23

Table 6: Summary statistics: posterior mean,
standard deviation (Sd) and 95% credible interval for

the fixed and random effects of the Model I.
Fixed effects Estimate sd 25% 50% 95% CI
µ 3.65× 10−6 3.50 3.04× 10−7 3.67× 10−6 4.37× 10−5

t 1.006 1.007 0.992 1.005 1.019
β1 0.920 1.012 0.899 0.920 0.943
β2 1.114 1.018 1.076 1.114 1.155
β3 0.978 1.008 0.963 0.978 0.993
β4 1.245 1.023 1.189 1.245 1.302
β5 2.273 1.120 1.811 2.277 2.829
β6 1.038 1.008 1.021 1.038 1.052
β7 0.858 1.019 0.828 0.858 0.891

Random effects Estimate sd 25% 50% 95% CI
τu 835.68 1220.69 2.33 337.68 4258.23
τφ 1272.83 1543.46 24.97 738.52 5456.29
τδ 521.70 400.33 114.09 412.56 1581.45



Figures

Figure 1

Trend of TB cases detection per 100,000 by region for 10 years from 2008 to 2017 in Ghana

Figure 2

Trend of the total TB cases detection per 100,000 for each region from 2008 to 2017 in Ghana



Figure 3

Trend of the total TB cases detection per 100,000 population for each year

Figure 4



Box-and-whisker plot of TB cases detection per 100,000 population for each year

Figure 5

Box-and-whisker plot of TB cases detection per 100,000 population by the 10 old administrative Regions
in Ghana

Figure 6

Regional distribution of posterior relative risk of TB in Ghana, using BYM: Relative risk of TB ζi = exp (φi +
ui) (left panel) and Posterior probabilities p (ζi > 1 | yi) in the model (right panel)



Figure 7

Regional posterior relative risk of TB in Ghana, using BYM with adjusted covariates: Relative risks of TB
ζi = exp (φi + ui) (left panel) and Posterior probabilities p (ζi > 1 | yi) (right panel)

Figure 8

Spatial and uncertainty of TB risk, using space-time models: Spatial TB risk ζi = exp (φi + ui) (left panel)
and Uncertainty of spatial effects p (ζi > 1 | yi)(right panel)



Figure 9

Spatial pattern of TB cases from 2008 to 2012



Figure 10

Posterior probabilities and relative risk of TB in the ten regions of Ghana, using Model I with covariates
adjustments.


