1. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH., Hirano SS (eds) Microbial ecology of leaves. Springer-Verlag, New York, pp 179–197
2. Arnold A (2007) Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biol Rev 21:51–66. https://doi.org/10.1016/j.fbr.2007.05.003
3. Sieber T (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89. https://doi.org/10.1016/j.fbr.2007.05.004
4. Wilson D (1996) Manipulation of infection levels of horizontally transmitted fungal endophytes in the field. Mycol Res 100:827–830. https://doi.org/10.1016/S0953-7562(96)80029-3
5. Kaneko R, Kaneko S (2004) The effect of bagging branches on levels of endophytic fungal infection in Japanese beech leaves. For Pathol 34:65–78. https://doi.org/10.1111/j.1439-0329.2004.00350.x
6. Hoffman MT, Arnold A (2008) Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycol Res 112:331–344. https://doi.org/10.1016/j.mycres.2007.10.014
7. Suryanarayanan TS, Murali TS, Thirunavukkarasu N, et al (2011) Endophytic fungal communities in woody perennials of three tropical forest types of the Western Ghats, southern India. Biodivers Conserv 20:913–928. https://doi.org/10.1007/s10531-011-0004-5
8. Carroll G, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 3034–3043
9. Hata K, Futai K, Tsuda M (1998) Seasonal and needle age-dependent changes of the endophytic mycobiota in Pinus thunbergii and Pinus densiflora needles. Can J Bot 76:245–250
10. Ortiz-García S, Gernandt DS, Stone JK, et al (2003) Phylogenetics of Lophodermium from pine. Mycologia 95:846–859. https://doi.org/10.1080/15572536.2004.11833044
11. Salas-Lizana R, Santini NS, Miranda-Pérez A, Piñero DI (2012) The Pleistocene glacial cycles shaped the historical demography and phylogeography of a pine fungal endophyte. Mycol Prog 11:569–581. https://doi.org/10.1007/s11557-011-0774-x
12. Oono R, Lutzoni F, Arnold AE, et al (2014) Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. Am J Bot 101:1362–1374. https://doi.org/10.3732/ajb.1400141
13. Apigo A, Oono R (2018) Dimensions of host specificity in foliar fungal endophytes. In: Pirttilä AM, Frank AC (eds) Endophytes of Forest Trees: Biology and Applications. Springer International Publishing, pp 15–42
14. Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–20
15. Higgins KL, Arnold a. E, Coley PD, Kursar T a. (2014) Communities of fungal endophytes in tropical forest grasses: Highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol 8:1–11. https://doi.org/10.1016/j.funeco.2013.12.005
16. Vincent J, Weiblen G, Ecology GM-M, 2016 U (2016) Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Wiley Online Libr 25:825–841. https://doi.org/10.1111/mec.13510
17. Cohen SD (2006) Host selectivity and genetic variation of Discula umbrinella isolates from two oak species: Analyses of intergenic spacer region sequences of ribosomal DNA. Microb Ecol 52:463–469. https://doi.org/10.1007/s00248-006-9073-5
18. Vega FE, Simpkins A, Aime MC, et al (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3:122–138. https://doi.org/10.1016/j.funeco.2009.07.002
19. Poulin R, Krasnov BR, Mouillot D (2011) Host specificity in phylogenetic and geographic space. Trends Parasitol 27:355–361. https://doi.org/10.1016/j.pt.2011.05.003
20. Matsumura E, Fukuda K (2013) A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan. Fungal Biol 117:191–201. https://doi.org/10.1016/j.funbio.2013.01.007
21. Osono T, Masuya H (2012) Endophytic fungi associated with leaves of Betulaceae in Japan. Can J Microbiol 58:507–515. https://doi.org/10.1139/W2012-018
22. Braun U, Nakashima C, Crous PW, et al (2018) Phylogeny and taxonomy of the genus Tubakia s. lat. Fungal Syst Evol 1:41–99. https://doi.org/10.3114/fuse.2018.01.04
23. Yokoyama T, Tubaki K (1971) Cultural and taxonomical studies on the genus Actinopelte. IFO Res Commun 5:43–77
24. Hashizume Y, Sahashi N, Fukuda K (2008) The influence of altitude on endophytic mycobiota in Quercus acuta leaves collected in two areas 1000 km apart. For Pathol 38:218–226. https://doi.org/10.1111/j.1439-0329.2008.00547.x
