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Abstract

Teaching learning based optimization (TLBO) is a stochastic algorithm which
was first proposed for unconstrained optimization problems. It is population
based, nature-inspired, and meta-heuristic that imitates teaching learning pro-
cess. It has two phases, teacher and learner. In teacher phase, the teacher who
is well-learned person transfers his/her knowledge to the learners to raise their
grades/results; while in learner phase, learners/pupils learn and refine their
knowledge through mutual interconnection. To solve constrained optimization
problems (COPs) through TLBO we need to merge it with some constraint
handling technique (CHT). Superiority of feasibility (SF) is a concept for mak-
ing CHTs, existed in different forms based on various decisive factors. Most
commonly used decision making factors in SF are number of constraints vio-
lated (NCV) and weighted mean (WM) values for comparing solutions. In this
work, SF based on number of constraints violated (NCVSF) and weighted mean
(WMSF) are incorporated in the framework of TLBO. These are tested upon
CEC-2006 constrained suit with the remark that single factor used for the de-
cision making of winner is not a wise idea. Mentioned remark leads us to made
a single CHT that carries the capabilities of both discussed CHTs. It laid the
foundation of hybrid superiority of feasiblity (HSF); where NCV and WM fac-
tors are combined with giving dominance to NCV over WM. In current research
three constrained versions of TLBO are formulated by the name NCVSF-TLBO,
WMSF-TLBO, and HSF-TLBO; while implanting NCVSF, WMSF, and HSF
in the framework of TLBO, respectively. These constrained versions of TLBO
are evaluated on CEC-2006 with the remarks that HSF-TLBO got prominent
and flourishing status among these.
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1. Introduction

Optimization is the mathematical process to find the best possible solution
vector of decision variables that minimize or maximize the objective function
of the given optimization and search problems. Optimization is natural process
such as maximize the profit and minimize expenditure in daily life applications.
Optimization has become an essential part in all branches of sciences and en-
gineering technologies since its first piratical application [1, 2]. The standard
form of constrained optimization problem is described as follow:

Minimizef(x) =


f1(x)
f2(x)

...
fm(x)

 (1)

subject to the following conditions:

gi(x) ≤ 0, i = 1, 2, . . . , p (2)

hj(x) = 0, j = 1, 2, . . . , q

xil ≤ xi ≤ xiu, i = 1, 2, . . . , N

where x = (x1, x2, . . . , xn)T ∈ Ω is a vector of n decision variables, f(x) con-
sist of m objective functions, gi(x) describes P inequality functions and hj(x)
denotes q equality functions. If Ω is a closed and connected region in Rn and
all objective functions are described in real valued variables, then problem (1)
is said to be continuous multi-objective optimization problem (MOP).

In global optimization, the main objective is to find the best solution for the
given optimization problem in presence of the multiple optimal solutions. In
constrained optimization, one has to find the feasible solution subject to several
constraints functions [3, 4, 5].

In the last decade or two, evolutionary optimization algorithms have con-
tributed much for dealing with different optimization and search problems. Un-
like the local techniques, where a single design point is updated, evolutionary
algorithms do not require any gradient information and typically utilize a set
of solutions to find optimum solution for the given problem [6, 4, 7, 8, 9, 10].
This family of algorithms are typically inspired from the phenomena of nature.
EAs have the many advantages including extremely robust and easy to imple-
ment and being well suited for discrete optimization problems [11, 12, 13]. The
classical evolutionary algorithms can be distinguished by the nature of their
solutions representation and operators employing for their evolution. The evo-
lutionary strategies employs mutation operator to create new solutions which
are represented in real-numbers [14, 15, 16],evolutionary programming also re-
quired solutions that are represented in real numbers or integers [17] and genetic
algorithms employ crossover operators to evolve its population [18, 19] and ge-
netic programming required tree based representation of computer programs to
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perform search process [20, 21, 22].The main drawbacks associated with most
of the classical EAs are their high computational cost, poor constraint-handling
abilities, problem-specific parameter tuning and limited problem size and lack
of ability to cope with large scale global optimization problems.

