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Abstract 19 

Normal brain aging is accompanied by patterns of functional and structural change. 20 

Alzheimer's disease (AD), a representative neurodegenerative disease, has been linked 21 

to accelerated brain aging at respective age ranges. Here, we developed a deep 22 

learning-based brain age prediction model using fluorodeoxyglucose (FDG) PET and 23 
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structural MRI and tested how the brain age gap relates to degenerative cognitive 24 

syndromes including mild cognitive impairment, AD, frontotemporal dementia, and Lewy 25 

body dementia. Occlusion analysis, performed to facilitate interpretation of the model, 26 

revealed that the model learns an age- and modality-specific pattern of brain aging. The 27 

elevated brain age gap in dementia cohorts was highly correlated with the cognitive 28 

impairment and AD biomarker. However, regions generating brain age gaps were 29 

different for each diagnosis group of which the AD continuum showed similar patterns to 30 

normal aging in the CU. 31 

 32 

Introduction 33 

The biology of aging is complex1 and has yet to be fully understood.2 In general, aging 34 

is characterized by the gradual accumulation of deleterious biological changes 35 

accompanying a progressive loss of function1, although this is not an all-encompassing 36 

definition. The endeavor to better understand the biology of the aging brain is widely 37 

relevant as the impact of aging on the human brain and associated changes in cognitive 38 

function have implications for quality of life in the elderly.  39 

 40 

The aging of the brain entails both structural and functional changes. Structural 41 

magnetic resonance imaging (MRI) has shown that increased age is associated with 42 

reduction of grey matter volume, most prominently in the frontal lobes, insular cortex, 43 

and hippocampus3-6, increased volume of the ventricular system and intracranial 44 

cerebrospinal fluid3,4,7, and changes in white matter microstructure.7,8 In addition, 45 

functional imaging techniques using positron emission tomography (PET) have shown 46 
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that brain aging is associated with decreased global oxygen utilization, cerebral blood 47 

flow, glucose uptake, and regional changes in aerobic glycolysis.9,10 Age-related 48 

decreased glucose utilization has been found most prominently in the frontal lobes, 49 

posterior cingulate, and posterior parietal lobes.11-13 The temporal lobe, including medial 50 

temporal regions - a critical area of pathology in dementia - has also showed an age-51 

dependent decrease in glucose metabolism.14-16 In contrast, the primary motor cortex, 52 

occipital cortex, cerebellum and sub-cortical structures including thalamus, putamen, 53 

and pallidum have been found to be less susceptible to metabolic changes with aging.17 54 

 55 

Based on these findings, age prediction using brain imaging is an active area of 56 

neuroscience research.18-22 An estimated age can be referred to as “brain age” for an 57 

individual which may differ from the individual’s chronological age.19 Recently, growth in 58 

data availability and advancement of deep learning (DL) techniques have allowed more 59 

accurate brain-age estimation in the cognitively normal population through convolutional 60 

neural network (CNN) models.21-25 In addition, the ‘brain age gap’, which is the 61 

difference between the ‘predicted brain age’ and ‘chronological age’, has been found to 62 

be useful as a promising, personalized biomarker of brain health.19 On an individual 63 

basis, brain age gap measurements may also prove to have prognostic value, 64 

potentially predicting health outcomes by capturing individual differences in the 65 

interaction of aging and disease.19 Several studies have reported that an over-66 

estimation of an individual’s chronologic age based on a prediction from neuroimaging, 67 

measured as a large brain age gap, is associated with mortality26, neurodegenerative 68 

diseases27 and various other clinical conditions.19,20 Moreover, measuring the brain age 69 
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gap in cases of neurodegenerative pathology may inform our understanding of disease 70 

risk, resilience to structural/functional insults which accumulate with aging, and the 71 

effects of diseases on the aging brain. For example, Alzheimer's disease has been 72 

linked to accelerated brain aging at respective age ranges28,29, implying that dementia is 73 

an extreme phenotype of the aging process. Thus, a reliable measure of typical brain 74 

aging may be beneficial in order to better distinguish from pathological aging.30 75 

 76 

We aimed to develop a deep-learning-based brain age prediction model using a large 77 

collection of brain structural MRI and Fluorodeoxyglucose (FDG) PET scans from 78 

participants 20-98 years old (n = 2,349 unique individuals with 4,127 brain scans; 79 

cognitively unimpaired (CU) normal controls =1,805 and cognitively impaired = 732). 80 

Our brain age prediction method was developed using the images from only the CU 81 

participants to train the healthy aging trajectories. We also studied age- and modality-82 

specific saliency maps of the CNN model explaining which brain regions contribute most 83 

to age prediction for each age subgroup and modality type using an occlusion sensitivity 84 

analysis. We then investigated the brain age gap estimation in the patient groups 85 

including mild cognitive impairment (MCI), Alzheimer's disease (AD), Frontotemporal 86 

Dementia (FTD), and Dementia with Lewy Bodies (DLB). We evaluated for associations 87 

of brain age gap with neuropsychological tests and other imaging AD biomarkers, such 88 

as amyloid PET and tau PET. We then performed a voxel-wise linear regression 89 

analysis to look at which regional alterations contribute to higher brain age gap 90 

generation for each disease group and compared them with normal brain aging 91 

trajectories. 92 
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 93 

Results 94 

Brain age estimation in CU participants. Our brain age prediction model based on 95 

FDG PET or MRI was trained on CU participants in the Mayo dataset (n = 1,805) using 96 

a 3D Densenet architecture (Fig. 1A).31 For the training, we only utilized scans of the 97 

first time point per a participant to avoid possible data leakage between the training and 98 

validation/test sets. Then, the models were applied for predicting the brain age and the 99 

accuracies were evaluated as a mean absolute error (MAE) with 5-fold cross validation. 100 

Fig. 2 illustrates the scatterplots of the test set predictions against chronological age. 101 

The result showed that our FDG- and MRI-based model could accurately predict the 102 

chronological age of healthy adults (R2 = 0.8546 and beta = 0.8503 for FDG and R2 = 103 

