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Abstract
The physical and tectonic setting exposes the western part of Cameroon to natural and anthropogenic
hazards. Small scale landslides with devastating effects are recurrent along the Cameroon Volcanic Line.
Limited studies have addressed the susceptibility to sliding in the area. This study therefore aimed at
producing a landslide susceptibility map of the West Region to aid local and national authorities in land
use planning and policy to minimise loss. Eleven conditioning and triggering factors were selected to
investigate landslide susceptibility in the study area. These factors include; slope angle, lithology, soil,
slope aspect, elevation, rainfall, geological faults, land use, normalised difference vegetation index, roads
and river networks. These factors were assigned weights using the analytical hierarchy process. The
weighted linear combination technique was used to derive landslide susceptibility indices and the
susceptibility map. The map was reclassi�ed into �ve classes; very low, low, moderate, high and very
susceptibility class. About 16% (2180 km2) of the study area lies within the high to very high class while
47% (6512 km2) is found within the moderate class. Steep slopes, weathered volcanic rocks and thick soil
cover at high elevations control the distribution of landslides while high intensity rainfall is the main
triggering factor. Residential houses and road infrastructures along steep slopes are the most vulnerable
to sliding. Site speci�c assessment needs to be conducted in order to implement effective mitigation
measures.

1. Introduction
On annual basis, over 1000 lives and property damage worth over $4 billion are lost as a result of
landslides (EM-DAT 2007). Of all the natural hazards in 2019, about 11% (44) were landslides leading to
over 1,293 deaths (EM-DAT 2019). Studies show that most lives lost as well as property damage could be
prevented if su�cient information and preventive measures were in place before a landslide event
(Rajakumar et al. 2007; Pardeshi et al. 2013; Kavzoglu et al. 2014). In many developing countries like
Cameroon (Fig. 1b), several challenges are faced ranging from basic needs such as food, shelter, water
and sanitation, health care, quality education, increase population growth, the prevalence of diseases,
con�icts and climate change (Aka et al. 2017; Kganyago and Mhangara 2019). As a result of an increase
in urban population and inadequate infrastructures, more unplanned development is taking place in
unstable terrains increasing the likelihood of susceptibility to slides (Moeyersons et al. 2004). For better
land use, urban planning and mitigation of the impact of landslides, it is imperative to understand the
causes, spatial distribution and to map areas liable to future landslides (Che et al. 2012; Vojtekova and
Vojtek 2020).

The advancement in geospatial technology such as global positioning system (GPS), geographic
information system (GIS) and remote sensing has contributed to hazard assessment, risk identi�cation
and disaster management (Akbar and Ha 2011). GPS is a satellite-based navigation system that provides
geolocation information and time anywhere in the world (Gili et al. 2000; Coe et al. 2003). Several studies
have demonstrated the use of GPS technologies in mapping landslides (Gili et al. 2000; Malet et al. 2002;
Coe et al. 2003; Wang et al. 2012; Calcaterra et al. 2012; Cina and Piras 2015). GIS technology is
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designed to collect, store, process, analyse, manage and present geographic or spatial data. It has been
widely applied in the study of landslides in recent decades (Van Westen 2000; Van Westen et al. 2003;
Shahabi and Hashim 2015; Al-Umar et al. 2020). Remote sensing is the science and art of acquiring
information about an object on the earth's surface without being in physical contact with it. Remote
sensing has been applied in several studies for landslide hazard zonation (Lui and Wu 2016; Francioni et
al. 2019; Shi et al. 2020; Zhong et al. 2020).

Different methods and techniques have been employed in determining landslide susceptibility zones
these include; deterministic, heuristic, statistical and multi-criteria decision analysis (Guzzetti et al. 1999;
Dai & Lee 2002; Donati & Turrini 2002; Santacana et al. 2003; Durman et al. 2005; Ruff and Czurda 2008;
Ahmed 2015; Ali et al. 2019, Vojtekova and Vojtek 2020). They can be grouped under two broad heading;
qualitative and quantitative methods. Qualitative methods are subjective and present the landslide
susceptibility maps in descriptive terms whereas quantitative methods give rise to numerical estimation
in terms of the probability of occurrence of a landslide in a given zone (Park et al. 2013). The heuristic
method relies on the investigator's knowledge of past landslide occurrences, causes and factors that
contribute to slope instability. It is, therefore, a qualitative method that involves the ranking and weighting
of causative factors according to their importance in contributing to slope failure (Leoni et al. 2015;
Stanley and Kirschbaum 2017; Huang et al. 2020). A statistical method is a quantitative approach which
deals with the analysis of the relationship between causative factors and prior landslide distribution.
Statistical techniques commonly used in landslide hazard mapping include bivariate, multivariate,
logistic regression and arti�cial neural networks (Dhakal et al. 2000; Yalcin et al. 2011; Pradhan 2013;
Fernandez et al. 2013; Anbalagan et al. 2015; Reichenbach et al. 2018; Mergili et al. 2019). Deterministic
models are based on the analysis of existing slope failure mechanisms through physical models
calibrated using onsite and laboratory tests (Park et al. 2013; Cuirlo et al. 2017).