Teaching learning based optimization (TLBO) is one of the most efficient
and recently developed population based EA. TLBO was proposed by R.Venkata
Rao and his colleagues [23, 24]. TLBO is a stochastic algorithm and was first ap-
plied on unconstrained optimization problems. It is nature-inspired population-
based algorithm that imitates teaching learning process. It has two phases,
teacher and learner. In teacher phase, the teacher who is well-learned person
transfers his/her knowledge to the learners to raise their grades/results; while in
learner phase, learners/pupils learn and refine their knowledge through mutual
interconnection It is the most popular algorithms in the field of optimization. It
is used on large scale in various fields of engineering and industry. In this algo-
rithms the best solution play the role of a teacher. This algorithms is different
from EAs because here the member of swarm improves their results/grades in
a given search space. In TLBO, the starting population is randomly selected in
the given search space. The members of the swarm updates his position as given
below[23]: New positions are updated as follows, in teacher phase of TLBO.

xt+1
i = xti + r × (xtbest − F× µt), (3)

where xt+1
i is the updated position, r is randomly generated numbers between

0 and 1, xti is the current position, xtbest is the best position, F is randomly
generated teaching factor either 1 or 2, µt is mean position of the population
in iteration t. In teacher phase of TLBO positions are updated according to
Eq.(3).

xt+1
i =

{
xti + r × (xtj − xti), if f(xti) > f(xtj);
xti + r × (xti − xtj), else.

(4)

where xt+1
i is the updated position, r is randomly generated numbers between 0

and 1, xti is the current position, xtj is the position of randomly selected solution

from the population other than ith one, f(xti) and f(xtj) are the fitness values of
xti and xtj respectively. In learner phase of TLBO positions have been updated
according to Eq.(4).

1.1. Number of Constraints Violated based SF (NCVSF)

In NCVSF the decisive factor for declaring the winner among the solution is
number of constraints violated (NCV). According to it the comparison of two
solutions xti and xtj are done as follow:

xt+1
i =

{
Winner by NCV values, if NCV (xti) 6= NCV (xtj);
Winner by cost values, else,

(5)

where xt+1
i is updated position, xti and xtj are competing positions, and NCV

is number of constraints violated. Pseudo-code of NCVSF technique is given in
Algorithm 1:
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Algorithm 1 Pseudo-code of NCVSF

Comparing positions xti and xtj via NCVSF;
NCV (xti) = Number of constraints violated by xti;
f(xti) = Fitness value of xti;
NCV (xtj) = Number of constraints violated by xtj ;
f(xtj) = Fitness value of xtj ;
if NCV (xti) 6= NCV (xtj) then

Winner of xti and xtj is selected by their NCV values;
else

Winner of xti and xtj is selected by their cost values;
end if

1.2. Weighted Mean based Superiority of Feasibilities (WMSF)

In WMSF, the factor upon which the superior among the compared solution
are nominated is weighted mean. In this CHT winner of xti and xtj is selected
as follow:

xt+1
i =

{
Winner by WM values, if WM(xti) 6= WM(xtj);
Winner by cost values, else,

(6)

where xt+1
i is updated position, xti and xtj are competing positions, and WM is

weighted mean of all constraints violations which is defined as follow [25].

υ(x) =

∑n
i=1 wi(max(0, Gi(x)))∑n

i=1 wi
(7)

where

Gi(x) =

{
gj(x) j = 1, .....l

|hk(x)| − ε k = l, .....n.
(8)

wi(= 1/Gmaxi
) is a weight parameter, Gmaxi

is the maximum violation of con-
straint in combined population. Pseudo-code of WMSF technique is given in
Algorithm 2:

Algorithm 2 Pseudo-code of WMSF

Comparing positions xti and xtj via WMSF;
υ(xti) = Weighted mean of constraints violations of xti;
f(xti) = Fitness value of xti;
υ(xtj) = Weighted mean of constraints violations of xtj ;
f(xtj) = Fitness value of xtj ;
if υ(xti) 6= υ(xtj) then

Winner of xti and xtj is selected by their WM values;
else

Winner of xti and xtj is selected by their cost values;
end if
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2. Main Research Contributions

Using single decisive factors NCV or WM solely for SF reduces the diversity
among the solutions; while pushing them in the specific direction of used criteria.
In NCVSF when we meet up with a situation when both competing solutions are
infeasible with same NCV values the winner is decided based on fitness values
which is not a wise move. Similar situation is happened in WMSF when the WM
values for two infeasible solution are same the winner is decided upon fitness
values, again it is not considered a good decision. In this work discussed gaps are
tried to remove by introducing HSF. To take step based on fitness values creates
infeasibility among solutions; while neglecting the constraints violations. This
gap is filled up by taking step via discussed CHT in each proposed algorithm.
Details of the prescribed contributions are given in below.

