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Abstract
Background: Stimulating superficial brain regions highly associated with the hippocampus by repetitive transcranial magnetic
stimulation (rTMS) may improve memory of Alzheimer disease (AD) spectrum patients.

Methods: We recruited 26 mild cognitive impairment (MCI) and AD patients. All the patients were stimulated to the left angular gyrus,
which was confirmed a strong link to the hippocampus through neuroimaging studies, by the neuro-navigated rTMS for four weeks.
Automated fiber quantification (AFQ) using diffusion tensor imaging (DTI) metrics and graph theory analysis on functional network were
employed to detect the neuroplasticity of brain networks.

Results: After neuro-navigated rTMS intervention, the episodic memory and language function of patients were significantly improved.
Increased white matter integrity of right anterior thalamic radiation among MCI patients, while decreased functional network properties
of thalamus subregions were observed. It is worth noting that the improvement of cognition was associated with the neuroplasticity of
thalamic system

Conclusions: We speculated that the rTMS intervention targeting left angular gyrus may be served as a strategy to improve cognitive
impairment in AD spectrum patients, supporting by the neuroplasticity of thalamic system, especially in the early disease process at the
stage of MCI.

Background
Alzheimer’s disease (AD), characterized by the gradually progressive neurodegenerative process, is the most common cause of dementia
in the elderly[1]. Currently, treatments for AD mainly focus on drugs aiming at delaying cognitive decline and reversing or affecting the
disease's progression. However, the effectiveness of these drugs did not live up to expectations and many clinical trials have failed[2].
It’s urged to seek alternative treatment strategies and non-pharmacological interventions.

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive intervention to the brain, which can excitability and modulate
activity across cortico-subcortical networks in the brain[3]. It has been demonstrated that rTMS may be involved in the regulation of
neuroplasticity[4] and had opportunities to target specific brain regions and networks[5]. In the development of AD, there are salient
neuropathological abnormalities in hippocampus[6, 7]. However, rTMS cannot directly stimulate the deep hippocampus. Recent studies
showed that stimulating specific shallow brain regions which are highly associated with the hippocampus may indirectly alter
hippocampal activity[8]. According to the calculation of our team (paper unpublished), the region exhibited significant functional
connectivity differences among AD spectrum patients is located in the left angular gyrus (MNI: -45, -67, 38; these data were not listed in
this study). Therefore, the left angular gyrus as a potential novel therapeutic target to investigate the efficacy of rTMS in patients with
AD and mechanism behind rTMS is worth exploring.

The previous studies have shown strong structural and functional connectivity between the thalamus and the hippocampus[9]. Although
thalamus is the most important sensory conduction replacement station[10], and increasing evidence shows that and thalamus plays an
important role in episodic memory[11]. Moreover, thalamus is a key neural activity of rTMS affecting episodic memory[12]. Therefore, we
speculated that the thalamus and associated network play a vital role in the neural mechanism of enhancing cognition by rTMS in AD.

Diffusion tensor imaging (DTI) is widely used to effectively detect microstructural integrity of white matter [13]. Automated fiber
quantification (AFQ) of DTI, is a new method that can recreate whole-brain white matter tracts and estimate point-wise diffusion
parameters aimed at the specific tract, which is very sensitive to the white matter abnormalities at the individual level[14]. Previous
studies had demonstrated that the volume of fiber tract of thalamus can effectively distinguish between mild cognitive impairment
(MCI) and healthy control[15] and white matter integrity in right thalamus was decreased in both MCI [16] and AD[17].Meanwhile, resting-
state functional magnetic resonance imaging (rs-fMRI) analysis enable us to further understand the mechanism of functional
connectivity during rTMS intervention. Functional connectivity in thalamus was reduced [18] and the connection between default mode
network and thalamus was significant changed in MCI[19].

To our knowledge, this is the first study to address that neuro-navigated rTMS of the left angular gyrus maybe a novel intervention
strategy to improve cognitive impairments in AD spectrum patients. In this study, we examined structural and functional change in AD
spectrum patients after four-weeks neuro-navigated rTMS, using AFQ tractography method of white matter tracts and graph theory
analysis in functional network. We were especially interested in determining whether the neuroplasticity of thalamic system could be
observed in these patients and the underlying mechanism was further explored.Loading [MathJax]/jax/output/CommonHTML/jax.js
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Materials And Methods