Several factors are taken into consideration in landslide susceptibility mapping. Determining the
contribution of each parameter to landslide susceptibility mapping is a complex problem. The analytical
hierarchy process (AHP) is a multi-criteria technique for landslide hazard mapping that makes use of
pairwise comparison of causative factors and expert knowledge of the investigator in assigning weights
or priority scale to the factors (Saaty 2008; Park et al. 2013; Feizizadeh and Blaschke 2013; Feizizadeh et
al. 2014; Arca et al. 2018). The AHP method operates under four facets; formulation of the problem,
determination of intended goal and alternatives, construction of pairwise comparison matrix, determining
factor weights and deriving landslide susceptibility index using an aggregation method. Park et al. (2013)
investigated landslide susceptibility in Inje area in Korea using frequency ratio, AHP, logistic regression
and arti�cial neural network and revealed that AHP performed well compared to the other methods. A
similar outcome was obtained by Kavzoglu et al. (2014) in Trabzon Province in Turkey where multicriteria
decision analysis (MCDA) outperformed logistic regression in determining landslide susceptibility zones.
Vojtekova and Vojtek (2020) used the MCDA technique in mapping landslides in Slovakia, they obtained
a satisfactory result.
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The physical and tectonic setting of Cameroon coupled with changing climatic conditions exposes the
western part of the country to both natural and anthropogenic hazards (Ayonghe et al. 1999, 2002, 2004;
Ayonghe and Ntasin 2008; Buh et al. 2009; Che et al. 2011, 2012; Diko et al. 2012; Guedjo et al. 2013;
Wotchoko et al. 2016). Several natural and anthropogenic hazards have been recorded in Cameroon
including; �ooding, volcanic eruption, earthquakes, landslides and volcanic gas emission (Ayonghe and
Ntasin 2008; Buh et al. 2009; Kometa 2012; Wantim et al. 2013). The western part of Cameroon has been
hit by small but recurrent landslides leading to over 146 deaths, thousands of persons displaced and
millions of dollars in property loss in the past three decades (Ayonghe et al. 2004; Zogning et al. 2007;
Ngole et al. 2007; Thierry et al. 2008; Che et al. 2011; Wotchoko et al. 2016; Ntchantcho et al. 2017). Most
studies of landslides in this region have focused on mapping their occurrences and distribution as well as
damages caused (Ayonghe et al. 1999, 2004; Che et al. 2011; Tchindjang, 2013). While Che et al. (2012)
produced a landslide susceptibility map for Limbe (a section of the tectonically active Cameroon
Volcanic Line), the recent landslide in Gouache neighbourhood in Bafoussam (Fig. 1c), an area with no
historical landslide record sheds light on the necessity to map the entire region. This study is therefore
aimed at producing a landslide hazard zonation map that will be used by local and national authorities
for land use planning and policy to minimize loss.The objectives of this work are; to identify areas more
likely to be affected by landslides in the future using satellite images and the analytical hierarchy
process, to understand the factors leading to slope instability in the region from the multicriteria decision
analysis, to identify settlements and land uses in the high-risk zone for possible relocation or preventive
measures, to increase awareness and add to the already growing data on hazards in Cameroon.

2. Study Area
The study area is situated in the geopolitical West Region of Cameroon within longitude 10o 30’ 00” and
latitude 5o 30’ 00” (Fig. 1c). It is the smallest of the ten regions of Cameroon with a surface area of
approximately 13892 km2, a total population of 1,921,590 as of 2015 and a high population density of
140/km2 (Tesi, 2018). Bafoussam, the political capital of the West Region is located about 336 km from
the national capital, Yaounde. The area has a moderate Equatorial climate resulting from high elevation
and high humidity. Temperatures vary between 15oC to 28oC. This region experiences high rainfall
averaging 1000–2000 mm/year (Tesi, 2018).

The topography of the West Region is generally mountainous with elevations ranging from 224 to 2744
metres above sea level. As a result of the mountainous terrain, fast-�owing rivers are ubiquitous. Several
crater lakes have developed from collapsed volcanoes. The area has a variable soil type comprising of
ferralitic soils and alluvial soils derived from the weathering of plutonic and volcanic rocks.

The original forest vegetation has been cleared for agriculture giving rise to grassland vegetation.
Patches of Woodland Savannah of the Sahel type are found distributed within the area. Plantation
farming is practised on a small scale, with coffee, cocoa, tea and tobacco as the main cash crops.
Livestock farming includes; cattle, sheep and goat rearing. Poultry and piggery farming is also
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increasingly practised in recent years. The region is well known for artistic and craftsmanship which
involves the production of high-quality ceramics from clay, woodworks, brass and bronze casting and
cotton textiles (Tesi, 2018).. It is the most accessible region in Cameroon comprising of several paved
roads linking Yaounde, Douala and Bamenda.

The geology of Cameroon is comprised of Precambrian basement rocks, sedimentary rocks of
Cretaceous Period and Cenozoic Era and volcanic rocks of Cenozoic Era (Toteu et al. 2001; Assah et al.
2014). The Precambrian basement is subdivided into the Congo Craton (Archaean and Paleoproterozoic
terranes) and the Central African Fold Belt (CAFB). The CAFB is a Neoproterozoic Orogen associated with
Trans-Saharan Belt of West Africa which is linked to the Brasiliano Orogen of NE Brazil (Van Schmus et
al. 2008). Three tectonic units have been identi�ed in this belt; North Cameroon Domain, Central
Cameroon Domain and South Cameroon Domain. The study area lies within the central domain
comprised of intrusions of Pan-African granitoids emplaced through the control of zones of weaknesses
along the Cameroon Volcanic Line (Kouankap Nono et al. 2013). The Cameroon volcanic line (CVL) is a
chain of oceanic and continental volcanoes extending from the Pagalu Island to Lake Chad. It is oriented
NE-SW extending over a length of 1600 km and a width of ~ 100 km (Marzoli et al. 2000; Suh et al. 2003).
The geology of the study area is made up of three main units; 1) garnet-bearing gneiss, migmatites and
amphibolite 2) Granitoids 3) basaltic rocks comprised of basaltic lava and dolerite dykes (Kouankap
Nono et al. 2010; 2013).

