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Abstract
Background

This study aims to establish a computed tomography (CT) - based radiomics nomogram to predict the
biological activity of hepatic alveolar echinococcosis (HAE).

Methods

A total of 174 HAE patients (139 for training, 35 for test) were enrolled whose CT and positron emission
tomography-computed tomography (PET/CT) examinations were performed before surgery, and the
biological activity was evaluated according to the PET/CT. Radiomic features were extracted from CT
images, based on which radiomic scores (Rad-score) were calculated with the least absolute shrinkage
and selection operator logistic regression. Three radiomics models (K-Nearest Neighbors, Logical
regression, and Multilayer Perceptron), including only radiomic features and a radiomics nomogram,
comprised of demographics, clinical indexes, and radiomic features were constructed respectively to
predict the biological activity of HAE. The model performance was evaluated by area under curve (AUC),
decision curve, and calibration curve.

Results

30 features in total were selected as optimal radiomic features and considered as input to calculate the
Rad-score. There were no signi�cant differences in the predictive e�cacy between the combined models
and the radiomics models from the perspective of the decision curve. The radiomics models was
unparalleled, with an AUC of 0.952 (95%CI=0.902~0.981, P<0.0001) and 0.800 (95%CI=0.631~0.916,
P<0.0020) in the training and testing cohort, respectively.

Conclusion

The radiomics nomogram model showed great potential in identifying HAE biological activity.

Introduction
Hepatic alveolar echinococcosis (HAE) is caused by the parasitic metacestode Echinococcus
multilocularis, which was rare but life-threatening. Most patients are diagnosed at the advanced stage
because of the hidden early symptoms of HAE[1] and can barely bene�t from the radical operation [2, 3],
which leads patients had to complete lifelong pharmacological treatment with benzimidazoles-
albendazole (ABZ) or mebendazole (MBZ) [3, 4], and thorough follow-ups. Patients have to suffer from
drug side effects [5] and the high cost of treatment [6]. Unfortunately, there is no an effective curative
effect evaluation standard for parasiticidal drug targeting metacestode stages of the parasite [7]. 18F
�uorodeoxyglucose (18F-FDG) positron emission computed tomography (PET/CT), which is currently
considered reliable, has been used for this purpose [8, 9, 10, 11]. Recent studies have shown that the
inactivity of PET/CT is the main drug cessation indicator [12, 13]. However, complicated equipments and
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high healthcare costs limit its widespread acceptance as routine HAE evaluation. Thus, an economical
and practical alternative is still badly needed.

As well known, characteristics have been set up to describe HAE on many imaging modalities such as
ultrasound, CT, or MR images.Some feasible results in terms of lesion activity evaluation have been
achieved in some studies [14, 15, 16, 17]compared to PET/CT based on morphology and imaging
features (calci�cation and microcysts sign). But it remains challenging for radiologists to �nd well-
validated imaging markers to determine metacestode viability in HAE. The concept of radiomics has
attracted increased attention in recent years [18]. In liver diseases, radiomics models have been involved
in �brosis staging, portal hypertension evaluating, and focal lesions qualitative diagnosis [19], and
radiomics models constructed by incorporating clinical features of hepatocellular carcinoma (HCC) could
improve the predictive ability of microvascular invasion (MVI) and pathological grading e�ciency[20, 21,
22].

To our knowledge, no previous studies have built a CT-based radiomics nomogram for HAE. Despite the
disadvantage of radiation problem, CT is the most widely used imaging modality for detection in most
countries.

This study aims to develop and validate a CT-based radiomics nomogram that would incorporate
radiomics signature and clinical factors to evaluate HAE activity.

Materials And Methods
Patients

This retrospective study was approved by our Ethical Committee, and informed consent was waived for
the patients. All procedures involving human participants adhered to the tenets of the Declaration of
Helsinki.

The initial 248 patients were reviewed from May 2012 to January 2021. The inclusion criteria were as
follows: (1) con�rmed HAE by surgery or biopsy; (2) high quality of CT scan were available; (3) PET/ CT
were available within 15 days before or after CT scan; (4)complete medical records were at hand,
including age, sex, height, weight, body mass index (BMI), and PNM stage (P: parasitic mass in the liver,
N: involvement of neighboring organs, M: metastasis)[23].Patients were excluded if any of the inclusion
criteria was violated as shown in �gure 1. The patients were randomly divided into a training set and test
set at the ratio of 8:2. The training set contains 139 HAE patients, of which 99 were active and 40 were
inactive. The test set contains 35 HAE patients, of which 25 were active and 10 were inactive.