2.1. Hybrid Superiority of Feasibilities (HSF)

HSF is hybrid of NCVSF and WMSF. In it the decisive factor NCV is con-
sidered superior over weighted mean value. It is due to giving more impotence
to NCV since it is considered superior than WM values. Here winner of xti and
xtj is selected as follow:

xt+1
i =


Winner by NCV values, if NCV (xti) 6= NCV (xtj);
Winner by WM values, if NCV (xti) = NCV (xtj) and WM(xti) 6= WM(xtj);
Winner by cost values, else,

(9)

where xt+1
i is updated position, xti and xtj are competing positions, NCV is

number of constraints violated, and WM is weighted mean of all constraints
violations. Pseudo-code of HSF technique is given in Algorithm 3:

Algorithm 3 Pseudo-code of HSF

Comparing positions xti and xtj via HSF;
NCV (xti) = Number of constraints violated by xti;
υ(xti) = Weighted mean of constraints violations of xti;
f(xti) = Fitness value of xti;
NCV (xtj) = Number of constraints violated by xtj ;
υ(xtj) = Weighted mean of constraints violations of xtj ;
f(xtj) = Fitness value of xtj ;
if NCV (xti) 6= NCV (xtj) then

Winner of xti and xtj is selected by their NCV values;
else if NCV (xti) = NCV (xtj) and υ(xti) 6= υ(yti) then

Winner of xti and xtj is selected by their WM values;
else

Winner of xti and xtj is selected by their cost values;
end if

For constrained optimization taking step in the learner phase of TLBO ac-
cording to fitness values is not a good idea, since solutions are neglecting con-
straints in each iteration that causes bringing in infeasibility among solutions;
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therefore, for constrained optimization selecting step via some CHT is good
concept. Implantation of the mentioned concept is described in following:

1. Learner Phase based on NCVSF:

yti =

{
xti + r ∗ (xtj − xti) if winner of xti and xtj is xtj based on NCVSF;
xti + r ∗ (xti − xtj) else.

(10)

2. Learner Phase based on WMSF:

yti =

{
xti + r ∗ (xtj − xti) if winner of xti and xtj is xtj based on WMSF;
xti + r ∗ (xti − xtj) else.

(11)

3. Learner Phase based on HSF:

yti =

{
xti + r ∗ (xtj − xti) if winner of xti and xtj is xtj based on HSF;
xti + r ∗ (xti − xtj) else.

(12)

In this paper, TLBO will be combine with NCVSF, WMSF, and HSF for han-
dling the constraints of the problem (1). This will result in a new constrained
version of TLBO, denoted by NCVSF-TLBO, WMSF-TLBO, HSF-TLBO. The
pseudo code of these are given below.

Algorithm 4 Pseudo code of NCVSF-TLBO

1: Set TLBO parameters: Pop size = nPop; Maximum iterations = MaxIt;
2: Stochastically Generate initial pop;
3: Set iteration counter t=0;
4: Evaluate costs and constrained violations for the pop;
5: Nominate BestSol=x∗ using algorithm 1;
6: while t ≤ MaxIt do
7: Set iteration counter t = t+1;
8: Find new positions via Eq.(3) and update positions via Algo. (1);
9: Find new positions via Eq.(10) and update positions via Algo. (1);

10: Update BestSol=x∗ using algorithm 1;
11: end while

Algorithm 5 Pseudo code of WMSF-TLBO

1: Set TLBO parameters: Pop size = nPop; Maximum iterations = MaxIt;
2: Stochastically Generate initial pop;
3: Set iteration counter t=0;
4: Evaluate costs and constrained violations for the pop;
5: Nominate BestSol=x∗ using algorithm 2;
6: while t ≤ MaxIt do
7: Set iteration counter t = t+1;
8: Find new positions via Eq.(3) and update positions via Algo. (2);
9: Find new positions via Eq.(11) and update positions via Algo. (2);