3. Data And Methods
3.1 Data Sources for Landslide Conditioning Factors

Various factors have been selected to investigate landslide susceptibility in the study area. Table 1 details
the type and source of data used in the assessment of landslides susceptibility. Thematic maps were
generated from these data in a GIS environment. Given the paucity of literature in the study area, the
selection of factors was based on a review of literature that conducted comparable assessments of
landslide susceptibility in areas with similar characteristics (Ayonghe et al. 1999; Ayonghe and Ntasin
2008; Ntasin et al. 2009; Ngatcha et al. 2011; Che et al. 2011, 2012).

Landsat 8 operational land imager (OLI) images were downloaded from the United States Geological
Survey website (Table 1). These images were layer stacked in ERDAS Imagine 2018 employing contrast
enhancement and feathering techniques (Kumar 2005).

3.2 Multicriteria Decision Analysis

Multicriteria decision analysis (MCDA) is a GIS-based method for decision making through the integration
of geographic data and subjective judgements (Malczewski 1999).

3.2.1 Analytical Hierarchy Process
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An analytic hierarchy process (AHP) is a form of MCDA quantitative method for decision making using
factor weights through pairwise comparison (Saaty 1987). This method measures both tangible and
intangible variables through relative weights given to each variable based on the preference of the
researcher. It has been widely applied in MCDA, planning, natural and man-made resource allocation, and
con�ict resolution (Saaty 1986; Kamar and Anbalagan 2016; Jazouli et al. 2019; Nzotcha et al. 2019;
Vargas and Zoffer 2019).

The AHP method has three distinct facets; decomposition, comparative judgment and synthesis of
priorities. A complex problem is broken down into a hierarchy of variables or factors using a pairwise
comparison matrix, factors are assigned weights on a nine-point scale see Table 2 (Eastman 2012). The
factors are arranged in a matrix form with the same number of rows and columns with scores assigned
to each factor in comparison to other factors (Saaty 1977). The scale of comparison of paired factors
was determined from a careful literature review of landslide occurrences along the Cameroon Volcanic
Line (Buh 2009; Diko 2012; Diko et al. 2012; Guedgjeo et al. 2013; Wotchoko et al. 2016; Ntchantcho et al.
2017). After generating the pairwise comparison matrix, weights of each factor were determined by
calculating the principal Eigenvector of a square reciprocal of the metrics making sure they sum up to
unity (Malczewski 1999; Ahmed 2015). The pairwise comparison is based on two intrinsic questions to
determine criterion or factor more important than the others and the extent based on a ratio scale of 1/9
to 9 (Table 2). The AHP calculation was undertaken using Microsoft excel.

To validate the results of the pairwise comparison metrics and factor weights, the consistency index (CI)
and the consistency ratio (CR) was determined (Eastman 2012). The consistency index is given by

Where CI = consistency index

λmax = normalized highest Eigenvalue of the pairwise matrix

n = number of factors (11 factors in this study)

The consistency ratio shows how random the matrix ratings were selected as given by Saaty (1980).

Where CR = consistency ratio

RI = Random Index

CI = … … … … … … … … … … … … … (1)
λmax − n

n − 1

CR = … … … … … … … … … … … … … … … (2)
CI

RI
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Random index (RI) has been proposed by Saaty (1987) and presented in Table 3

A consistency ratio of 0 implies perfect ratings of factors, CR of > 0.1 implies inconsistency of the ratings.
Saaty (1980) suggested a re-evaluation of factor ratings for CR > 0.1.

The result of a pairwise comparison matrix gives rise to factor weight which is then aggregated to
generate a landslide susceptibility map (Gorsevski et al. 2006; Jian & Eastman 2000; Boroumandi et al.
2015). Several methods have been employed to aggregate factor weights in generating susceptibility
maps. These include; weighted linear combination, weighted sum, weighted overlay and ordered weighted
average (Eastman and Jain 1995; Jain and Eastman 2000; Malczeswki 2004; Ahmed 2015; Vojtekova
and Vojtek 2020).

3.3 Data Preparation

3.3.1 Landslide Inventory

The �rst step involved in producing a landslide susceptibility map is to generate an inventory of past
landslides (Abedini and Tulabi 2018). Following the law of uniformitarianism, landslides are likely to
occur in areas where past slope failures have been recorded (Guillard and Zezere 2012; Ge et al. 2018).
Landslide inventory map can be used as a means for assigning weights to landslide triggering factors
(Kumar et al. 2018). These maps can be generated from aerial photographs, �eld surveys, satellite
images and existing landslides. Fourteen landslides were determined in the study area from the review of
literature (Table 4) and the classi�cation of satellite images (Fig. 1c).

3.3.2 Land use and Normalized Difference Vegetation Index

Land use map was generated from the Landsat 8 OLI satellite image through supervised classi�cation
using maximum likelihood (Lu and Weng 2007). False-colour composite images and Google Earth were
used to obtain training data through the polygon method. Five landcover classes were identi�ed; water
body, agricultural land, built-up area, vegetation and bare soil (Fig. 2a).