CT Image Acquisition

All patients underwent a plain scan and contrast-enhanced imaging with a 64-Detector Row CT Scanner
(LightSpeed VCT & Discovery 750, GE Medical Systems, USA) with the same scan protocol. CT images
were acquired during a single breath-hold. After routine non-enhanced CT, the contrast-enhanced CT scan
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was initiated after an intravenous administration of 1.5 mL/kg of the iodinated contrast material
(Uitravist 370, Bayer HealthCare, Germany) at a rate of 3.0-3.5 mL/s via a high-pressure injector
(Tennessee XD2003, Ulrich GmbH & Co. KG, Germany). Three phase-enhanced CT scans were performed,
including the arterial phase, portal venous phase, and equilibrium phase. The CT protocol was as follows:
volume scan, 120 kVp of tube voltage with automatic tube current modulation, 0.5s of rotation time,
64mm×0.625mm of detector collimation, 5mm slice thickness and interval, 0.984 of pitch,
512mm×512mm of a matrix. 

Conventional Radiological Characteristics Analysis and Classi�cation

Images were analyzed by two radiologists, both with more than 10 years of experience in diagnosing
abdominal diseases. The two radiologists evaluated the images independently over indexes such as
signs of microcysts, Graeter classi�cation, and calci�cation [16]. The calci�cation analysis was based on
Graeter`s research (1: without calci�cation; 2: feathery calci�cation; 3: focal calci�cation; 4: diffuse
calci�cation; 5: mainly calci�cation, edge calci�cation, and central calci�cation). One senior radiologist
with 15 years of experience in abdomen images was supposed to decide for inconsistent cases. 

18F-FDG-PET/CT imaging protocol and image interpretation

All images were obtained from a Discovery VCT PET/CT (GE Healthcare Bio-Sciences, Pittsburgh, PA,
USA) with an 18F-FDG tracer produced by Cyclotron (GE Healthcare Bio-Sciences) that had a
radiochemical purity of >95%. Patients were intravenously injected with 18F-FDG (7.4 MBq/kg body
weight). All patients were treated with standard 18F-FDG-PET/CT acquisition (PET/CT acquisition was
performed 1 h after 18F-FDG injection). The delayed 18F-FDG-PET/CT acquisition was performed 3h
after 18F-FDG injection if necessary[11]. The image diagnosis (with a de�nite “active” or “inactive” label)
was made by one experienced radiologists and reviewed by the senior radiologist. The standardized
uptake value (SUV) was calculated automatically by semi-quantitative analysis in the workstation. Cases
with higher lesion SUV indicates active, lower lesion SUV indicates inactive , compared to that of
peripheral liver parenchyma. 

Lesion Segmentation and Image preprocessing

The lesion segmentation was performed on the rad cloud platform (version 3.1.0, http://radcloud.cn/,
Huiying Medical Technology Co., Ltd, Beijing, China). The volumes of interest (VOIs) were delineated layer
by layer along the edge of the lesion in the portal venous phase (the optimal imaging phase for lesion
boundary) by one radiologist. All the VOIs were visually con�rmed by another senior radiologist. The two
radiologists did not know whether the lesions were active when evaluating the imaging. Representative
CT images for inactive and active lesions are shown in Figure 2. 

To improve the stability of radiomic features, the images were pre-processed by standard deviation
normalization [μ-3σ, μ + 3σ], and B-spline interpolation sampling to resample all CT images to1.0×1.0×1.0
mm3 to unify the slice thickness.
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Feature extraction and normalization

The quantitative features of VOIs were calculated at radcloud platform, which was in compliance with
de�nitions described by the Image Biomarker Standardisation Initiative (IBSI). The IBSI is an international
collaboration developed to help standardize radiomic feature calculation, which has made
recommendations concerning feature calculation, standardized feature de�nition, and nomenclature [24,
25]. A total of 1409 radiomics features were extracted, which included �rst-order features, shape features,
and texture features, which included gray level co-occurrence matrix (GLCM), gray level size zone matrix
(GLSZM), gray level run length matrix (GLRLM), neighboring gray-tone difference matrix (NGTDM), and
gray level dependence matrix (GLDM). The selected radiomics features of model were in additional �le 1
(Table S1).