Participants
The current study was approved by the Ethics Committee of Nanjing Drum Tower Hospital, and written informed consent was obtained
from all patients before entering the study. Twenty-six patients, admitted to the Neurology Department in Drum Tower Hospital of
Medical School, Nanjing University, were screened for the current study. Two patients were excluded because of excessive head
movement during MRI scanning and two patients were excluded because of loss of imaging data. These participants were composed of
MCI and AD patients. The AD, in the presence of AD pathology as supported by cerebrospinal fluid or other imaging biomarker, was
diagnosed based on the National Institute of Neurological and Communicative Disorders and Stroke and the AD and Related Disorders
Association (NINCDSADRDA) and the Diagnostic and Statistical Manual of Mental Disorders IV criteria (DSM-IV) guidelines[20]. The MCI
patients included in this study were diagnosed according to the recommendations of Petersen and described as follows[21]: (1) memory
complaint confirmed by the subject and/or an informant; (2) objective cognitive performance documented by an auditory verbal learning
test-delayed recall (AVLT-DR) scores below or equal to 1.5 SD of education- and age-adjusted norms; (3) clinical dementia rating (CDR)
score = 0.5; (4) the scores for the Mini-Mental State Examination (MMSE) ≥ 24; and (5) not sufficient to dementia according to NINCDS-
ADRDA and DSM-IV. Exclusion criteria included brain tumors, epilepsy, Parkinson's disease, serve anxiety and depression, thyroid
dysfunction or other neurological or psychiatric disorders which can cause memory loss. Participants were excluded if the MRI scans
evidenced significant vascular pathology or micro bleeds, or head motion artefacts that affect T1w3d quality and segmentation. Four
patients were excluded for these reasons.

Experiment design and Neuro-navigated rTMS
In the first visit, patients underwent a complete clinical investigation, including medical history and neurological examination, a
neuropsychiatric evaluation, brain MRI scanning, and an extensive neuropsychological assessment exploring all cognitive domains. The
region, which exhibited significant functional connectivity differences among healthy controls, MCI and AD participants, calculated by
our team was located at the left angular gyrus (MNI: -45, -67, 38). The region was calculated by seed-based functional connectivity
analysis using the left hippocampus as a seed. All the patients were stimulated the angular gyrus by the Neuro-navigated rTMS for four
weeks. rTMS was applied daily at the same 5 times per week. Neuropsychological measurement and brain MRI scanning were
performed again after four weeks rTMS treatment. Details of the study design are summarized in Fig. 1.

rTMS was delivered using a commercially available magnetic stimulator (CCY-IV model; YIRUIDE Inc., Wuhan, China) with a 70‐mm
figure eight coil and an electromyography device. Each stimulation session consisted of forty circulations of 2 second delivered at 20 Hz
spaced-out by 28 s of no stimulation, for a grand total of 1600 stimulations. During the rTMS treatment, the coil was set on the angular
gyrus was constantly motored using a navigation system, which was anatomically referred by individual T1-weighed MRI volumes. The
treatments lasted about 20 minutes. Intensity of stimulation was set at 100% of the resting motor threshold (RMT), defined as the lowest
intensity producing MEPs of > 50 µV in at least five out of 10 trials in the relaxed first dorsal interosseous (FDI) muscle of the right hand.
RMT was assessed over the optimal stimulus site to elicit MEPs in the right FDI, which was considered motor spot. For each patient, a
source estimation on pre-processed TMS data was run at the beginning of each treatment session to confirm the correct anatomical
targeting for rTMS.

MRI scanning
All participants were examined on a Philips 3.0-T scanner (Philips Medical Systems). The examination protocol included the high-
resolution T1-weighted turbo gradient echo sequence (repetition time [TR] = 9.8 ms, flip angle [FA] = 8°, echo time [TE] = 4.6 ms, FOV = 250
× 250 mm2, number of slices = 192, acquisition matrix = 256 × 256, thickness = 1.0 mm), the FLAIR sequence (TR = 4.500 ms, TE = 333
ms, time interval [TI] = 1.600 ms, number of slices = 200, voxel size = 0.95 × 0.95 × 0.95 mm3, acquisition matrix = 270 × 260), and the
diffusion-weighted imaging sequence (TR = 9.154 ms, TE = 55 ms, acquisition matrix = 112 × 112, FOV = 224 × 224 mm2, thickness = 2.5
mm, voxel size = 2 × 2 × 2.5 mm3, the number of gradient directions = 32 (b = 1000 s/mm2) and one b0 image).