0.8046 and beta = 0.7718 for MRI). The overall performance measured on the test set 104 

was MAE = 3.4333 ± 0.0545 and 4.2055 ± 0.2241 for FDG and MRI, respectively 105 

(Supplementary table 2). As shown in Fig. 2b and e illustrating the scatterplot of brain 106 

age gap (predicted brain age-chronological age) as a function of corresponding 107 

chronological age, the estimation results showed a tendency to be biased towards the 108 

mean age of the total cohort, resulting in a negative correlation between the brain age 109 

gap and chronological age (Spearman's r = -0.3613 and -0.4642 for FDG and MRI, 110 

respectively). This phenomenon is well-known to be associated with regression dilution 111 

32, model regularization and a non-Gaussian age distribution.33 We used a linear bias 112 

correction method33 for age bias correction for the brain age gap. After the bias 113 

correction, we observed that the correlation between the corrected brain age gap and 114 

chronological age decreased to 0.0396 and 0.0303 for FDG and MRI respectively, and 115 
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MAE also decreased to 3.1212 and 3.3669 for FDG and MRI (Fig. 2c and f). The overall 116 

performance after bias correction for total fold was MAE = 3.0755 ± 0.1401 and 3.4868 117 

± 0.1631 for FDG and MRI, respectively (Supplementary table 2). 118 

To assess whether the trained model presents a dataset-specific bias, the model trained 119 

with Mayo dataset was applied to an independent cohort, the Alzheimer’s Disease 120 

Neuroimaging initiative (ADNI; adni.loni.usc.edu) dataset (CU, n = 454). We obtained a 121 

comparable result (corrected test MAE = 2.8942 for FDG and corrected test MAE = 122 

3.5766 for MRI), implying that the models were fairly generalizable to the independent 123 

dataset (Supplementary Fig. 1 and supplementary table 2). In addition, we also trained 124 

a model by blending Mayo and ADNI dataset together (Supplementary Fig. 2). In this 125 

trial, the overall performance of age prediction was better than using Mayo dataset only 126 

(corrected test MAE = 2.7383 ± 0.1091 for FDG and corrected test MAE = 3.1029 ± 127 

0.2107 for MRI; supplementary table 2).  128 

To examine how the data-split option considering inter-participant variability and within-129 

participant variability affects performance, the prediction accuracies of several data-split 130 

strategies were compared (as detailed in the methods section; Supplementary table 3). 131 

Expectedly, we observed that the overlap of participants between the training dataset 132 

and validation or test set significantly affected the accuracy of age estimation (option 2 133 

and option 3 in supplementary table 3). This pattern was similarly found in both FDG 134 

and MRI. On the other hand, whether to include multiple time points for each participant 135 

has minimal effects on the model’s performance (option 4 and option 5 in 136 

supplementary table 3).  137 

 138 
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Age- and modality-specific saliency map of brain age prediction model. For an 139 

interpretability of trained 3D-Densenet model, the saliency maps for age subgroups 140 

were estimated through occlusion sensitivity analysis. In the occlusion sensitivity 141 

analysis method, a portion of brain in the input space was occluded with a mask 142 

(11x11x11) by setting these voxels to zero, and their relevance in the decisions was 143 

indirectly estimated by calculating the change of MAE (MAEocclusion - MAEoriginal; Fig. 1B). 144 

The results revealed age- and modality-specific saliency patterns (Fig. 3 and 145 

supplementary Fig. 3). For the FDG model (left panel in Fig. 3), a posterior to anterior 146 

transition was observed with increased age. The overall posterior region with a peak at 147 

the posterior cingulate cortex had a higher contribution for age prediction in the younger 148 

group (30-40 and 40-50 years). Meanwhile, for the 50-60 and 70-80 years of age 149 

groups, the inferior frontal regions including the orbitofrontal and olfactory cortex were 150 

dominantly utilized for age prediction. Prefrontal regions also showed a higher 151 

contribution than other areas. A global contribution with the peak around the inferior 152 

frontal cortex and basal ganglia was also found to be important for age prediction in the 153 

older group (80-90 and 90-100 years). For MRI (right panel in Fig. 3), the insular cortex 154 

contributed most to age prediction in the younger group (30-40 and 40-50 years). From 155 

50-60 years, the ventricular boundary showed a higher contribution. The 156 

cerebellomedullary cistern showed the highest saliency in the older groups (80-90 and 157 

90-100 years). 158 

 159 

Brain age gap estimation in patient groups. The brain age gap of four clinical 160 

diagnosis groups (MCI, AD, FTD, and DLB) was estimated using the 3D-Densenet 161 
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model trained with normative cohorts. Fig. 4 illustrates the scatterplot of brain age gap 162 

against chronological age for each patient group. The brain age gap was corrected 163 

using the same coefficients used for bias correction of CU (Fig. 2). As expected, the 164 

brain age gap of all patient groups was significantly higher than that of CU group for 165 

both modalities (P < 0.001 two-sample t-test, Fig. 4e, and j). Interestingly, the predicted 166 

brain age gap of all disease groups had a negative correlation with chronological age, 167 

meaning younger patients had a higher gap. Accordingly, the mean brain age gap of 168 

FTD, in which most patient was early onset, was relatively higher than that of other 169 

groups, followed by AD, DLB, and MCI (Fig. 4e and j).  170 

As shown in supplementary Fig. 4, FDG-based and MRI-based brain age gap showed 171 

significant correlation with each other (P < 0.001, Pearson’s correlation, Supplementary 172 

Fig. 4) in every diagnostic group. Interestingly, the disease group tended to have a 173 

higher correlation and slope than the CU cohort (Pearson’s correlation: 0.5819, 0.7163, 174 

0.7974, 0.8491 and 0.6925 for CU, MCI, AD, FTD and DLB, respectively, slope of fitted 175 

line: 0.6624, 0.7080, 0.8102, 0.8132 and 0.8126 for CU, MCI, AD, FTD and DLB, 176 

respectively). 177 

 178 

An association of brain age gap in dementia with normal aging. Then, a voxel-wise 179 

linear regression analysis was performed using the brain age gap as a regressor to 180 

investigate which brain regions’ alteration were related to higher brain age gap 181 

generation for each patient group. In this analysis, chronological age was specified as a 182 

nuisance covariate because it was negatively correlated with the brain age gap. As 183 

illustrated in Fig. 5, FDG and MRI-based brain age gap showed different patterns 184 
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according to their disease group and imaging modality (using linear regression, FDR 185 

corrected, q < 0.01, Fig. 5). In FDG, MCI and AD groups showed a negative correlation 186 

throughout the brain, meaning global hypometabolism was associated with a higher 187 

brain age gap (left panel in Fig. 5). In the AD group, the frontal, temporal, and parietal 188 

regions showed a stronger negative correlation. In contrast, significant hypometabolism 189 

related to the brain age gap was observed in the frontal and temporal regions in the 190 