In feature normalization, Z-score normalization was applied to eliminate the difference in the value scale
of the extracted features. The mean value is subtracted from the original feature value and the above
results were further divided by the standard deviation.

Features Selection and model construction

To effectively select available features from high dimensional feature sets, the least absolute shrinkage
and selection operator (LASSO) logistic regression algorithm was utilized in the training dataset. Rad-
score for each patient was calculated by using a linear combination of selected features, each weighted
by respective LASSO coe�cients. The formula used to calculate Rad-score was in additional �le 1
(Formula S1). 

Supervised machine learning classi�ers including K-Nearest Neighbors (KNN), Logical regression (LR),
and Multilayer Perceptron (MLP), were applied to develop radiomics models, training in the training
dataset and applied in the test dataset. The areas under the receiver operating characteristic (ROC) curves
(AUCs) along with 95% con�dence intervals (CIs) were used to assess the predictive e�ciency of the
model, and the cutoff value was selected according to the Youden index to determine the corresponding
sensitivity and speci�city.  

The radiomics and clinical nomogram construction and evaluation

Furthermore, in order to improve the predictive performance of the current Rad-score-based model, the
clinical indicators highly correlated with biological activity were introduced into this predictive model.
Univariate analysis was �rst initiated to select the most highly correlated indicators. A radiomics
nomogram was established with both Rad-score and previous selected clinical indicators to predict HAE
biological status. Calibration curves and decision curves were delineated to assess the calibration and
feasible clinical utility. 

Statistical analysis
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Software R Version 3.6.3 (https://www.R-project.org/) was used for statistical analysis and models
development [25]. For continuous variables, the Kolmogorov-Smirnov test was �rst used to evaluate
normality. Independent sample t-test was utilized for the data with normal distribution and expressed as
mean (standard deviation). Otherwise, the data were analyzed by the Mann-Whitney U test and expressed
as median [IQR]. Chi-square test and Fisher’s exact probability method were used to compare the
categorical variables between groups. DeLong’s test was used to compare the differences among
models. A two-tailed P < 0.05 was considered to be statistically signi�cant.

Result
Patients Clinical and Conventional Image Factors

The characteristics of the patients in the training and testing sets were described in Table 1. According to
PET/CT indexes, P stage, microcysts sign were signi�cantly different (p < 0.05) between the active group
and inactive group in the training set and test set; calci�cation was signi�cantly different (p < 0.05) in
training set only; the gender, age, height, weight, BMI, N stage, and M stage were not signi�cantly different
(p > 0.05) between the active group and inactive group.

Table 1 Characteristics of the HAE patients in the active group and inactive group
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Characteristic Training Group (n=139) Testing Group (n=35)

  Total Active Inactive p-
value

Total Active Inactive p-
value

Gender       0.953       0.033

Male 62 44 18   18 10 8  

Female 77 55 22   17 15 2  

Age mean
(SD), year

  40.55
(14.52)

38.71
(12.40)

0.452   38.28
(11.08)

41.60 (16.30) 0.49

Height mean
(SD), cm

  162.63
(7.87)

163.65
(8.04)

0.491   165.08
(6.20)

161.80(11.06) 0.271

Weight mean
(SD), kg

  58.95
(12.28)

61.25
(12.51)

0.322   59.72
(9.55)

60.70 (11.02) 0.794

BMI mean
(SD)

  22.19
(3.69)

22.73
(3.54)

0.431   21.87
(2.99)

23.00 (2.41) 0.299

P stage       <0.001       0.01

 P1   0 2     0 1  

 P2   11 13     4 4  

 P3   37 14     6 3  

 P4   51 11     15 2  

N stage       0.727       0.504

 N0   65 25     18 6  

 N1   34 15     7 4  

M stage       0.055       0.227

 M0   57 30     18 5  

 M1   42 10     7 5  

microcysts       0.004       0.001

 Y   55 12     10 0  

 N   44 28     15 10  

calci�cation       0.007       0.857

 1   4 2     1 1  

 2   22 2     6 1  

 3   52 19     11 7  



Page 8/20

 4   17 8     7 0  

 5   4 7     0 1  

SD, standard deviation.                                       

Radiomics Models Establishment and Validation

The best performance of LASSO regression was built using a penalty parameter -log(α) = 1.58, as the
mean square error was minimized resulted in 30 radiomic features from the 1409 image features
(Figure 3). The radiomic features showed good predictive accuracy among three classi�ers (Table 2)
according to AUC, sensitivity, and speci�city (Figure 4), with MLP achieved the best. 