Neuropsychological Measurement
To evaluate the behavioral effects of the rTMS treatment, we employed a standardized neuropsychological test protocol, including
global cognitive assessments and multiple cognitive domain examinations. We also completed the Clinical Dementia Rating Scale
(CDRS) to assess the degree of cognitive impairment of the participants. Global cognitive function was evaluated by Mini-Mental State
Examination (MMSE) and Montreal Cognitive Assessment Beijing (MoCA-BJ). The raw test scores were converted to Z-scores, which
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were used to calculate the compound cognitive index. Episodic memory was calculated as the mean of the Z-scores from Auditory
Verbal Learning Test-delayed recall (AVLT-DR) scores and the Wechsler Memory Scale-Visual Reproduction-delayed recall (VR-DR).
Information processing speed was calculated as the average Z-scores of the Trail Making Test-A (TMT-A) and the Stroop Color and Word
Tests A and B (Stroop A and B). The language function consisted of the Boston Naming Test and Category Verbal Fluency test.
Executive function is a compound score of the average Z-scores of the Digit Span Test-backward, Trail Making Test-A (TMT-B) and
Stroop Color and Word Tests C (Stroop C). Visuospatial function is a compound score that includes the mean of the Z-scores of the
Clock Drawing Test and Visual Reproduction–copy test.

Multimodal magnetic resonance image preprocessing
In recent years, more and more neuroimaging studies suggested that white matter alterations may be an important pathophysiological
feature and a potential target of AD[22]. However, whether patterns of white matter change in different fiber tracts are different and what
happens to the white matter after the intervention are still largely unknown[13]. We decided to use AFQ, applying deterministic
tractography approach, to reconstruct whole-brain white matter and analyze point-wise diffusion parameters in specific fiber tracts. AFQ
can not only trace the fiber tracts associated with the thalamus, but also analyze the important tracts in the brain, such as corticospinal
tract, cingulate fasciculus, uncinate fasciculus, and arch fasciculus and so on to provide a comprehensive detection for whole-brain[23].
However, the changes in the microstructure of the white matter tracts are not necessarily consistent with alterations in the brain's
complex networks[24] and it is better to combine multi-modality data to detect complex network changes in AD patients then a single
modality[25, 26]. It is effective to quantify the complex brain network topology by graph theory using rs-fMRI to build functional
network[27, 28]. As a result, we combined DTI and rs-fMRI to better explore thalamus and related network alteration after treatment.

For diffusion images, the data preprocessing was carried out by FSL 5.0.9 software (Oxford Centre for Functional Magnetic Resonance
Imaging of the Brain, University of Oxford; https://www.fmrib.ox.ac.uk/fsl/). The preprocessing included the following steps: DICOM-to
NIfTI format conversion, registering DWI images (b = 1000 s/mm2) to the non-DWI image (B0), eddy current and head motion correction,
and then nonbrain tissue exclusion. After preprocessing, using DTIFIT command of FSL to obtain the whole brain images of diffusion
metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA) and radial diffusivity (RD), Specific calculation
indexes are as follows:

FA = 3 （ λ1 −
−
λ

2
+ λ2 −

−
λ

2
+ λ3 −

−
λ

2
） / 2 λ2

1 + λ2
2 + λ2

3 ,MD = λ1 + λ2 + λ3 /3, DA = λ1, RD = 

(λ2 + λ3)/2, λ1, λ2 ,λ3 reflect the three dispersion directions of water molecules[13]. λ1 travels in or against the direction of the fiber
bundle of the voxel, which called axial direction and λ2, λ3, corresponds to the direction perpendicular to the axis, which called radial
direction.

For rs-fMRI images, the data were preprocessed by GRETNA, a graph theoretical network analysis toolbox for imaging connectomes[29].
During the preprocessing, the first 10 volumes for signal were removed to reach a steady state, leaving 220 functional volumes for each
participant. The remaining functional volumes were corrected for acquisition time delay between slices (slice timing) and head motion
between volumes (realignment). Then, these functional data were normalized to the T1 segmentation individually and spatially
smoothed with a Gaussian kernel (full width at half-maximum of 4 mm). We regressing out covariates (white matter, cerebral spinal
fluid, global signals, and head-motion profiles) by multiple regression analysis to avoid noise signals. Other steps in preprocessing
consisting of temporally linear detrending, temporal band-pass filtering (0.01–0.1 Hz), and scrubbing to reduce the effects of head
motion on rs-fMRI data. The network construction was based on a voxel or region of interest approach. The Human Brainnetome Atlas
was used to parcellate the brain into 246 regions. All network analyses were performed using GRETNA.