FTD patient group. Interestingly, the occipital cortex showed a positive correlation with 191 

brain age gap in the FTD group. The DLB group showed a significant negative 192 

correlation in posterior and temporal regions.  193 

However, MRI showed a distinctly different pattern of salient regions from FDG (right 194 

panel in Fig. 5). In MCI and AD, sulci and white matter showed a positive correlation, 195 

and regions around the gyri and ventricles showed a negative correlation with brain age 196 

gap. In contrast, a local negative correlation around the ventricles was marginally 197 

observed for the FTD and DLB patient groups. To compare the observed brain age gap-198 

related changes with normal aging, a linear regression analysis was also performed for 199 

the CU group using chronological age as a regressor (bottom row in Fig. 5). Similar to 200 

the results for MCI and AD, a global negative correlation was observed on FDG PET. A 201 

positive correlation in sulci and white matter and a negative correlation in areas around 202 

the gyri and ventricles was observed on MRI. The voxel-wise correlation analysis 203 

showed that the beta map of MCI and AD were more strongly correlated with that of 204 

normal aging than FTD and DLB for FDG (Pearson’s correlation; 0.9389, 0.8384, 205 

0.6772 and 0.7239 for MCI, AD, FTD and DLB, respectively) and MRI (Pearson’s 206 
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correlation; 0.8002, 0.7338, 0.4922 and 0.5356 for MCI, AD, FTD and DLB, 207 

respectively). 208 

 209 

An association of brain age gap with neuropsychological test scores and AD 210 

biomarkers. As mentioned above, the high brain age gap has been found to be linked 211 

to high cognitive impairments.19,20,25 In light of this, the association was tested on the 212 

corrected brain age gap of disease groups with the three cognitive test scores, including 213 

Clinical Dementia Rating sum of boxes (CDR-SB)34, Short Test of Mental Status 214 

(STMS)35, and Mini-Mental State Examinations (MMSE)36. As expected, both FDG-215 

based and MRI-based brain age gap showed significant correlations with the three 216 

scores (P < 0.001, Pearson's correlation, Fig. 6).  217 

Then, we sought to examine an association of brain age gap with neuroimaging 218 

biomarkers for AD. AD is characterized by a pathology aggregation of beta-amyloid (Aβ) 219 

and neurofibrillary tangles which can be captured by Pittsburgh Compound B (PiB) PET 220 

and tau PET respectively. PiB and tau PET quantification was performed on meta-ROI 221 

that has previously been shown to have a broad dynamic range across the normal to 222 

pathological aging to AD dementia. A meta-ROI PiB PET standardized uptake value 223 

ratio (SUVr) was derived from the average of the median SUVr in the prefrontal, 224 

orbitofrontal, parietal, temporal, anterior cingulate, and posterior cingulate/precuneus 225 

regions.37 A meta-ROI tau PET SUVr was formed from the average of the median 226 

uptake in the amygdala, entorhinal cortex, fusiform, parahippocampal and inferior 227 

temporal and middle temporal gyri.37 For meta-ROI PiB PET SUVr, only the MCI group 228 

reached statistical significance. In FDG and MRI, the correlation coefficient was 229 
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marginal and there was no obvious pattern of association in distribution (Fig. 7a and e). 230 

Other disease groups did not show significance (Fig. 7b-d and f-h). However, meta-ROI 231 

tau PET SUVr showed a significant correlation with brain age gap in the MCI and AD 232 

groups (Fig. 7i-j and m-n). In particular, the AD group showed a higher correlation 233 

(r=0.5110 for FDG and r=0.6648 for MRI, Fig. 7j and n). FTD and DLB patients showed 234 

no significant correlation with meta-ROI tau PET SUVr. 235 

 236 

Discussion 237 

We developed a 3D DenseNet model, trained on structural and metabolic brain images, 238 

that generates an accurate estimate of an individual’s brain age during normal cognitive 239 

aging. An occlusion analysis revealed anatomic regions critical to the model 240 

performance and demonstrated an age-dependent saliency pattern of brain regions. 241 

The patterns were distinct for each input imaging modality, structural MRI vs. FDG PET, 242 

which is interesting given that the predictive accuracy of the FDG and MRI models were 243 

similar. In cohorts with a neurological disorder, the brain age gap was larger than 244 

cognitively CU individuals and significantly correlated with the cognitive score. Anatomic 245 

regions with the greatest weight in generating the brain age gap, identified from the 246 

voxel-wise linear regression analysis, were different for each diagnostic group. The 247 

results for the AD continuum, MCI and AD, showed close correlation to normal aging 248 

compared to FTD or DLB, with an accelerated time frame in the MCI and AD groups 249 

reflected by the larger brain age gap compared to normal aging. 250 

Most previous brain age studies were based on structural MRI.21-26,38 To our knowledge, 251 

only one prior study utilized FDG PET18, but that study was based on a non-DL method 252 
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and utilized a substantially smaller cohort size (n=205). The structural and functional 253 

changes contributing to precise age prediction in the DL approach remain to be fully 254 

elucidated. One of the major limitations of studies using a CNN is the interpretability of 255 

the model. A limited number of structural MRI-based studies reported explanation maps 256 

of the CNN model.21,22,24 Although CNN-based age prediction has provided high 257 

accuracy, it is difficult to know which features are important for age estimation. 258 

Furthermore, there is a dearth of knowledge regarding which brain alterations and 259 

specific regional changes are associated with higher brain age gaps in patients. 260 