10: Update BestSol=x∗ using algorithm 2;
11: end while
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Algorithm 6 Pseudo code of HSF-TLBO

1: Set TLBO parameters: Pop size = nPop; Maximum iterations = MaxIt;
2: Stochastically Generate initial pop;
3: Set iteration counter t=0;
4: Evaluate costs and constrained violations for the pop;
5: Nominate BestSol=x∗ using algorithm 3;
6: while t ≤ MaxIt do
7: Set iteration counter t = t+1;
8: Find new positions via Eq.(3) and update positions via Algo. (3);
9: Find new positions via Eq.(12) and update positions via Algo. (3);

10: Update BestSol=x∗ using algorithm 3;
11: end while

Figure 1: Flow Chart of the Proposed HSF-TLBO
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3. Simulation Results, Comparison, and Discussion

The basic properties of these problems are given in table 1, where n is the
problem dimension, f(x) is know optimal solution at x, ρ denotes the ratio
between feasible and whole search space, LI denote number linear inequality
constraint, NI denotes the number of non-linear inequality constraints, LE
denotes the number of linear equality constraints, NE denotes the number of
non-linear equality constraints, TC denotes total constraints and a denotes
active constraints at x.

Table 1: Basic Properties of the Benchmark Functions

Prob. n f(x) Type of function ρ LI NI LE NE TC a
g01 13 -15.0000000000 quadratic 0.0111% 9 0 0 0 9 6
g02 20 -0.8036191042 non linear 99.9971% 0 2 0 0 2 1
g03 10 -1.0005001000 polynomial 0.0000% 0 0 0 1 1 1
g04 5 -30665.5386717834 quadratic 52.1230% 0 6 0 0 6 2
g05 4 5126.4967140071 cubic 0.0000% 2 0 0 3 5 3
g06 2 -6961.8138755802 cubic 0.0066% 0 2 0 0 2 2
g07 10 24.3062090681 quadratic 0.0003% 3 5 0 0 8 6
g08 2 -0.0958250415 non linear 0.8560% 0 2 0 0 2 0
g09 7 680.6300573745 polynomial 0.5121% 0 4 0 0 4 0
g10 8 7049.2480205286 linear 0.0010% 3 3 0 0 6 6
g11 2 0.7499000000 quadratic 0.0000% 0 0 0 1 1 1
g12 3 -1.0000000000 quadratic 4.7713% 0 1 0 0 1 0
g13 5 0.0539415140 non linear 0.0000% 0 0 0 3 3 3
g14 10 -47.7648884595 non linear 0.0000% 0 0 3 0 3 3
g15 3 961.7150222899 quadratic 0.0000% 0 0 1 1 2 2
g16 5 -1.9051552586 non linear 0.0204% 4 34 0 0 38 4
g17 6 8853.5396748064 non linear 0.0000% 0 0 0 4 4 4
g18 9 -0.8660254038 quadratic 0.0000% 0 13 0 0 13 6
g19 15 32.6555929502 non linear 33.4761% 0 5 0 0 5 0
g20 24 0.2049794002 linear 0.0000% 0 6 2 12 20 16
g21 7 193.7245100700 linear 0.0000% 0 1 0 5 6 6
g22 22 236.4309755040 linear 0.0000% 0 1 8 11 20 19
g23 9 -400.0551000000 linear 0.0000% 0 2 3 1 6 6
g24 2 -5.5080132716 linear 79.6556% 0 2 0 0 2 2

The CEC 2006 constrained optimization problems suit [26] containing of 24
problems has been selected from available literature, to test the robustness and
consistency of the proposed algorithms. The results are compiled for all prob-
lems in 25 independent run. For commencement of simulations, the parameters
are set for selected schemes as follow.

3.1. PC and software Specification

The system which is used for performing simulations has Windows 10 with
8 GB Ram and intel(R) core(TM) i7-8700 CPU@3.20GHZ processor. All the
experiments were performed in MATLAB 2013a (32-Bit) environment.
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3.2. Parameters’ Setting

• Population size npop = 100

• Number of generations Max Function Evalutions = 500000

• Number of runs = 25

3.3. Illustration of terms used for comparison

Illustration of the used terms in table for comparison is given in below.