25. Shirouzu T, Hirose D, Fukasawa Y, Tokumasu S (2009) Fungal succession associated with the decay of leaves of an evergreen oak, Quercus myrsinaefolia. Fungal Divers 34:87–107
26. Matsumura E, Takahashi Y, Fukuda K (2015) Occurrence of endophytic Tubakia spp.in leaves of sympatric evergreen Quercus spp. on Mt. Takao. Tree For Heal 19:167–168. (In Japanese)
27. Murata G (1977) Phytogeographical consideration on the flora and vegetation of Japan. Acta Phytotaxon Geobot 28:65–83. https://doi.org/10.18942/bunruichiri.KJ00003217442. (In Japanese)
28. Suzuki T (1960) The forest location with the center focus on Japanese oak,Quercus gilva. Japan Soc For Environ 2:1–6. (In Japanese)
29. Sugiura N, Tang D, Kurokochi H, et al (2015) Genetic structure of Quercus gilva Blume in Japan as revealed by chloroplast DNA sequences. Botany 93:873–880. https://doi.org/10.1139/cjb-2015-0025
30. Meteorology division fundamental data development committee The University of Tokyo Forests (2017) Annual report of meteorological observations in the University of Tokyo Forests, The University of Tokyo (Jan. 2015 - Dec. 2015). 59:255–283. (In Japanese)
31. Hayashi Y, Koyama Y, Kobayashi Y, et al (1966) Ecological and floristic studies in the Takao mountains. Bull Gov For Exp Stn 196:1–167. (In Japanese)
32. Watanabe R, Miyai S (1978) Studies on vegetation in Kiyosumi region: I. Numerical classification of forest vegetation. Japanese J Ecol 28:281–290. https://doi.org/10.18960/seitai.28.4_281
33. Denk T, Grimm GW, Manos PS, et al (2017) An updated infrageneric classification of the oaks: Review of previous taxonomic schemes and synthesis of evolutionary patterns. In: Gil-Pelegrín E, Peguero-Pina J, Sancho-Knapik D (eds) Oaks Physiological Ecology: Exploring the Functional Diversity of Genus Quercus L. Tree Physiology. Springer, Cham, pp 13–38. https:// doi.org/ 10.1007/978-3-319-69099-5_2.
34. Izumitsu K, Hatoh K, Sumita T, et al (2012) Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience 53:396–401. https://doi.org/10.1007/S10267-012-0182-3
35. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols. Academic Press Inc., pp 315–322
36. Schlegel M, Queloz V, Sieber TN (2018) The endophytic mycobiome of European ash and sycamore maple leaves - Geographic patterns, host specificity and influence of ash dieback. Front Microbiol 9:1–20. https://doi.org/10.3389/fmicb.2018.02345
37. Kivlin SN, Kazenel MR, Lynn JS, et al (2019) Plant identity influences foliar fungal symbionts more than elevation in the Colorado Rocky Mountains. Microb Ecol 78:688–698. https://doi.org/10.1007/s00248-019-01336-4
38. Darcy JL, Swift SOI, Cobian GM, et al (2020) Fungal communities living within leaves of native Hawaiian dicots are structured by landscape‐scale variables as well as by host plants. Mol Ecol 29:3102–3115. https://doi.org/10.1111/mec.15544
39. Oita S, Carey J, Kline I, et al (2021) Methodological approaches frame insights into endophyte richness and community composition. Microb Ecol. https://doi.org/10.1007/s00248-020-01654-y
40. Jumpponen, A. and Jones, K. L. (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytologist 186:496–513. https://doi.org/10.1111/j.1469-8137.2010.03197.x
41. Matsumura, Emi, Fukuda K (2015) Fungal endophytic communities in leaves of Quercus myrsinifolia and Eurya japonica-Their within-leaf distributions and antagonism. Tree For Heal 19:195–204
42. Ohyama M, Baba K, Itoh T (1999) Possibility of grouping of Cyclobalanopsis species (Fagaceae) grown in Japan based on an analysis of several regions of chloroplast DNA. J Wood Sci 45:498–501
43. Ito S, Ohtsuka K, Yamashita T (2007) Ecological distribution of seven evergreen Quercus species in southern and eastern Kyushu, Japan. Veg Sci 24:53–63
44. Karabourniotis G, Liakopoulos G, Dimosthenis Nikolopoulos ·, Bresta P (2020) Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure-function coordination. J For Res 31:1–12. https://doi.org/10.1007/s11676-019-01034-4
45. Valkama E, Koricheva J, Salminen J-P, et al (2004) Leaf surface traits: overlooked determinants of birch resistance to herbivores and foliar micro-fungi? Trees 19:191–197. https://doi.org/10.1007/s00468-004-0380-5