Automated fiber quantification procedure
We identified 20 major tracts in whole brain and further quantified the diffusion metrics along the tract trajectory by applying the AFQ
package. This is a description of AFQ steps in this result:

(1) Fiber Tract Identification

First, 3D T1-weighted images were co-registered into the b0 image for each participant based on FSL, and poorly aligned images were
excluded by visual evaluation. Second, using deterministic tractography and a fourth-order Runge–Kutta path integration method[30] to
perform whole-brain tractography with thresholds of turning angle < 30° and FA > 0.2. The tracking procedure generates a database of

√ ( ) ( ) ( ) √ ( ) ( )
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candidate fibers in the whole-brain, which can be broken down into anatomically defined bundles; Third, based on the waypoint ROI
procedure described in Wakana et al[31], fiber tract is segmented. In this procedure, if they pass through two waypoints defined by ROI of
AFQ, fibers are assigned to a specific fiber group. Fourth, by comparing each candidate fiber to fiber tract probability maps, the fiber tract
refinement is accomplished. Each fiber conforms to the shape of the tracts defined by the fiber tract probability maps

(2) Fiber Tract Cleaning.

Due to the noise in the data, areas with complex fiber orientation and ambiguous stopping criteria, a few fibers may differ from the rest
of the fiber group. The fibers were resampled to 100 equidistant nodes firstly and the fiber tract core is calculated as the mean of each
fibers x, y, z coordinates at each node. The spread of fibers in 3-dimensional space is calculated by computing the covariance between
each fiber’s x, y, z coordinates at 100 nodes. Thus, each node on the tract is represented as a mean coordinate, m, and a 3 by 3
covariance matrix, S. Then we can calculate its Mahalanobis distance Dm(x). The specific formula is as follows: Dm(x)=

√(x − μ)Ts −1(x − μ)T

Dm(x) corresponds to the probability that a given point belongs to the distribution. Abnormal fibers are removed if fibers deviate
substantially from the average position.

(3) Fiber Tract Quantification

The fiber group is clipped to the central portion that spans between the two defining ROIs and each fiber was resampled to 100 equally
spaced nodes. The properties such as DA, FA, MD and RD at each fiber node are summarized by a weighted average of the diffusion
properties. This probability is calculated based on the fiber’s Mahalanobis distance from the fiber tract core.

The identified 20 WM tracts in the whole brain are listed in supplementary Table 1. It did not succeed in identifying 20 white matter tracts
per participant because of the strict criteria applied by AFQ in the identification of white matter tracts. We excluded 3 fiber tracts, right
arcuate fasciculus (AF) and the bilateral cingulum hippocampus (CH) which largely unidentified. Only the remaining 17 fiber tracts
would be analyzed in further study. The thresholds were set at a p < 0.05.

Network parameter analysis
Graph theoretical analysis was performed on the interregional connectivity matrix by using GRETNA. The weight network properties were
calculated under the threshold set by network sparsity with a range of 0.05–0.5 step size of 0.05. GRTNA was used to calculate the
global network metrics including global efficiency, global clustering coefficient (Cp), characteristic path length (Lp), and nodal network
metrics including node degree centrality (DC), nodal global efficiency (Ne) and nodal shortest path (Nlp). The calculating formula and
descriptions of these topological properties for a network G with N nodes and V edges are as follows[32]:

1. Characteristic Lp at the level of network is an indicator of overall network connectedness and quantifies the parallel information

propagation ability, which can be calculated as Lp(G) = 
1

1∕ N( N−1) ∑ N
i=1 ∑ N

j≠11∕ Lij
 Lij is the characteristic Lp between nodes i and

j.
2. Eg is defined as the inverse of the harmonic mean of shortest path between each pair of nodes within the network, which effectively

measures the information communication capacity of the whole network and is calculated as Eg (G) = 
1

N( N−1) ∑ i≠ jϵG
1
dij

, dij is

the shortest Lp between node i and j in the network.
3. Cp at the network level represents the degree of local cliquishness or interconnectedness within the network. It can be calculated as

Cp(G) =
4. Node degree centrality is number of links connected to a node. It can be represented as DC =∑ j∈Ndij
5. Nodal Lp (Nlp) quantifies the mean distance or routing efficiency between one node and all the other nodes in the network, which

calculated as: Lp (i) = 
1

N−1 ∑ i≠ j∉Gdij, dij is the shortest Lp between node i and j in the network.

6. Nodal efficiency means the efficiency of parallel information transfer of one node in the network. It can be calculated as: Ne (i) = 
1

N−1 ∑ i≠ j∉G
1
dij , dij is the shortest Lp between node i and j in the network.

Statistical analyses
Loading [MathJax]/jax/output/CommonHTML/jax.js
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To examine the point-wise difference of white matter tracts between baseline and post-treatment, we sorted DTI metrics (FA, MD, DA, and
RD) of 100 nodes along each white matter tract calculated by AFQ in all patients. Then, paired T test was used to detect the differences
in the DTI metrics of each fiber tract. Paired T tests were performed in Gretna's nodal metric comparison toolkit and false discovery rate
(FDR) was applied to determine the significance for p-values (p < 0.05). Within each fiber, we only chose more than or equal to three
adjacent nodes corrected by FDR to further analyze [26]. Differences of whole-network and nodal properties in functional network
between pretherapy and post-treatment was performed in Gretna toolbox using paired samples T test and FDR corrected p < 0.05.