Table 2 Radiomics models’ performance in predicting the biological activity of HAE

Models Group AUC
(95% CI)

Accuracy Sensitivity Speci�city Youden Cutoff p-value

KNN Train 0.827
(0.753–
0.885)

0.676 0.566 0.950 0.516 0.889 <0.0001

Test 0.748
(0.573–
0.879)

0.629 0.520 0.900 0.42 0.889 0.0085

LR Train 0.844
(0.772–
0.900)

0.827 0.879 0.700 0.579 0.503 <0.0001

Test 0.796
(0.626–
0.913)

0.800 0.800 0.800 0.6 0.555 0.0024

MLP Train 0.952 (
0.902–
0.981)

0.835 0.788 0.950 0.738 0.794 <0.0001

Test 0.800
(0.631–
0.916)

0.800  0.800  0.800  0.6 0.684 0.0020

Nomogram Construction and Validation

In the univariate analysis of the training cohort, the P stage, microcysts sign, and calci�cation showed
signi�cant differences between the active and inactive group. Therefore, a radiomics nomogram model
incorporating Rad-score with the clinical indicator was constructed (�gure 5A). Calibration curves for the
radiomics nomogram are shown good consistency between predictive outcome and observation in the
training and test sets (�gure 5B, C). The results of decision curve analysis (DCA) in the training set are
shown in Figure 6. The DCA showed satisfactory performance for the radiomics nomogram model while
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the proposed radiomics model showed a greater advantage. There were no signi�cant differences in the
predictive e�cacy between the combined models and the single radiomics model.          

Graeter Classi�cation for Activity Prediction

The results of Graeter classi�cation in the active group and inactive group are shown in Table. 3. The chi-
square test results (λ2=12.205, p=0.0321) show a positive correlation between the Graeter classi�cation
and PET/CT result for activity evaluation. Furthermore, KNN, LR, and MLP models were also applied to
evaluate the predictive e�ciency of Graeter. In the training set, the sensitivity, speci�city, accuracy, and
AUC (95%CT) of KNN, LR, MLP were 0.949, 0.171, 0.719, 0.561 (0.513~0.682); 0.949, 0.171, 0.719, 0.524
(0.414~ 0.586); 0.378, 0.829, 0.511, 0.637 (0.529~0.696), respectively. In the test set, the sensitivity,
speci�city, accuracy, and AUC of KNN, LR, MLP were 1.000, 0.000, 0.743, 0.500 0.383~0.727 ; 0.038,
1.000, 0.286, 0.457 (0.327~ 0.673); 0.269, 0.889, 0.429, 0.577 (0.423~0.763), respectively (Figure 7),
indicating bad performance of three Graeter classi�cation based models.

Table 3 The Graeter classi�cation for HAE patients

Graeter Activity of HAE  

Active Inactive  

  11 2 13(7.5%)

  75 35 110(63.2%)

  a 33 6 39(22.4%)

  b 4 4 8(4.6%)

  1 1 2(1.1%)

  0 2 2(1.1%)

  124(71.3%) 50(28.7%) 174

Discussion
HAE is a fatal parasitic disease mainly popular in the temperate countryside and high-altitude
mountainous areas. The untreated 10-year mortality was more than 90% [26, 27]. PET/CT, the preferred
imaging modality, showed the response of in�ammatory cells around parasitic lesions, thus indirectly
re�ecting metabolic activity [10, 28]. CT examination was earlier used in HAE evaluation of drug
therapy[29], compared with PET/CT, partly because CT equipment is more readily available, especially in
these remote pastoral areas. Radiomics based model was not satisfactory compared with clinical
indicators based model in predicting the pathological grade or microvascular invasion for HCC [30]. Still,
when combined with clinical indicators, the nomogram model becomes better [20]. Therefore, this
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research was designed to establish a radiomics nomogram with clinical and traditional imaging features
to predict HAE biological status.