• Best: It is the best fitness value for the obtained final best solutions in
25 runs.

• Median: It is the median fitness value for the obtained final best solutions
in 25 runs.

• Worst: It is the Worst fitness value for the obtained final best solutions
in 25 runs.

• c: It is the order triple representing the number of violated constraints in
(1,∞], (0.01,1], and (0.0001, 0.01] respectively for median solution.

• υ: It is the mean violation of median solution.

• Mean: It is the Mean fitness value for the obtained final best solution in
25 runs.

• St. Dev: It is the standard deviation of fitness value for the obtained
final best solution in 25 runs.

• FR: It is the percentage of feasibility rate in 25 runs.

• SR: It is the percentage of success rate in 25 runs.

3.4. Comparison of Proposed Algorithms

Simulation results are compared for three proposed algorithms; NCVSF-
TLBO, WMSF-TLBO, and HSF-TLBO, for CEC-2006 constrained suit con-
sisting of 24 benchmark constrained problems. Details of the compared statical
data are displayed in the tables below.
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Table 2: Comparison of Proposed Algorithms for CEC 2006 [26]

Prob No Optimum Algorithm Best Median Worst c υ Mean St. Dev. FR(%) SR(%)

NCVSF-TLBO −15(0) −10(0) −6(0) (0, 0, 0) 0 −10.2581 2.91799 100 12

G01 −15 WMSF-TLBO −15(0) −15(0) −6(0) (0, 0, 0) 0 −13.3781 2.27966 100 52

HSF-TLBO −15(0) −15(0) −9(0) (0, 0, 0) 0 −13.4362 1.95619 100 52

NCVSF-TLBO −0.76395(0) −0.592535(0) −0.446209(0) (0, 0, 0) 0 −0.589084 0.0823299 100 0

G02 −0.803619 WMSF-TLBO −0.792607(0) −0.592917(0) −0.414959(0) (0, 0, 0) 0 −0.589659 0.0851794 100 0

HSF-TLBO −0.803615(0) −0.600225(0) −0.45717(0) (0, 0, 0) 0 −0.600881 0.0829211 100 4

NCVSF-TLBO −100000(1) −100000(1) −0.00154395(0) (1, 0, 0) 9 −80000 40824.8 20 0

G03 −1.0005 WMSF-TLBO −0.550806(0) −0.0841718(0) −0.00121948(0) (0, 0, 0) 0 −0.146833 0.145905 100 0

HSF-TLBO −0.468707(0) −0.179232(0) −0.0143643(0) (0, 0, 0) 0 −0.169795 0.103452 100 0

NCVSF-TLBO −30665.5(0) −30665.5(0) −30665.5(0) (0, 0, 0) 0 −30665.5 3.85866e− 12 100 100

G04 −30665.5 WMSF-TLBO −30665.5(0) −30665.5(0) −30665.5(0) (0, 0, 0) 0 −30665.5 4.33006e− 12 100 100

HSF-TLBO −30665.5(0) −30665.5(0) −30665.5(0) (0, 0, 0) 0 −30665.5 3.713e− 12 100 100

NCVSF-TLBO 0(3) 0(3) 0(3) (3, 0, 0) 542.665 0 0 0 0

G05 5126.5 WMSF-TLBO 5126.5(0) 5243.25(0) 5458.18(0) (0, 0, 0) 0 5240.41 81.1682 100 4

HSF-TLBO 5126.5(0) 5189.87(0) 5454.12(0) (0, 0, 0) 0 5227.97 111.962 100 24

NCVSF-TLBO −7973(1) −7973(1) −6961.81(0) (1, 0, 0) 5.5 −7730.32 440.766 24 24