Due to the in�uence of vegetation coverage on slope stability, normalized difference vegetation index
(NDVI) was carried out to characterize vegetation extent in the study area Eq. 4

Where NDVI = normalized difference vegetation index

IR = Infrared (band 5)

R = Red (band 4)

NDV I = … … … … … … . … … … … … … . . (4)
IR − R

IR + R
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NDVI analysis results in an output of values ranging from − 1 to 1 where the negative values represent
clouds, water and snow (Zaitunah et al. 2018). NDVI values of 0–0.1 represent barren land, rocks and
soils while values of 0.6–1 represent dense vegetation (Fig. 2b).

3.3.3 Elevation

A 30m resolution shuttle radar topography mission (SRTM) digital elevation model (DEM) was
downloaded from the USGS website. The average elevation of the study area is 155m, the lowest point is
224m and the highest point is 2744m (Fig. 2c). Generally, areas with higher elevations are more
susceptible to landslides. The elevation generated was reclassi�ed into �ve classes to determine the level
of contribution of each category to landslides.

3.3.4 Slope

The digital elevation model (DEM) was used to generate a slope map, the slope in the study area ranges
from 3.64o to 77.33o with an average of 40.49o (Fig. 2d). Areas with steep slopes are often more prone to
landslides (Kavzoglu et al. 2014). The Slope was reclassi�ed into �ve classes following the
recommendation of Kumar et al. (2018). The categories are; �at to gentle, moderate, fairly moderate,
steep and very steep slopes (Fig. 2d).

3.3.5 Aspect

Aspect refers to the orientation of a slope from 0o to 360o. Sunlight exposure, drying winds, rainfall and
discontinuities are factors associated with slope aspect which in�uences the degree of susceptibility to
landslides (Dai et al. 2001). Nine slope directions were generated and reclassi�ed according to their
contribution to landslide susceptibility (Fig. 2e).

3.3.6 Geology

A scanned geologic map of Cameroon was georeferenced, the geology of the study area was digitised
into polygons that were converted to raster format. Four lithologies were identi�ed; pre-syn tectonic
granitoids, syn-post tectonic granitoids, orthogneiss, and volcanic rocks (Fig. 2f). The area has highly
weathered volcanic rocks which have been identi�ed in some studies as landslide-prone lithologies (Che
et al. 2011).

3.3.7 Soils

The stability of slopes depends on the soils they contain (Sartohadi et al. 2018; Schiliro et al. 2019). The
soil map was digitized from the African groundwater Atlas map. The soil atlas was converted from
shape�le to a 30 m raster �le in Arcmap. Five soil types of varying permeability and susceptibility to
landslides were derived; andosols, loxisols, luvisols, stagnosols, and vertisols (Fig. 2g). luvisols are the
dominant soil type in the study area. Soils capable of holding water have a higher level of susceptibility
(Nandi and Shakoor 2009).
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3.3.8 Rainfall

The average monthly rainfall data of the study area from the year 2000 to 2020 were downloaded from
the NASA Earth Data website, this data was interpolated to generate the rainfall map (Fig. 2h). The
average monthly rainfall ranges from 97 to 171mm/month. The rainfall data were reclassi�ed into �ve
classes representing susceptibility levels.

3.3.9 Distance to Road and River

Road cut and drainage density have been shown to in�uence slope stability (Van Buskirk et al. 2005;
Yalcin et al. 2011). Road and river network data was downloaded from the OpenStreetMap data
repository as shape�les. The shape�les were converted to raster data with a resolution of 30m. The
Euclidean distance function in ArcMap was used to derive the distance to roads and rivers. Five classes
were generated for both distances to road and distance to rivers (Fig. 2i and j).

Construction of roads along steep slopes leads to slope instability which is exacerbated by vehicle
movement and high-water retention capacity in cracks that result (Yalcin et al. 2011; Awahdeh et al.
2018).

3.3.10 Distance to Fault

From the georeferenced geologic map of Cameroon, faults were digitised into line features (Fig. 2k). The
multiple ring buffer function was used to generate a distance to faults. Five classes were derived with
intervals of 5km.

3.4 Aggregation of Factor weights

In this study, the weighted linear combination (WLC) method was used (Appendix). This method is
customized in many GIS platforms and it is �exible in combining thematic maps of conditioning factors
to generate landslide susceptibility maps (Feizizadeh and Blaschke 2013). It requires the standardization
of classes within each factor to a common numeric scale. The factor classes are multiplied by the
weights obtained from the comparison matrix and their results summed to obtain the landslide
susceptibility index (Eq. 3).

Where LSI = Landslide Susceptibility Index

Wj = Weight value of causative factor j

Zij = Weight value of class i of causative factor j

LSI =
n

∑
j=1

WjXZij … … … … … … … … … … . (3)
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The landslide susceptibility indices generated was reclassi�ed to derive the landslide susceptibility map
using the Jenk classi�cation method. The map was reclassi�ed into �ve classes; very high, high,
moderate, low and very low susceptibilities (Fig. 3).