Baseline and post-treatment cognitive assessment were compared using paired-samples T test in SPSS software (Version 22). We
divided the participants into the AD group and MCI group. We would conduct data analysis from the perspective of the whole participant,
AD group and MCI group respectively. In order to investigate possible relationships between alteration of white matter fiber and cognition
change, we tested correlations using the Spearmen coefficient (two-tailed) between the altered diffusion metrics and cognitive change
(calculated by using post-treatment data minus the baseline data). The thresholds were set at a p < 0.05.

Results

1. Cognitive function improvement by neuro-navigated rTMS
Participant characteristics and neuropsychological evaluations were shown in Table 1. Compared with the baseline, general cognition
(i.e., MOCA-BJ), episodic memory (i.e., AVLT-DR and VR-DR) and language function (i.e., BNT) showed the significant improvement after
four-week neuro-navigated rTMS treatment among all participants. However, no difference between the baseline and post-treatment was
observed in information processing speed and executive function in these subjects (p > 0.05). 



Table1

Baseline demographic and neuropsychological data 
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Items     MCI (n=16)   AD(n=6)    

Demographics              

Age (y)     67.38±7.67   67.83±7.41    

Education (y)     11.56±2.45   10.00±1.55    

Gender
(male/female)

    6/10   3/3    

General
cognition

    Baseline Post-Tx p Baseline Post-Tx p

MMSE     25.63±3.18 26.81±3.12 0.154 22.83±6.89 23.83±6.28 0.348

MoCA-BJ     21.88±3.67

 

24.13±2.99 0.002* 16.17±7.08 20.67±7.06 0.007*

Composition Z scores of each cognitive
domain

     

Episodic
Memory

  -0.10±0.76 0.54±0.96 <0.001* -0.79±0.66 -0.38±0.83 0.351

AVLT-DR     -0.14±0.53 0.53±1.10 <0.001* -0.75±0.56 -0.29±0.81 0.323

VR-DR (WMS)     -0.06±0.86 0.53±0.99 0.004* -0.83±0.76 -0.47±0.92 0.415

Information
Processing
Speed

0.07±0.91 0.23±0.72 0.289 -0.42±0.70 -0.08±0.56 0.644

TMT-A
(inverse)

    -0.04±0.90 0.22±0.97 0.100 -0.23±1.06 -0.25±1.38 0.956

Stroop A
(inverse)

    0.08±1.17 0.28±0.97 0.242 -0.57±0.56 -0.37±0.71 0.225

Stroop B
(inverse)

    0.16±1.35 0.18±0.77 0.912 -0.47±0.56 -0.46±0.57 0.904

Language     -0.06±0.68 0.20±0.71 0.017* -0.37±0.75 0.00±0.42 0.065

CVF     0.13±0.86 0.36±1.03 0.230 -0.76±1.10 -0.55±0.70 0.415

BNT     -0.27±1.14 0.05±1.05 0.004* 0.01±0.77 0.54±0.46 0.024*

Executive
Function

    0.03±0.74 0.18±0.75 0.185 -0.14±0.80 -0.08±0.56 0.648

DST-backward     -0.03±0.77 0.34±1.20 0.034* -0.73±1.12 -0.08±0.49 0.144

TMT-B
(inverse)

    -0.10±0.81 0.06±0.83 0.136 0.14±1.66 0.01±1.55 0.751

Stroop C
(inverse)

    0.23±1.25 0.14±0.85 0.672 -0.47±0.73 -0.51±0.62 0.768

Note: Values are presented as the mean ± standard error (SE).

Abbreviations: AVLT-DR, Auditory Verbal Learning Test-delayed recall; BNT, Boston Naming Test; CVF, category verbal fluency; DST,
Digit Span Test;

MMSE, mini mental state examination; MoCA-BJ, Beijing version of the Montreal Cognitive Assessment; Stroop A, B and C, Stroop
Color and Word Tests A, B, and C; TMT-A and TMT-B, Trail Making Test-A and B; VR-DR, visual reproduction-delay recall;

*Indicates a statistical difference between groups, p < 0.05.
 

After dividing all participants into AD and MCI, we respectively analyzed cognitive function in these two groups (Table 1 and Figure 2)
We found that the cognitive improvement was occurred in general cognition (i.e., MOCA-BJ), episodic memory (i.e., AVLT-DR and VR-DR)

Loading [MathJax]/jax/output/CommonHTML/jax.js



Page 8/18

and language function (i.e., BNT) among MCI group (p < 0.05). In addition, although there are some differences in neuropsychological
tests, there also exist some very similar improvement on general cognition (i.e., MOCA-BJ) and language function (i.e., BNT) in AD group
(p < 0.05).