 261 

Brain-specific prediction of age is of interest both as a component of overall biologic age 262 

assessment, but also as a biomarker for age-associated neurologic diseases and 263 

changes in neurologic function. In a broad sense, age prediction may help to elucidate 264 

the relationship of the aging process to degenerative pathology. Is dementia a 265 

consequence of a unique pathologic mechanism or instead an accelerated version of 266 

normal aging?39 If dementia reflects a continuum of the underlying changes in brain 267 

structure and metabolism to which all individuals are inevitably susceptible at various 268 

rates, brain age-prediction based on neuroimaging may yield a better understanding of 269 

different metabolic brain aging phenotypes. Alternatively, if types of dementia represent 270 

entities with distinctly different mechanisms than normal aging, markers of brain age 271 

may still prove useful in identifying individuals at greater risk for developing these 272 

conditions.39,40 273 

 274 
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Our model was able to precisely estimate an individual’s chronological age based on 275 

structural and metabolic neuroimaging data (corrected MAE = 3.0755 ± 0.1401 and 276 

3.4868 ± 0.1631 for FDG PET and MRI, respectively). Interestingly, FDG-based brain 277 

age prediction was slightly better than the MRI-based model (Fig. 2 and supplementary 278 

table 2), implying that metabolic data may be more sensitive for tracking normal brain 279 

aging trajectories. One consideration is that metabolic changes detectable on PET may 280 

precede structural changes observed in AD41, although this has not been characterized 281 

in CU. Also, our FDG PET model did partially incorporate structural information since 282 

the spatial normalization to template space for the FDG PET scan was performed using 283 

the subject’s MR images, meaning the brain-age prediction model using FDG PET has 284 

the benefit of both functional and structural information. FDG PET images are also 285 

affected by structural changes via partial volume effects. Alternatively, the improved 286 

performance of the model using PET relative to MRI could be a consequence of 287 

regional heterogeneity in age-related structural changes in the brain.42  288 

Occlusion analysis shows a distinct age-specific saliency pattern according to input 289 

imaging modality (Fig. 3 and supplementary Fig. 3). In the FDG-based model, a 290 

transition of posterior to anterior structures with increased age was observed. The 291 

posterior structures, especially the posterior cingulate cortex (PCC), contributed most in 292 

younger age groups, whereas anterior structures including the frontotemporal lobes 293 

were more critical in older age groups. The high contribution of PCC is consistent with 294 

previously described FDG PET study demonstrating a significant correlation of glucose 295 

metabolism decline in the PCC with age.11 Interestingly, amyloid deposition and 296 

reduced glucose metabolism in the PCC  has been implicated in early AD.43 In older 297 
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adults, FDG activity in frontal regions with a peak around inferior frontal and 298 

orbitofrontal, and also global activity were found to contribute the most to age prediction. 299 

The decline of frontal metabolism in normal aging was consistently reported across 300 

several studies.14,44 The orbitofrontal cortex is also a known region of prominent age-301 

related hypometabolism on PET.44  302 

 303 

On the other hand, the MRI based model’s saliency map demonstrated different critical 304 

regions compared to the FDG PET analysis. For younger age groups, the insula was 305 

identified as the most critical region. The insula has been identified as a region of gray 306 

matter volume loss with normal aging.45 Additionally, the medial temporal lobe 307 

structures were identified as areas with high saliency in the MRIs of younger, 30-50 308 

year old individuals, regions of previously described volume loss with aging as well as 309 

AD.46 Preservation of brain parenchyma in the insula and medial temporal lobe of 310 

younger individuals may have been a reliable feature for MRI-based age-prediction. For 311 

older age groups, the cerebellomedullary cistern and the peripheral boundaries of the 312 

ventricles were critical. This may reflect reliance of the age-prediction model on the 313 

typical enlargement of the CSF spaces which occurs with age.3,4,7 Age-dependent 314 

enlargement of the ventricles is an established phenomenon, though varies in 315 

individuals.47 Interestingly, saliency maps did not show a prominent contribution of 316 

cortical regions for age estimation, which we expected to find due to the typical age-317 

dependent decrease in cortical volume seen on MRI.45,47 We speculate that cortical 318 

volume loss with age may be too heterogenous to serve as the most-reliable salient 319 

feature for the age-prediction model. Change in white matter signal characteristics is 320 
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also a well-known phenomenon of aging.48 No contribution of white matter was found 321 

with our occlusion analysis, which might be a consequence of white matter intensity 322 

normalization performed on the MRI exams.  323 

Consistent with previous findings, the estimated brain age gap of neurodegenerative 324 

disease groups was larger than the CU group and significantly correlated with cognitive 325 

scores. Interestingly, the estimated brain age gap is negatively correlated with 326 

chronologic age for both MRI and FDG (Fig. 4) and was close to zero in older age 327 

groups. This implies that normal elderly brain is indistinguishable from the diseased 328 

brain at a similar older age with the DenseNet model. The brain age gap of MCI and AD 329 

showed a significant association with tau PET, but not amyloid PET using PiB (Fig. 7). 330 

Tau is well known to be more closely related to the AD severity than PiB.49 In both 331 

preclinical AD and AD dementia, tau radiotracer uptake and cortical thickness have 332 

been found to correlate with decreased cognitive task performance to a greater degree 333 

than amyloid beta radiotracer uptake.49 However, the relationship between aging and 334 

AD is complex. It has been suggested that on closer examination, differences in rates of 335 

cognitive decline, structural changes, and clinical features point toward AD as a discrete 336 

entity that cannot be simply described as accelerated aging process.40 337 

A strong correlation was shown between FDG- and MRI-based brain age gap in the CU 338 

cohort and also in the neurodegenerative disease groups (supplementary Fig. 3). This 339 

result implies that the metabolic changes of normal aging, as well as disease 340 

progression, are concurrent with the structural changes, with respect to factors that 341 

impact the performance of the age-prediction model. The correlation between FDG- and 342 