4. Results And Analysis
4.1 Landslide susceptibility Map

Landslide susceptibility map was generated through the weighted linear combination method using 11
landslide conditioning factors (Fig. 3, Table 5). The landslide susceptibility map was classi�ed into �ve
classes using the natural break (Jenk) method; very low, low, moderate, high and very high susceptibility.
The Jenk method is a data clustering technique used to determine the best grouping of values into
different classes by minimising the deviation of each class from the class mean while maximising the
class deviation from the means of other groups (Raja et al. 2017).

To create a landslide susceptibility map using the AHP technique, a pairwise comparison matrix is
constructed. The matrix is used in assigning factor ratings and for calculating factor weights (Tables 5
and 6). The consistency ratio determines the degree of consistency in assigning the factor weights. In
this study, the consistency ratio (CR) is < 0.1.

The area and percentage coverage of �ve landslide classes is presented in Table 7. From Table 7, the
medium landslide category has the highest area coverage of 6512 km2 (47%) followed by the low
category 3149 km2 (23%). The very low landslide category occupies 2051 km2 (15%). The lowest area
coverage is occupied by the high landslide category 230 km2 (2%). The very high landslide category
covers 1950 km2 (14%) of the study area. Therefore, about 16% (2180 km2) of the study area falls within
the high and very high landslide category (Table 7).

4.2 Landslide Model validation

To determine how successful the model is in predicting landslide susceptible zones, the landslide
inventory was superimposed on the landslide susceptibility map see Table 7. From Table 7 43% of
landslide inventory falls within the high to very high susceptibility class. About 36% of landslide falls
within the medium class while 21% falls within the low susceptibility class. The result shows that no
landslide has been recorded in the very low landslide susceptibility class.

5. Discussion
5.1 Selection and weighting of conditioning factors

The reliability of the landslide susceptibility map generated depends on the selection of appropriate
conditioning factors, the objective weighting of factors and the suitability of the model used (Donati and
Turrini 2002; Broeckx et al. 2018). The spatial scale of analysis has been identi�ed as a determinant for
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choosing conditioning factors. For local spatial scale (1–30 km2), it is recommended that more accurate
input data be used (Zezere et al. 2017; Vojtekova and Vojte, 2020). At regional, national or global scale, it
is usually di�cult to use site-speci�c data due to the variability of terrain features over large scales,
therefore, more generalised conditioning factors are adopted (Kirschbaum et al. 2010; Petley et al. 2002;
Van Den Eeckhaut et al. 2006; Van Westen et al. 2008; Holec et al. 2013; Manzo et al. 2013; Broeckx et al.
2018). The selection of conditioning factors was based on the review of literature which revealed similar
slope failures along the Cameroon volcanic line (Ayonghe et al. 2004; Ayonghe and Ntasin 2008; Che et
al. 2011, 2012; Guedjeo et al. 2013).

A major challenge commonly encountered in landslide susceptibility analysis is the subjectivity involved
in assigning weights to conditioning factors (Erener et al. 2016). To objectively assign weights to these
factors, some authors have suggested the use of landslide frequency ratio and weight of evidence (Van
Western et al. 2003; Regmi et al. 2010). Donati and Turrini (2002), superimposed thematic maps of
conditioning factors on landslide inventory map to determine factors most relevant to landslide
susceptibility in Valnerina, Italy. This approach was adopted in the study.

Several GIS techniques have been employed to assess landslide susceptibility. Kavzoglu et al. (2014)
compared multi-criteria decision analysis (MCDA), support vector machine (SVM) and logistic regression
(LR) to determine landslide susceptibility in northeast Turkey. It was found that MCDA using the
analytical hierarchy process (AHP) technique was far superior to logistic regression. Furthermore, Ahmed
(2015) examined three different MCDA methods in the Chittagong area in Bangladesh and obtained
favourable results, though the weighted linear combination out-performed both AHP and ordered
weighted average (OWA). In a similar study, Feizizadeh and Blaschke (2013) noted that the AHP method
out-performed both WLC and OWA in a landslide study in the Urmia lake basin, Iran. As a result of the
successes in the application of MCDA methods (Ayalew et al. 2004; Kumar and Anbalagan 2016; de Brito
et al. 2017; Gigovic et al. 2019; Jazouli et al. 2019; Vojtekova and Vojtek 2020), coupled with its ability to
integrate different data layers with varying uncertainties, the MCDA technique was chosen for this study.
The result obtained is representative of the study area when compared to the landslide inventory.

5.2 Causes of sliding in the area

Several factors interplay in making an area liable to sliding, both natural and anthropogenic in�uences on
slope stabilities can be distinguished. Steep slopes (35-77o) and high elevation (700–2700 m) are
responsible for most of the sliding in the study area this is in accord with the results obtained from areas
with similar characteristic (Awawdeh et al. 2018; Nicu 2018; Bera et al. 2019). Weathered volcanic rocks
and thick soil cover on steep slopes also contribute to slope instability in the study. This result is similar
to that reported by Che et al. (2012) and Buh (2009) in the Limbe Municipality. Earthquakes have been
identi�ed as a landslide triggering factor (Kefer 2002; Yin et al. 2009; Bai et al. 2012; Chen et al. 2012; Xu
et al. 2012; Zhao et al. 2018; Osanai et al. 2019; Matossian et al. 2020). Seismic induced landslides have
been reported along the Cameroon Volcanic Line (Ayonghe et al. 1999). Buh (2009) noted that
earthquakes along the CVL are of low intensity and have no major association with landslides. An
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indirect link may be associated with the development of tension cracks leading to high in�ltration of
water and eventual slope failure. This is the scenario in the study area as evidence from the strike slip
faults cutting through the high-risk zones (Kouankap Nono et al. 2010, 2013). As the case may be with
several tropical terrains, studies point to a high intensity rainfall (100mm/day) over a short duration as
the main trigger of landslides in Cameroon (Buh 2009; Guedjeo et al. 2013; Wotchoko et al. 2016;
Ntchantcho et al. 2017).