2. Point-wise differences of white matter tracts between baseline and post-
treatment
Group point-wise differences of white matter tract were determined by mean diffusion metrics (FA, MD, AD, and RD) and only more than
or equal to three adjacent nodes were reported within each fiber. The major tracts we studied were bilateral thalamic radiation, which
regions of interests are based on the coronal plane at the anterior edge of pons to delineate thalamus and internal capsule[31]. We also
analyzed other fiber tracts successfully tracked as described above. The following were the details (Figure 3).

(i) Total participants: In point-wise comparison of white matter fiber tracts values, we found the intermediate component of the left
Cingulum Cingulate ’s MD (nodes 28-33) and RD (nodes 29-32) values were significantly changed (FDR correction, p < 0.05). After rTMS
treatment, these values show an increasing trend.

(ii) MCI group and AD group: Among the MCI group, we found the posterior portion of the right anterior thalamic radiation’s FA (nodes 88-
94) values and the intermediate component of the left uncinate fasciculus’s FA (nodes 51-54) values    had been improved after rTMS
treatment. By contrast, the intermediate component of the left Cingulum Cingulate ’s MD (nodes 29-31) values showed the continuing
damage after rTMS treatment. In addition, there was no significant change of point-wise differences of white matter tracts between
baseline and post-treatment in AD group. We calculated fiber tract level differences of white matter tracts in AD group by calculating
average value of each tract as a complement, and the Callosum Forceps was observed slight changes (supplementary Figure1). 

3. Function network topology properties change in thalamus after treatment
The region of functional network was based on the Human Brainnetome Atlas and the brain aera representing the thalamus were
selected [33].   Thalamus was divided into medial pre-frontal thalamus, pre-motor thalamus, sensory thalamus, rostral temporal
thalamus, posterior parietal thalamus, occipital thalamus, caudal temporal thalamus and lateral pre-frontal thalamus[33]. Our study
shows significant alterations in the degree centrality (DC), nodal efficiency (Ne) and nodal shortest path (Nlp) in patients with MCI. In
MCI group, the DC and Ne of right medial pre-frontal thalamus, right posterior parietal thalamus, right occipital thalamus and right lateral
pre-frontal thalamus were decreased after treatment. The Ne of caudal temporal thalamus was also decreased in MCI. In the meanwhile,
the Nlp of right posterior parietal thalamus, right occipital thalamus and right lateral pre-frontal thalamus was increased after treatment
(Figure4, p<0.05, FDR corrected). We didn’t find similar changes in AD patients. In the meanwhile, we analyzed brain regions associated
with remaining altered two tracts-- left Cingulum Cingulate and left uncinate fasciculus. The brain regions of the analysis were defined
according to the starting and ending points of the fiber tracking[31]. The network properties of these brain regions did not change
significantly after intervention.  

4. The changed diffusion metrics, theoretical parameter and behavioral
significance
Based on the multi-modal analysis in Figure 3 and Figure 4, we further analyzed the correlation between the diffusion metrics, theoretical
parameter and cognition respectively (Figure5): 

(i) Post-wise differences correlation: It should be noted that the improved white matter integrity of right Thalamic Radiation were
observed after four-week neuro-navigated rTMS treatment. Among MCI group, the increased white matter integrity of posterior portion of
the right Thalamic Radiation’s (nodes 88-94) correlated positively with the improved episodic memory (r = 0.585, p = 0.028) and
improved language function (r = 0.663, p = 0.007)

(ii) Theoretical parameter correlation: previous studies demonstrated that compared to healthy control, AD patients showed higher
degree centrality and nodal efficiency in thalamus[34].   We thought that network attributes of the thalamus were improved after the
intervention. In order to better describe this improvement, we took the negative number of these attributes for correlation analysis. After
the conversion, we found significantly positive correlation between transformed Ne of right posterior parietal thalamus (r = 0.543, p =Loading [MathJax]/jax/output/CommonHTML/jax.js
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0.030), right lateral pre-frontal thalamus (r = 0.497, p = 0.050) and the improved episodic memory among MCI group. In addition, we also
found similar positive correlation between DC (r = 0.577, p = 0.021), Ne (r = 0.674, p = 0.004) of right posterior parietal thalamus, Ne (r =
0.726, p = 0.001) of right occipital thalamus and the language function (the score of BNT test ) among MCI group. The improved Nlp of
right posterior parietal thalamus (r = 0.806, p < 0.001), right occipital thalamus (r = -0.824, p < 0.001) was positively correlated with the
score of BNT test.