In this study, three machine learning algorithms were utilized to build prediction models, namely KNN, LR,
and MLP, capturing the linear and nonlinear relationships of data, with AUCs ranging from 0.748 to 0.800
in the testing cohort, with MLP achieved the top results. This may be partly due to the fact that the MLP
network models the computational units of multiple layers by imitating signal transmission, and the
layers of deep neural architecture overcome the limitation of local minimum optimization [31]. The
Greater-MLP model which based on CT morphology classi�cation, with an AUC of 0.58 and 0.64 in the
training and testing cohort. Eventually, a combined nomogram model incorporated the radiomics
signature and clinical features while no signi�cant differences were detected between the combined
model and the radiomics models.

Among clinical markers, the PNM stage indicated the clinical stages derived from the World Health
Organization staging system[23]. Our results showed that P stage was related to the AE activity in that
with the P stage increased, the nomogram score decreased, implying that a higher the P stage would lead
to an inactive lesion. Microcysts sign is one of the most typical image features for HAE. In pathology, the
HAE lesions were shown multiple vesicles /microcysts( from 1 mm to 1.1cm in diameter) on gross
specimen [2, 32]. On CT scan, the small vesicles were represented by small round low density and most
clearly displayed in portal vein phase. Previous studies demonstrated that it is related to HAE activity and
our results further con�rm it [14].

Calci�cation is considered as another manifestation of HAE and in most cases, increased calci�cation
would indicate stable progression [23, 33], which is quite similar to Greater’s calci�cation classi�cation
[16]. However, Brumpt considered micro calci�cations (similar to Greater’s feathery calci�cation) related
to activated status. Clinically, microcalcifcations/feathery calci�cations come up with
macrocalci�cations in most cases, thus indicating that the increase in calci�cation maybe a marker of
stable progression. Therefore in the current study, Greater classi�cation was utilized.

There are still some Limitations to this research. Firstly, this is a retrospective study and the included
subjects were heterogeneous, including both untreated and chemotherapy-treated patients, which may
cause bias for the results; Secondly, in the delineation of ROI, only portal vein phase images were
included in this study and features from CT plain scans and CT enhanced arterial phase images were
needed to be veri�ed in future; Finally, multicenter research is necessary because there are different
characteristics for HAE In different countries and regions[34].

In conclusion, a CT-based radiomics nomogram can evaluate the biological activity of HAE and it is
expected to be a more convenient method for follow-up after drug treatment.

Abbreviations
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HAE: Hepatic alveolar echinococcosis; PET/CT: computed tomography; Body mass index (BMI): AUC:
Area under the curve; ABZ: benzimidazoles-albendazole; HCC: hepatocellular carcinoma; SUV:
Standardized uptake value; VOIs:Volumes of interest; IBSI:Standardisation Initiative; GLCM: gray level co-
occurrence matrix; GLSZM: gray level size zone matrix; GLRLM: gray level run length matrix; NGTDM:
neighboring gray-tone difference matrix; GLDM: gray level dependence matrix; LASSO: least absolute
shrinkage and selection operator; KNN: K-Nearest Neighbors; LR: Logical regression: MLP: Multilayer
Perceptron; CIs: Con�dence intervals; DCA: Decision curve analysis.
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Figure 1

The research work �ow

Figure 2
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The CT images for inactive and active HAE. A: 26 years old male HAE patient, inactive lesion in the right
hepatic lobe, Graeter type; B: 35 years old male HAE patient, active lesion in the right lobe of liver, also
Graeter type.

Figure 3

Feature selection for the LASSO regression model on CT images. A. parameter -log(α) selection in the
LASSO model. The top value represents the corresponding characteristic number. This study selected the
optimal -log(α) value corresponding to the perpendicular line to obtain 30 features with non-zero
coe�cients. B. Mean Square Error of LASSO coe�cients for different features as modulation parameter (-
log(α) value) changes. C. Contributions of the 30 selected features to the LASSO model, with their
respective coe�cient values.
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Figure 4

ROC curves of the KNN(A), LR(B), MLP(C) classi�ers in the training set. ROC curves of the KNN(D), LR(E),
MLP(F)classi�ers in the test set.
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Figure 5

A: The nomogram to predict the biological activity of HAE. The nomogram was developed in the training
set with radiomics signature and HAE related clinical indicators. ; B: Calibration curve for training dataset;
C: Calibration curve for test dataset.
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Figure 6

Decision curve for models. Y-axis represents the net bene�t, which is calculated by gaining true positives
and deleting false positives. The X-axis is the probability threshold.
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Figure 7

The ROC for Graeter classi�cation based models KNN(A), LR(B), MLP(C) in the training set and KNN(D),
LR(E), MLP(F) in the test set.
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