Rivers and roads appear to have less in�uence on landslide susceptibility in the study area. This is in
contrast to the result of Che et al. (2012) in Limbe where road cuts and slope erosion by rivers contributed
to landslides. This could be explained by the fact that considerable preventive measures; retaining walls
and slope terrace have been constructed along major high ways. Land use change is one of the
anthropogenic factors leading to slope failure (Chen and Huang 2013; Reichenbach et al. 2014). This is
con�rmed by the work of Alcantara-Ayala et al. (2006) in Sierra Norte, Mexico where 72% of landslides
occurred in areas with low vegetation cover resulting from deforestation. As a result of population growth
and the construction of buildings along steep slopes with no engineering considerations, land use change
will continue to have an impact on landslide susceptibility in the study area.

5.3 Uncertainties in landslide model assessment

In the MCDA using the AHP technique, errors may result from assigning incorrect factor weights. For
example, Ahmed (2015) noted that high susceptibility class was found at low elevation which is not
normally associated with landslides. This resulted from the assignment of weight to some factors which
occurred both in high as well as low elevations. Therefore, results obtained using MCDA may have
inherent errors. As a result of the subjectivity in assigning factor weights, an incorrect weight assignment
affects the accuracy of the susceptibility map generated (Kritikos and Davies 2011). Another source of
error is the incorrect pairwise comparison of factors. Ahmed (2015) suggested that different combination
of factors be taken into consideration in order to derive the most appropriate factor weights. To ensure
appropriate rating and weighting of factors, Saaty (1980) and Eastman (2012) developed the consistency
index and consistency ratio for determining the randomness in assigning factor weights which in turn
affects the quality of the susceptibility map generated. The consistency ratio for both factors and sub-
factors is less than 0.1 (Tables 5 and 6) which is the cut-off set by Saaty (1980) for revising factor
weighting. Therefore, the susceptibility map created in this study is of good quality.

The quality of the data set used may also introduce errors in the map generated. The spatial resolution of
satellite images and SRTM DEM constraints its effectiveness in studying landslides which also affects
the thematic maps derived (Shahabi et al. 2012; Shahabi and Hashim 2015; Ji et al. 2020). Petley et al.
(2002) were successful in identifying just 25% of landslides in Nepal’s highlands using Landsat 7 ETM + 
images with a 30 m spatial resolution pansharpened to 15 m. Nichol and Wong (2005) showed that at a
1m spatial resolution, satellite images may not be suitable for identifying small scale landslides (< 10 m
wide). Therefore, a 30m spatial resolution satellite image and DEM is not suitable for this study given
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that most of the landslides along the CVL are of small scale (Zogning et al. 2007; Thierry et al. 2008;
Zangmo et al. 2009; Wotchoko et al. 2016). However, this is the data set freely available for the study.

When georeferencing and digitising raster data, errors are usually introduced (Pearson 2006). To reduce
the error margins, ground control points were carefully selected and a �rst order polynomial was used to
georeference the geologic, faults and soil maps. Topological rules (no overlapping, no dangle lines and
no pseudo lines) were used to ensure accurate digitising of faults, geology and soil maps (Pearson
2006). The rainfall data obtained from the NASA Earth Data website was interpolated using the kriging
technique (Ly et al. 2013). An averaging algorithm was used to �ll in the missing time gap data (Acker
and Leptoukh 2007). Data acquired from Open Street Map (OSM) may be inaccurate resulting from the
contribution of data from volunteers with little to no geospatial knowledge. However, the availability of
high-resolution aerial and satellite images enables e�cient data collection and validation of digitised
features (OSM 2020).

5.4 Risk Assessment

The ultimate aim for undertaking a landslide susceptibility assessment is to determine land-use types
that might be affected in an event of a landslide in order to implement mitigation measures (Varness
1984; Awawdeh et al. 2018). A qualitative approach was used to determine the risk associated with
landslide categories in agricultural land, urban area and road infrastructures. Some roads in the study
area are found within high-risk zone, for example, about 42 km of the Bafoussam-Foumban highway lies
within the very high susceptibility class while 22 km passes along the high susceptibility class (Fig. 4).
Similarly, the national road (N4) running from Douala-Bafoussam cuts across the moderate susceptibility
class for over 58 km and the high category for about 6 km (Fig. 4). Furthermore, the Mbouda-Bamenda
highway passes through the moderate susceptibility class for over 48 km.

Results show that about 10% of the urban area comprising of parts of Foumban, Foumbot, Bafoussam,
Santchou, and Mbouda falls within the very high class (Fig. 4). About 7% of the urban area including
parts of Bafoussam, Bangante, Santchou lies within the high category. Over 30% of the urban area is
located in the moderate susceptibility class. Residential houses built along unstable slopes have been
identi�ed as the most vulnerable to sliding. Another important land use which might be affected by
landslides is agricultural land. Over 50% of agricultural land is found within the moderate susceptibility
category. This has been identi�ed in some studies as a landslide inducing factor as it involves the cutting
down of trees and tilling of soils (Jazouli et al. 2019). A small portion of the agricultural land (4%) is
found within the high to very high susceptibility class.