Discussion
Our study was the first to use neuro-navigated rTMS targeting left angular gyrus to improve cognitive impairments in AD spectrum
patients. And, we firstly demonstrated the changes in fiber associated with thalamus after neuro-navigated rTMS treatment in AD
spectrum patients. We investigated function network alteration in patients from a multimodal perspective and found a significant
beneficial effect of rTMS targeting angular gyrus on improving episodic memory and language function. Furthermore, significant
improvement was observed in microstructural integrity of right anterior thalamic radiation. Network topology properties in thalamus,
such as nodal efficiency and degree centrality, were also changed at the function network level. This investigative approach may lead to
a better understanding of cognitive improvement via neuro-navigated rTMS inducing the neuroplasticity of thalamic system in AD
spectrum patients.

1. The selection and importance of stimulation target
In previous studies, rTMS intervention tends to stimulate the brain area traditionally associated with brain function such as dorsolateral
prefrontal cortex (DLPFC)[35], inferior frontal gyrus(IFG)[36], parietal lobe and temporal lobe[37] and so on. These conventional
interventions are often localized through body surface markers and brain region system such as electroephalogram 10-20 system.
These positioning methods are not accurate enough, easy to occur error and other side-effects[38].Although they have a partial
intervention effect, it’s too crude to further explore the mechanism behind the study. As technology develops, neuro-navigated rTMS has
significant advantages, such as more accurate location determination by using structural and functional neuroimaging and choosing
target according to specific study purpose[39]. In this study, our team calculated the region which is the most extraordinary different
among healthy controls, MCI and AD patients using functional connectivity analysis based on the left hippocampus and located it to the
left angular gyrus in our other large sample (these data were not listed in this study). Our intervention target was identified precisely and
individually by neuro-navigated system. Previous researchers have used this precise navigation technique to target region of interest,
such as, Koch et al. treated AD patients with rTMS in the precuneus region (MNI : 0,-65,37) and found their AVLT-DR scores improved
significantly[39]; Ilona Eliasova performed intervention in the right inferior frontal gyrus (MNI : 48, 21, 3) in AD and MCI patients and
resulted that TMT-A and TMT-B scores was improved after treatment[40]. 

The improvement of memory function by rTMS is consistent with previous studies, that angular gyrus, and its connectivity with the
hippocampus, are involved in different degrees of memory function[41]. Recent models of long-term memory showed that the left
angular gyrus played a critical role in episodic retrieval and recollection[42-44]. Inhibitory TMS of the angular gyrus impaired retrieval of
episodic memory[45, 46], and supported encoding in experience memory [47]. Moreover, memory encoding is an important target of
rTMS to improve episodic memory[48]. These results lead us to propose a hypothesis that navigated rTMS targeting angular gyrus
improve episodic memory by influencing memory encoding and left angular gyrus-navigated rTMS may be an effective treatment to
improve memory in AD patients.

2. The underlying mechanism and intervention opportunity of cognitive
improvement 
Thalamus is traditionally considered as a transmission center, responsible for transmission of sensory and motor inputs to the cerebral
cortex, however, recent studies had shown that thalamus also play an important role in memory function[49, 50]. It is consistent with our
results that after four-week rTMS intervention, patient's memory improved along with changes in the thalamus. Previous study showed
that the white matter integrity of anterior thalamic radiation was damaged in AD spectrum patients[51-53]. These studies indicated that
the anterior thalamic radiation may serve as an important marker of AD diagnose. Our results showed that the FA value of right anterior
thalamic radiation increased in MCI group after rTMS treatment. This demonstrated that these white matter fiber bundles may have
been remodeled due to the rTMS intervention, and the improvement of episodic memory and language scale score was positively
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correlated with the degree of such reconstruction. These findings provide a new underlying mechanism of how rTMS improves
cognition. 

In addition, to explain the therapeutic mechanism of rTMS from the perspective of white matter integrity, functional network change
can’t be ignored. It's worth noting that the potential effect of rTMS spread from directly targeted areas to anatomically areas, which
provides an opportunity to apply rTMS at one point of neural circuit[54]. And, previous graph theoretical analysis in functional network
showed that AD patients had higher degree centrality and nodal efficiency in thalamus[34]. These findings were consistent to our results.
By shifting the thalamus FC graph pattern to that of healthy control, rTMS improved MCI’s episodic memory and language function. Our
correlation analysis also confirmed that the greater the alteration, the better the patient's memory and language function. Interestingly,
we also found changes in other fiber tracts, with either an increase or a decrease in the integrity of white matter tracts, which may be the
result of natural physiological processes and need furthered investigated. We found these white matter and functional changes primarily
in the MCI population suggested that rTMS has a good effect in the early stages of cognitive impairment. Our findings were consistent
with previous studies about the curative effect of rTMS in which patients with mild AD showed better cognitive improvement than those
with moderate AD through combined rTMS and cognitive training intervention[55, 56]. In late AD, irreversible damage has occurred,
including excessive Aβ accumulation, neuronal damage, death, and destruction of the blood-brain barrier[57]. At this stage, drugs or
other interventions are difficult to play a good therapeutic effect. 