MRI-based brain age gap is mildly stronger in disease groups (r = 0.6925 to 0.8491) 343 
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than in the CU cohort (r = 0.5819). The structural changing or atrophy in 344 

neurodegenerative pathology accompanying hypometabolism, to a greater extent than 345 

with normal aging, is one plausible explanation for the increased correlation in diseased 346 

groups. Alternatively, brain FDG hypometabolism, which occurs in specific patterns for 347 

different categories of neurodegenerative pathology50, may correlate more closely with 348 

structural or volumetric changes for specific neurodegenerative disease cohorts than in 349 

normal aging. 350 

In FTD, frontal and anterior temporal regions showed a negative correlation with brain 351 

age gap, regions with characteristic hypometabolism in FTD51,52; and a positive 352 

correlation was observed in the occipital lobe, a region typically without hypometabolism 353 

on FDG PET in FTD.51,52 Castelnova et al also reported that some FTD cases showed 354 

occipital hypermetabolism.53 In DLB, temporal, parietal and occipital regions were 355 

negatively correlated with brain age gap, regions of hypometabolism frequently 356 

observed in DLB.51 Correlation of the occipital lobe and primary visual cortex in the DLB 357 

group is notable because occipital/primary visual cortex hypometabolism is 358 

characteristic of DLB on FDG PET from other neurodegenerative processes such as 359 

AD.51,54 The ability of the FDG metabolic signature to distinguish DLB from AD is unique 360 

and an important component of the clinical utility of FDG PET55, as abnormal amyloid 361 

beta PET which is a defining hallmark of AD, is commonly present in DLB due to the 362 

phenomenon of co-occurring pathologies with advancing age.54 The ventricle and 363 

boundaries of brain parenchyma with CSF space were correlated with MCI and AD in 364 

MRI. For FTD and DLB, the ventricular boundary was correlated with brain age gap, 365 

although no correlation was seen at the CSF and cortical region. Periventricular borders 366 
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with CSF may reflect areas of white matter volume loss and the gyral/sulcal interface 367 

may reflect, which both also occur with normal aging.3,4,7 368 

This study has some notable limitations. In the occlusion analysis, left hemispheric 369 

dominance was observed in the contribution to brain age prediction, which was not 370 

explainable by post-hoc analysis. The occlusion-based method has been described to 371 

focus more on the most dominant regions compared to other interpretation methods.56 372 

In this study, we only tested neurodegenerative pathology, without evaluating any 373 

chronic systemic medical diseases and vascular diseases which may have different 374 

patterns of brain aging, a limitation of this study. 375 

 376 

In summary, we showed that 3D-DenseNet brain age prediction model generates 377 

accurate age prediction for CU individuals, with slightly more robust performance using 378 

an FDG PET input than MRI. Brain age prediction using PET imaging input, which 379 

reflects metabolic function, may present a distinct assessment of brain health from the 380 

structural information evaluated on MRI. The brain age gap from MRI or PET data is 381 

increased in multiple types of dementia compared to CU individuals and therefore may 382 

prove to be a useful composite biomarker to identify increased risk for pathology or 383 

marker of disease severity. 384 

Materials and methods 385 

Dataset. A large number of participants (Table 1) ranging in age from 20 to 98 years old 386 

were included (n = 2,349, number of scans = 4,127) who had both MRI and FDG PET 387 

from the Mayo Clinic Study of Aging (MCSA) or the Alzheimer’s Disease Research 388 

Center (ADRC) study (Table 1). All participants or designees provided written consent 389 
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with the approval of Mayo Clinic and Olmsted Medical Center Institutional Review 390 

Boards. As previously described, the Mayo Clinic Rochester ADRC is a longitudinal 391 

cohort study that enrolls participants from the clinical practice at Mayo Clinic in 392 

Rochester, MN.57 The MCSA is a population-based study of cognitive aging among 393 

Olmsted County, MN residents.58 Enrolled participants are adjudicated to be clinically 394 

normal or cognitively impaired by a consensus panel consisting of study coordinators, 395 

neuropsychologists and behavioral neurologists. Methods for defining clinically 396 

unimpaired, mild cognitive impairment and dementia in both of these studies conform to 397 

standards in the field.59-61 For this analysis, the participants were assigned into six 398 

clinical sub-groups based on clinical diagnosis following consensus criteria54,62 including 399 

CU (n = 1,805, number of scans = 2,879), MCI (n = 480, number of scans = 666), AD (n 400 

= 215, number of scans = 372), FTD (n = 45, number of scans = 69) and DLB (n = 86, 401 

number of scans = 141).  402 

For the CNN model training, only CU data was utilized. Some participants also 403 

underwent amyloid PET scanning with PiB (number of scans=2,508) and tau PET scans 404 

with flortaucipir (number of scans=608). Most participants had CDR-SB34, STMS35, and 405 

MMSE36 available (n = 2,511, 2,511 and 2,464, respectively). All cognitive tests were 406 

administered by experienced psychometrists and supervised by board-certified clinical 407 

neuropsychologists. To examine whether the trained model presents a dataset-specific 408 

bias, we also utilized ADNI dataset (n = 1,150, number of scans = 1,622; supplementary 409 

table 1). The ADNI dataset included CU (n = 330, number of scans = 454), MCI (n=647, 410 

number of scans = 885) and dementia (n = 255, number of scans = 283). 411 

 412 
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Image processing. T1-weighted MRI scans were acquired using 3T scanners. FDG 413 

PET imaging was performed with 18F-FDG, amyloid PET with PiB63 and tau PET with 414 

Flortaucipir (AV-1451).64 FDG PET images were acquired from 30-40 minutes, PiB PET 415 

from 40-60 minutes, and tau PET from 80-100 minutes after injection. CT was obtained 416 

for attenuation correction. PET images were analyzed with our in-house fully automated 417 

image processing pipeline.65 Briefly, the PET scans were co-registered to the 418 

corresponding MRI for each participant within each timepoint, and subsequently warped 419 

to Mayo Clinic Adult Lifespan Template (MCALT) space66 420 

(https://www.nitrc.org/projects/mcalt/) using the warps from SPM12 Unified 421 

Segmentation.67 The corresponding MRI was corrected for intensity inhomogeneity and 422 

segmented using MCALT tissue priors and segmentation parameters. FDG PET SUVr 423 

was calculated by dividing the median of uptake in pons and the SUVr images were 424 

used for input data to the CNN model. Amyloid and tau PET SUVr were calculated by 425 

dividing the median uptake in the cerebellar crus grey matter.37 A meta-ROI PiB PET 426 