6. Conclusion
Several small but destructive landslides have hit the western part of Cameroon along the Cameroon
Volcanic Line in the past three decades. With increase in urbanisation and construction of houses on
steep slopes without engineering considerations landslides in the West Region of Cameroon are
inevitable. This is exacerbated by changing climatic conditions leading to increase in rainfall regime. This
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study therefore aimed at undertaking a landslide susceptibility assessment to aid local and national
authorities in land use and policy planning to minimise the destructive effects of landslides. Eleven
landslide conditioning factors were selected to investigate slope stability in the study area. Steep slopes,
high elevations, weathered volcanic rocks and thick soil cover along steep slopes are identi�ed as the
major landslide causative factors. High intensity rainfall (110 mm/day) for over a period of 2–4 days is
the main landslide triggering factor in the area. The landslide susceptibility map generated from the
multicriteria decision analysis was subdivided into �ve classes; very low, low, moderate, high and very
high susceptibility class. Roads and residential houses built along steep slopes are the most vulnerable
infrastructures to slides. Agricultural land is less vulnerable to sliding as over 50% is found within the
moderate susceptibility class. To curb the effect of landslides, some mitigation mechanism such as; tree
planting, slope terracing, draining pipes, construction of retaining walls is proposed. In order to implement
appropriate mitigation measures, it is recommended that site speci�c assessments be conducted to
identify triggering factors in high to very susceptibility zones.
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Table 1
Input data set, format, generated layers and data source used in the study

Input data Format Map layer
generated

Data source

SRTM DEM (30 m) Raster Aspect USGS website
(https://earthexplorer.usgs.gov/)

    Slope

    Elevation

Landsat 8 OLI Image
(30 m)

Raster Landuse map USGS website
(https://earthexplorer.usgs.gov/)

    NDVI

Geology (1: 1, 000,
000 scale)

Raster Lithology map Van Schmus et al. 2008

Shape�le Distance to fault

Soils Shape�le Soil map Africa Groundwater Atlas, 2019

Rainfall Raster Average monthly
rainfall

NASA Earth Science Data
(https://giovanni.gsfc.nasa.gov/)

Roads Shape�le Distance to road OpenStreet Map (openstreetmap.org)

Rivers Shape�le Distance to river

 

Table 2
Proposed scale for factor weighting in MCDA (adopted from Saaty 1987)

Intensity of Importance The verbal judgement of preference

Equal Importance

3 Moderate importance

5 Strong importance

7 Very strong importance

9 Extreme importance

2,4,6,8 Intermediate values between adjacent scale values
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Table 3
Random consistency index for deriving consistency ratio (Adopted from Saaty 1987)

Factors (n) 1 2 3 4 5 6 7 8 9 10

Random index (RI) 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49
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Table 4
Landslide inventory derived from review of literature and satellite image analysis

Location of
slide

Date Source Casualties/Damage

Bamboutos July 2003 Ayonghe and Ntasin,
2008

23 deaths, 700 livestock killed, 1000
persons displaced

Bamboutos July 2003 Ayonghe and Ntasin,
2008

Bamboutos July 2003 Ayonghe and Ntasin,
2008

Bamboutos July 2003 Ayonghe and Ntasin,
2008

Bakombo June 1988 Ayonghe et al. 1999 8 deaths, property damage

Foungwo      

Gouata September
1997

Ayonghe et al. 1999 1 dead, damage to farmland

Echiock Unknown Deduced from satellite
images

Unknown

Bapi Unknown Deduced from satellite
images

Unknown

Ngwenfon Unknown Deduced from satellite
images

Unknown

Ngwenfon Unknown Deduced from satellite
images

Unknown

Ngwenfon Unknown Deduced from satellite
images

Unknown

Bassinte Unknown Deduced from satellite
images

Unknown

Makpa Unknown Deduced from satellite
images

Unknown

Gouache October
2019

Cameroon News
Agency

42 Deaths
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Table 5
Pairwise comparison matrix, consistency index (CI), consistency ratio

(CR) and weights of sub-factors

Slope a b c d e Weights

(a) 0-15.4 1         0.03

(b) 15.41–30.8 3.00 1       0.07

(c) 30.81–46.2 5 2 1     0.13

(d) 46.21–61.6 7 5 4 1   0.31

(e) 61.61–77 9 8 3 2 1 0.45

CI 0.044          

CR 0.039          

Geology a b c d    

(a) Pre-Syn Granitoid 1         0.05

(b) Syn-Post Granitoid 3 1       0.12

(c) Orthogneiss 5 3 1     0.24

(d) Volcanics 7 5 4 1   0.59

CI 0.058          

CR 0.07          

Soils a b c d e  

(a) Andosols 1         0.23

(b) Loxisols 0.2 1       0.08

(c) Luvisols 2 3 1     0.20

(d) Stagnosols 0.17 0.33 0.5 1   0.05

(e) Vertisols 2 5 3 7 1 0.44

CI 0.111          

CR 0.09          

Elevation a b c d e  

(a) 13–53 1         0.03

(b) 54–115 3 1       0.07



Page 30/37

Slope a b c d e Weights

(c) 115–188 5 3 1     0.13

(d) 189–258 7 5 3 1   0.29

(e) 259–296 9 6 5 2 1 0.47

CI 0.048          

CR 0.042          

Fault a b c d e  

(a) 5 1         0.47

(b) 10 0.33 1       0.29

(c) 15 0.2 0.33 1     0.13

(d) 20 0.14 0.2 0.33 1   0.07

(e) 25 0.11 0.17 0.2 0.5 1 0.03

CI 0.065          

CR 0.042          
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Table 5
Continued