Our study showed that after four-week rTMS intervention targeting angular gyrus, memory and language function in both MCI and AD
patients had been improved. White matter integrity of right anterior thalamic radiation is reconstructed and functional network topology
properties was refined in thalamus. These alterations play a key role in cognitive improvement. The causal relationship between these
changes will be the focus of future research.

3. Methodological issues Limitations and prospects
There are several limitations of our study needs improved. Firstly, these observations in our study were made in a relatively small sample
and lacked a sham group due to the relatively complex experimental design. Further investigation through large prospective studies is
necessary. Secondly, depending on the strict requirements for fiber tracking, the fiber tracts like bilateral cingulum hippocampus tracts
were not traceable in some subjects, led to lack into these important fiber tracts, however, all of our subjects' target fibers associated
with thalamus were reconstructed successfully, which lends confidence in further study.

Conclusion
In support of the growing evidence for an intervention strategy of AD spectrum patients, this study provided neuroimaging evidence that
the cognitive improvement via left angular gyrus-navigated rTMS inducing the neuroplasticity of thalamic system, especially in the early
disease process at the stage of MCI. These findings may open novel avenues for better understanding the effects of rTMS in improving
episodic memory and language function in AD spectrum patients.
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Figures

Figure 1

Study and experiment design All patients (n=26) were stimulated the angular gyrus (MNI: -45, -67, 38). by the Neuro-navigated rTMS for
four weeks. rTMS was applied at 20 Hz five times a week, using a neuron avigation system to ensure that the same spot was constantly
stimulated across sessions.
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Figure 2

Behavioral result All participants showed improvement in general cognition, episodic memory and language function. MCI’ s general
cognition, episodic memory and language function improved and AD’s general cognition, and language function were also improved. (p
< 0.05.) Abbreviations: AVLT-DR, Auditory Verbal Learning Test-delayed recall; BNT, Boston Naming Test; CVF, category verbal fluency;
MMSE, mini mental state examination; MoCA-BJ, Beijing version of the Montreal Cognitive Assessment; Post-Tx: post-treatment; VR-DR,
visual reproduction-delay recall

Loading [MathJax]/jax/output/CommonHTML/jax.js



Page 16/18

Figure 3

Post-wise differences in fiber tracts Significantly altered values in point-wise of fiber tracts (FDR correction, p < 0.05), Dark blue color in
the white matter tracts represents significantly altered locations. Light blue color in the white matter tracts represents other locations
with no statistical significance. Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity.
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Figure 4

Alterations in thalamic-related functional network properties In MCI group, Nodal shortest path length of right posterior parietal
thalamus, occipital thalamus and lateral pre-frontal thalamus was improved. (FDR correction, p < 0.05). Nodal efficiency of right medial
pre-frontal thalamus, posterior parietal thalamus, occipital thalamus, caudal temporal thalamus, lateral pre-frontal thalamus was
decreased. (FDR correction, p < 0.05). Degree centrality in right medial pre-frontal thalamus, posterior parietal thalamus, occipital
thalamus and lateral pre-frontal thalamus was decreased (FDR correction, p < 0.05).
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Figure 5

Correlations between diffusion metrics, network Properties and cognition assessment In MCI group, ΔFA of N88-94 in right thalamic
radiation was positively correlated with improved episodic memory (r = 0.585, p = 0.028) and language function (r = 0.663, p = 0.007).
Before analysis, we took the negative numbers of these attributes. Nodal efficiency in right posterior parietal thalamus (r = 0.543, p =
0.030), right lateral pre-frontal thalamus (r = 0.497, p = 0.050) was positively correlated the improved episodic memory. Degree centrality
(r = 0.577, p = 0.021) and nodal efficiency (r = 0.674, p = 0.004) of right posterior parietal thalamus, nodal efficiency of right occipital
thalamus (r = 0.726, p = 0.001), nodal shortest path of right posterior parietal thalamus (r = 0.806, p < 0.001), right occipital thalamus (r
= -0.824, p < 0.001) were positively correlated with the score of BNT test
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