SUVr was derived from the average of the median SUVr in the prefrontal, orbitofrontal, 427 

parietal, temporal, anterior cingulate, and posterior cingulate/precuneus regions.37 A 428 

meta-ROI tau PET SUVr was formed from the average of the median uptake in the 429 

amygdala, entorhinal cortex, fusiform, parahippocampal and inferior temporal and 430 

middle temporal gyri.37 For each MRI volume, voxels' intensities were normalized by 431 

dividing a mean intensity derived from individualized white matter mask.68 432 

 433 

3D-Densenet architecture and training. A modified 3D-Densenet model31 was trained 434 

on FDG PET or MRI scans of cognitively unimpaired cohort (Fig. 1A). For the training, 435 
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we only utilized scans of the first time point (n = 1,805) to avoid data leakage between 436 

the training and validation/test sets. Experimental tests measuring how an overlap of 437 

participants among training, validation and test sets affected the model’s results were 438 

performed separately (see Dataset split experiment section).  A schematic of the 3D-439 

DenseNet architecture is shown in Fig 1A. The specific dimension of input data was 440 

121x145x121, in our applications. The output to be predicted was a single scalar 441 

representing the chronological age (years). The architecture was comprised of a regular 442 

3 × 3 × 3 convolutional layer followed by four dense blocks and three transition blocks in 443 

between them. The four dense blocks consisted of 3, 6, 12, and 8 dense layers, 444 

respectively (denoted above each block). Each dense layer had a 1 × 1 × 1 bottleneck 445 

convolutional layer followed by a 3 × 3 × 3 convolution layer. The dense layers were 446 

densely interconnected in a feed-forward manner within each block. The growth rate (k) 447 

was 48. The flattened output from the last global average pooling layer was then fully 448 

connected with 1,457 units and was connected to the output layer. 449 

The neural network was implemented using Keras with Tensorflow69 as the backend. 450 

Cross-validated experiments were conducted using 5-fold validations (60% training set, 451 

20% validation set and 20% test set). Mean absolute error (MAE) was used as the loss 452 

function. The model was optimized using the Adam optimizer with parameters: β1=0:9 453 

and β2=0.99.70 The He initialization strategy was used for the weight initialization.71 The 454 

training epoch was 150. The learning rate selected for the training set was 1x10-4 and 455 

decreased by a factor of 2 for every ten epochs. If the validation error did not improve in 456 

7 epochs, the learning rate was updated. The total number of parameters were 457 

70,183,073, of which 70,122,657 were trainable parameters. We used a mini-batch size 458 
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of 4. Training and testing were performed on a Tesla P100 GPU. The source code is 459 

available online (https://github.com/Neurology-AI-Program/Brain_age_prediction.git).  460 

 461 

Occlusion sensitivity analysis. To facilitate interpretability, we generated brain maps 462 

of the relevant features used in the age prediction model using occlusion sensitivity 463 

analysis.72 The analysis was conducted within the test set. To calculate the age-specific 464 

saliency map, the data were separated into seven sub-age groups based on their 465 

chronological age, from 30 to 100 with 10 years interval. Within each group, the original 466 

images were occluded by 11x11x11 voxel areas with zero values, along a 11x11x11 467 

grid (Fig. 1B). Since the front and rear 12 voxels along the anterior-posterior axes do 468 

not include the brain area, those were excluded from occlusion to reduce the 469 

computational load. Then, age inference on the occluded images was performed 470 

through our pre-trained 3D Densenet model and the performance was evaluated as 471 

MAEocclusion. The delta MAE was obtained by calculating the difference between 472 

MAEocclusion and MAEoriginal acquired through the original image, and a delta MAE matrix 473 

(11x11x11) was obtained by iterating occlusion for every region (n=1,331). Then, the 474 

delta MAE matrix was reconstructed into the original image size (121x145x121) through 475 

cubic interpolation and zero-padding for the excluded area in the occlusion, and the 476 

average of the five folds was calculated. Normalization was performed by dividing the 477 

entire image by the maximum value, and thus, the values of final saliency map ranged 478 

from 0 to 1. 479 

 480 
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Dataset split experiment. To measure how the inclusion of multiple time points per 481 

participant affects brain age prediction, we tested five different data split options. The 482 

main result was derived from the strictest data split option: Option 1 using only a single 483 

time point per participant. Four additional options were tested: Option 2 (multiple-time 484 

points per participant with overlap between training, validation, and test sets permitted); 485 

Option 3 (multiple-time points per participant with overlap between training and 486 

validation sets permitted); Option 4 (multiple time points for the training and validation 487 

sets and a single time point for the test set; no overlap of participants amongst training, 488 

validation, and test sets were permitted); and Option 5 (a single time point was used for 489 

the validation and test sets; no overlap of participants among training, validation, and 490 

test sets). For these five options, the validation MAE and test MAE from five-fold cross-491 

validations were compared (Supplementary table 3). 492 

 493 

Statistical analysis. The brain age prediction accuracy was assessed by MAE and 494 

Spearman correlation between predicted age and chronological age. Defining x to be 495 

chronological age and y the predicted age, the brain age gap was calculated by y - x. 496 

The brain age gap is known to be correlated with chronological age, which results in an 497 

overestimation for younger individuals and an underestimation for older individuals21,38 498 

due to regression dilution.32 Therefore, we used the linear bias correction method 499 

described in33 for age bias correction for the brain age gap. We fitted a linear regression 500 

y = 𝑎x + 𝑏 to the test set. Then, the corrected brain age gap was calculated by (y-𝑏)/𝑎 – 501 

x. The 𝑎 and 𝑏 coefficient derived from the CU group was applied to other diagnostic 502 

groups in the same way for the bias correction. The corrected brain age gap of disease 503 
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groups was compared with CU by a two-sample t-test. The Pearson correlation 504 

coefficient was utilized to test for an association between the corrected brain age gap 505 

and cognitive scores. A voxel-wise regression analysis was performed using the brain 506 

age gap as a regressor to investigate which brain regions’ alteration was associated 507 

with brain age gap generation for each patient group. Each individual’s chronological 508 

age was specified as nuisance covariance. For CU participants, the same analysis was 509 

performed using chronological age as a regressor. Statistical significance was corrected 510 

for multiple comparisons using a false discovery rate (FDR)73 with a cluster size of at 511 

least 100 adjacent voxels. An association of corrected brain age gap with meta-ROI PiB 512 

PET SUVr and meta-ROI tau PET SUVr was assessed by Pearson correlation.  513 
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Figures and Tables. 715 