Aspect a b c d e f g h weight

(a) North 1               0.03

(b) North East 2 1             0.05

(c) East 4 3 1           0.09

(d) South East 7 5 4 1         0.26

(e) South 7 5 4 1 1       0.26

(f) South West 5 3 2 0.5 0.5 1     0.15

(g) West 4 2 1 0.2 0.2 0.5 1   0.08

(h) North West 4 2 1 0.2 0.2 0.5 1 1 0.08

CI 0.076                

CR 0.052                

Land use a b c d e       Weight

(a) Water Body 1               0.07

(b) Vegetation 3 1             0.16

(c) Built up Area 0.5 0.33 1           0.06

(d) Agricultural land 7 3 5 1         0.44

(e) Bare Soil 5 2 4 0.5 1       0.27

CI 0.036                

CR 0.032                

NDVI a b c d e        

(a) 0.12 − 0.06 1               0.05

(b) 007-0.17 3 1             0.13

(c) 0.18–0.23 7 5 1           0.50

(d) 0.24–0.29 4 3 0.33 1         0.25

(e) 0.30–0.58 2 0.33 0.2 0.25 1       0.07

CI 0.057                

CR 0.051                
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Aspect a b c d e f g h weight

Distance from Rivers a b c d e        

(a) 1 1               0.47

(b) 2 0.33 1             0.29

(c) 3 0.2 0.33 1           0.13

(d) 4 0.14 0.2 0.33 1         0.07

(e) 5 0.11 0.17 0.2 0.5 1       0.03

CI 0.048                

CR 0.042                

Distance from Roads a b c d e        

(a) 1 1               0.47

(b) 2 0.33 1             0.29

(c) 3 0.2 0.33 1           0.13

(d) 4 0.14 0.2 0.33 1         0.07

(e) 5 0.11 0.17 0.2 0.5 1       0.03

CI 0.048                

CR 0.042                

Rainfall a b c d e        

(a) 0.12–0.15 1               0.03

(b) 0.16-017 3 1             0.07

(c) 0.18–0.19 5 3 1           0.13

(d) 0.20–0.21 7 5 3 1         0.29

(e) 0.22–0.23 9 6 5 2 1       0.47

CI 0.048                

CR 0.042                
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Table 6
Normalised pairwise comparison matrix, consistency ratio and factor weights

  a b c d e f g h i j k Weight

(a) Slope 1 2 3 3 1 7 8 8 5 9 2 0.23

(b)
Geology

0.5 1 2 2 0.33 5 7 7 4 7 1 0.14

(c) Soils 0.5 0.33 1 1 0.33 5 6 6 3 5 0.33 0.09

(d) Aspect 0.5 0.33 1 1 0.33 4 2 2 0.5 3 0.33 0.05

(e)
Elevation

1 3 3 3 1 6 7 7 5 7 3 0.23

(f) Rainfall 0.14 0.2 0.2 0.25 0.17 1 2 2 0.33 3 0.2 0.03

(g) Road 0.13 0.14 0.17 0.5 0.14 0.5 1 1 0.33 2 0.14 0.02

(h) Rivers 0.13 0.14 0.17 0.5 0.14 0.2 1 1 0.33 2 0.14 0.02

(i)
Landuse

0.2 0.25 0.33 2 0.2 3 3 3 1 4 0.25 0.05

(j) NDVI 0.11 0.14 0.2 0.33 0.14 0.33 0.5 0.5 0.25 1 0.14 0.01

(k) Fault 0.5 1 2 2 0.33 5 7 7 4 7 1 0.14

CI 0.07                      

CR 0.04                      

 

Table 7
Area, percentage coverage and validation of landslide classes

Landslide class Area (km2) Area (%) % of inventory

Very Low 2051 15 0

Low 3149 23 21

Medium 6512 47 36

High 230 2 14

Very High 1950 14 29

Total 13892 100  

Figures
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Figure 1

Location of study, (a) Inset of African map indicating the location of Cameroon (dark polygon). (b) Inset
map of Cameroon showing the West Region (gold polygon). (c) Study area, the Divisions (Departments)
in the West Region of Cameroon and landslide inventory
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Figure 2

Thematic maps a) Landcover over 50% of the study area is covered with vegetation b) NDVI Normalized
difference vegetation index map representing vegetation cover in the study area, light colour represent
vegetation while dark colour indicates non-vegetated areas c) Elevation of the study area reclassi�ed into
�ve classes d) slope angle the slope ranges from 3o to 77o with an average of 40o e) Aspect f) Lithology
of the study area, metamorphic and volcanic rocks make up a bulk of the lithology (adopted from Toteu
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et al. 2001; Van Schmus et al. 2008) g) Soils h) Average monthly rainfall data (mm/month) from 2000-
2020 i) Euclidean distance of roads j) Euclidean distance of rivers k) multiple ring buffer for distance to
faults

Figure 3

Landslide susceptibility map derived from the weighted linear combination of 11 conditioning factors
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Figure 4

Roads and urban areas in high to very high landslide susceptibility zones
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