 716 

Figure1. 3D Densenet architecture for age prediction and layout of occlusion 717 

analysis.  718 

 719 
 720 

Figure1. 3D Densenet architecture for age prediction and layout of occlusion 721 

analysis. a, The detailed architecture of the 3D Densenet used for age prediction. 722 

CONV = convolutional layer, MAX POOL = max pooling layer, AVG POOL = average 723 

pooling layer, GAP = global average pooling layer, FC = fully connected layer. b, 724 

Illustration of the framework for occlusion analysis. 725 

 726 

  727 
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Figure 2. Brain age predictions on CU participants. 728 

 729 
Figure 2. Brain age predictions on CU participants. (a-c) FDG based brain age 730 

prediction result for the test set of the representative fold. a, A regression plot showing 731 

chronological age vs. predicted brain age. b, The uncorrected brain age gap. c, The 732 

brain age gap after bias correction. (d-f) MRI-based brain age prediction result for the 733 

test set of the representative fold. d, A regression plot showing chronological age vs. 734 

predicted brain age. e, The uncorrected brain age gap. f, The brain age gap after bias 735 

correction. The black solid line and dotted lines in each figure represent a regression 736 

line and its 95% confidence bands, respectively. 737 

  738 
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Figure 3. The visualization of model activation shown on coronal slices. 739 

 740 

 741 
 742 

Figure 3. The visualization of model activation shown on coronal slices. Saliency 743 

maps were computed using occlusion sensitivity analysis for each age range group. 744 

Higher activation represents the importance of a region in brain age estimation. A left 745 

panel shows the saliency maps for the FDG-based model and a right panel shows the 746 

saliency maps for MRI-based model. 747 

 748 

749 
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Figure 4. Regression plots of a corrected brain age gap as a function of 750 

chronological age for clinical diagnostic groups. 751 

 752 

 753 
 754 

Figure 4. Regression plots of a corrected brain age gap as a function of 755 

chronological age for clinical diagnostic groups. (a-d) FDG-based brain age gap 756 

estimation for MCI, AD, FTD and DLB, respectively. e, Mean of corrected brain age gap 757 

for each diagnostic group. Error bars indicate the standard error of the mean. ** p<0.001 758 

comparison with CU, two-sample t-test. (f-i) MRI-based brain age gap estimation for 759 

MCI, AD, FTD and DLB, respectively. j, Mean of corrected brain age gap for each 760 

clinical diagnosis group. Error bars indicate the standard error of the mean. ** p<0.001 761 

comparison with CU, two-sample t-test. 762 
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Figure 5. Voxel-wise linear regression analysis of brain age gap. 764 

 765 

 766 

Figure 5. Voxel-wise linear regression analysis of brain age gap. Clinical diagnosis 767 

group (MCI, AD, FTD and DLB)-specific results from voxel-wise whole-brain linear 768 

regression examining the brain age gap-related change (FDR corrected, q<0.01). The 769 

chronological age was specified as nuisance covariance. For CU (bottom row), voxel-770 

wise linear regression analysis was performed using the chronological age as a 771 

regressor to show the age-related change. A left panel shows the results for the FDG-772 

based model and a right panel shows the results for the MRI-based model. 773 
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Figure 6. Association of a brain age gap with cognitive scores. 775 

 776 
Figure 6. Association of a brain age gap with cognitive scores. (a-c) Scatter plots 777 

of FDG model-based brain age gap with Mini-Mental State Examinations (MMSE), Short 778 

Test of Mental Status (STMS) and Clinical Dementia Rating Sum of boxes (CDR-SB), 779 

respectively. (d-f) Scatter plots of MRI model-based brain age gap with MMSE, STMS 780 

and CDR-SB, respectively. 781 

  782 
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Figure 7. Association of brain age gap with meta-ROI PiB- and Tau PET SUVr.  783 

 784 

 785 
 786 

Figure 7. Association of brain age gap with meta-ROI PiB- and Tau PET SUVr. (a-787 

d) Scatter plots show the relationship between FDG-based brain age gap with meta-788 

ROI PiB PET SUVr for MCI, AD, FTD and DLB, respectively. (e-h) Scatter plots show 789 

the relationship between MRI-based brain age gap with meta-ROI PiB SUVr for MCI, 790 

AD, FTD and DLB, respectively. (i-l) Scatter plots show the relationship between FDG-791 

based brain age gap with meta-ROI Tau PET SUVr for MCI, AD, FTD and DLB, 792 

respectively. (m-p) Scatter plots show the relationship between MRI-based brain age 793 

gap with meta-ROI Tau PET SUVr for MCI, AD, FTD and DLB, respectively. The black 794 

solid line and dotted lines in each figure represent a regression line and its 95% 795 

confidence bands, respectively. r indicates Pearson’s correlation coefficient. 796 
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Table 1. Demographics of Mayo dataset 798 

 799 

  800 

Characteristic 

Clinical Diagnosis 

Normal MCI AD FTD DLB 

N 1,805 480 215 45 86 

Total time points, n (%)      

1 973 (53.91) 190 (39.58) 80 (37.21) 19 (42.22) 44 (51.16) 

2 503 (27.87) 130 (27.08) 72 (33.49) 10 (22.22) 15 (17.44) 

3 243 (13.46) 86 (17.92) 31 (14.42) 8 (17.78) 10 (11.63) 

4+ 86 (4.76) 74 (15.42) 32 (14.88) 8 (17.78) 17 (19.76) 

Age, years      

Median (IQR) 72 (62 79) 77 (70 83) 
74 (64 
79.75) 

63 (55 
70.25) 

71 (66 77) 

Min Max 30 97 26 98 49 92 31 76 45 90 

Male sex, n (%) 952 (52.74) 319 (66.46) 117 (54.42) 26 (57.78) 74 (86.05) 

Education, years, median (IQR) 15 (13 17) 14 (12 16) 
16 (12 
17.75) 

16 (13 
17.25) 

15.5 (13 18) 

Clinical Dementia Rating Scale-

Sum of Boxes, median (IQR) 
0 (0 0) 

0.5 (0.5 

0.5) 
1 (0.5 1) 1 (0.5 1) 1 (0.5 1) 

Mini-Mental State Examinations, 
median (IQR) 

29 (28 29) 27 (24 28) 21 (17 24) 24 (21 26) 
23 (17 
25.25) 

Short Test of Mental Status, 
median (IQR) 

36 (34 37) 32 (29 34) 25 (19 29) 28 (25 31.5) 27 (22 30) 
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Supplementary figure 1. Brain age predictions on the ADNI dataset. 801 

 802 
 803 

Supplementary figure 1. Brain age predictions on the ADNI dataset. 3D Densenet 804 

model trained on the Mayo dataset was applied to the ADNI data. (a-c) FDG based 805 

brain age prediction result for the test set. a, A regression plot showing chronological 806 

age vs. predicted brain age. b, The uncorrected brain age gap. c, The brain age gap 807 

after bias correction. (d-f) MRI-based brain age prediction result for the test set. d, A 808 

regression plot showing chronological age vs. predicted brain age. e, The uncorrected 809 

brain age gap. f, The brain age gap after bias correction. The black solid line and dotted 810 

lines in each figure represent a regression line and its 95% confidence bands, 811 

respectively. 812 

 813 

  814 
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Supplementary figure 2. Brain age predictions on the Mayo + ADNI dataset.  815 

 816 

 817 
Supplementary figure 2. Brain age predictions on the Mayo + ADNI dataset. 818 

Prediction performance of 3D Densenet model trained on the Mayo and ADNI dataset 819 

together. (a-c) FDG based brain age prediction result for the test set. a, A regression 820 

plot showing chronological age vs. predicted brain age. b, The uncorrected brain age 821 

gap. c, The brain age gap after bias correction. (d-f) MRI-based brain age prediction 822 

result for the test set. d, A regression plot showing chronological age vs. predicted brain 823 

age. e, The uncorrected brain age gap. f, The brain age gap after bias correction. The 824 

black solid line and dotted lines in each figure represent a regression line and its 95% 825 

confidence bands, respectively. 826 
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Supplementary figure 3. Regional mean saliency.  828 

 829 
 830 

Supplementary figure 3. Regional mean saliency. After calculating the saliency map 831 

from occlusion analysis, mean saliency value was calculated for each ROI. Yellow-832 

colored bars indicate the left hemisphere and blue-colored bars indicate the right 833 

hemisphere. 834 
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Supplementary figure 4. Relationship between FDG- and MRI-based brain age 836 

gap.  837 

 838 

 839 
 840 

Supplementary figure 4. Relationship between FDG- and MRI-based brain age 841 

gap. a, CU. b, MCI. c, AD. d, FTD. e, DLB. The black solid line and dotted lines in each 842 

figure represent a regression line and its 95% confidence bands, respectively. r 843 

indicates Pearson’s correlation coefficient. 844 
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Supplementary table 1. Demographics of ADNI dataset. 847 

Characteristic 

Clinical Diagnosis 

Normal MCI AD 

N 330 647 255 

Total time points, n (%)    

1 208 (63.03) 443 (68.47) 227 (89.02) 

2 120 (36.36) 170 (26.28) 28 (10.98) 

3 2 (0.61) 34 (5.26)  

Age, years    

Median (IQR) 73 (69 78) 74 (68 79) 76 (71 81) 

Min Max 56 96 55 94 56 96 

Male sex, n (%) 152 (46.06) 356 (55.02) 145 (56.86) 

Education, years, median (IQR) 16 (15 18) 16 (14 18) 16 (14 18) 
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Supplementary table 2. Summary table of model performance. 850 

Modality Dataset Val. MAE (yrs) 
Uncorrected  

test MAE (yrs) 
Corrected  

test MAE (yrs) 

FDG 

Mayo 3.4558 ± 0.1121 3.4333 ± 0.0545 3.0755 ± 0.1401 

Mayo model to ADNI  3.5097 2.8942 

Mayo + ADNI 3.0450 ± 0.1360 2.9943 ± 0.1472 2.7383 ± 0.1091 

MRI 

Mayo 4.1438 ± 0.2012 4.2055 ± 0.2241 3.4868 ± 0.1631 

Mayo model to ADNI  4.2092 3.5766 

Mayo + ADNI 3.4886 ± 0.1764 3.5712 ± 0.2010 3.1029 ± 0.2107 
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Supplementary table 3. Data split strategy comparison 853 

Modality Strategy Val. MAE (yrs) 
Uncorrected  

Test MAE (yrs) 
Corrected  

Test MAE (yrs) 

FDG 

Option 1 3.4558 ± 0.1121 3.4333 ± 0.0545 3.0755 ± 0.1401 

Option 2 2.8381 ± 0.0820 2.8161 ± 0.0581 2.5773 ± 0.0791 

Option 3 2.7197 ± 0.0609 3.2983 ± 0.1221 3.0606 ± 0.1489 

Option 4 3.3894 ± 0.1209 3.3853 ± 0.1339 3.0609 ± 0.1388 

Option 5 3.4094 ± 0.0977 3.4227 ± 0.1717 3.0822 ± 0.1515 

MRI 

Option 1 4.1438 ± 0.2012 4.2055 ± 0.2241 3.4868 ± 0.1631 

Option 2 3.4013 ± 0.0789 3.4101 ± 0.0556 2.9606 ± 0.1152 

Option 3 3.1033 ± 0.1384 3.8923 ± 0.1896 3.3339 ± 0.0870 

Option 4 3.9168 ± 0.1332 4.0508 ± 0.1326 3.4393 ± 0.1612 

Option 5 4.0204 ± 0.1145 4.0417 ± 0.0999 3.4701 ± 0.1333 
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Supplementary table 4. Association of brain age gap with cognitive scores. 856 

Modality Cognitive test Brain age gap correlation 95% CI P Value R2 

FDG 

MMSE -0.3870 -0.4289 to -0.3434 <0.0001 0.1498 

Kokmen Short test -0.3762 -0.4190 to -0.3318 <0.0001 0.1415 

CDR sum of box 0.3886 0.3460 to 0.4296 <0.0001 0.1510 

MRI 

MMSE -0.3612 -0.4041 to -0.3167 <0.0001 0.1305 

Kokmen Short test -0.3523 -0.3960 to -0.3070 <0.0001 0.1241 

CDR sum of box 0.3705 0.3272 to 0.4122 <0.0001 0.1373 
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