G06 −6961.81 WMSF-TLBO −6961.81(0) −6961.81(0) −6961.81(0) (0, 0, 0) 0 −6961.81 3.713e− 12 100 100

HSF-TLBO −6961.81(0) −6961.81(0) −6961.81(0) (0, 0, 0) 0 −6961.81 3.713e− 12 100 100

NCVSF-TLBO 24.3064(0) 24.3102(0) 24.355(0) (0, 0, 0) 0 24.3146 0.0113708 100 0

G07 24.3062 WMSF-TLBO 24.3065(0) 24.3108(0) 24.3396(0) (0, 0, 0) 0 24.3129 0.00760074 100 0

HSF-TLBO 24.3063(0) 24.3081(0) 24.3894(0) (0, 0, 0) 0 24.3138 0.0169507 100 4

NCVSF-TLBO −0.095825(0) −0.095825(0) −0.095825(0) (0, 0, 0) 0 −0.095825 0 100 100

G08 −0.095825 WMSF-TLBO −0.095825(0) −0.095825(0) −0.095825(0) (0, 0, 0) 0 −0.095825 2.83279e− 18 100 100

HSF-TLBO −0.095825(0) −0.095825(0) −0.095825(0) (0, 0, 0) 0 −0.095825 2.83279e− 18 100 100

NCVSF-TLBO 680.63(0) 680.63(0) 680.637(0) (0, 0, 0) 0 680.63 0.00151257 100 84

G09 680.63 WMSF-TLBO 680.63(0) 680.63(0) 680.63(0) (0, 0, 0) 0 680.63 5.33567e− 07 100 100

HSF-TLBO 680.63(0) 680.63(0) 680.63(0) (0, 0, 0) 0 680.63 2.73025e− 07 100 100

NCVSF-TLBO 2100(1) 2100(1) 2100(1) (1, 0, 0) 204167 2100 0 0 0

G10 7049.25 WMSF-TLBO 7049.25(0) 7049.32(0) 7250.97(0) (0, 0, 0) 0 7073.52 66.8781 100 0

HSF-TLBO 7049.25(0) 7049.32(0) 7250.93(0) (0, 0, 0) 0 7057.94 40.2647 100 4
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Table 3: Comparison of Proposed Algorithms for CEC 2006 [26]

Prob No Optimum Algorithm Best Median Worst c υ Mean St. Dev. FR(%) SR(%)

NCVSF-TLBO 0.749923(0) 0.755674(0) 0.928021(0) (0, 0, 0) 0 0.773693 0.044111 100 4

G11 0.7499 WMSF-TLBO 0.7499(0) 0.7499(0) 0.7499(0) (0, 0, 0) 0 0.7499 1.13312e− 16 100 100

HSF-TLBO 0.7499(0) 0.7499(0) 0.7499(0) (0, 0, 0) 0 0.7499 1.13312e− 16 100 100

NCVSF-TLBO −1(0) −1(0) −1(0) (0, 0, 0) −0 −1 0 100 100

G12 −1 WMSF-TLBO −1(0) −1(0) −1(0) (0, 0, 0) −0 −1 0 100 100

HSF-TLBO −1(0) −1(0) −1(0) (0, 0, 0) −0 −1 0 100 100

NCVSF-TLBO 5.22653e− 76(3) 9.81492e− 65(2) 0.940811(2) (2, 0, 0) 23.1865 0.0525531 0.197839 0 0

G13 0.0539415 WMSF-TLBO 0.158596(0) 0.535777(0) 0.992503(0) (0, 0, 0) 0 0.561262 0.226208 100 0

HSF-TLBO 0.0551461(0) 0.475098(0) 0.959623(0) (0, 0, 0) 0 0.502159 0.258825 100 0

NCVSF-TLBO −2096.03(3) −2096.03(3) −2096.03(3) (3, 0, 0) 58.6667 −2096.03 1.39237e− 12 0 0

G14 −47.7649 WMSF-TLBO −47.4581(0) −45.8565(0) −41.7143(0) (0, 0, 0) 0 −45.4412 1.51837 100 0

HSF-TLBO −47.7085(0) −45.3164(0) −42.1655(0) (0, 0, 0) 0 −45.3344 1.45773 100 0

NCVSF-TLBO 400(2) 400(2) 974.911(1) (2, 0, 0) 254.5 445.465 157.371 0 0

G15 961.715 WMSF-TLBO 961.715(0) 961.715(0) 963.59(0) (0, 0, 0) 0 961.824 0.389466 100 76

HSF-TLBO 961.715(0) 961.715(0) 963.447(0) (0, 0, 0) 0 961.83 0.397135 100 88

NCVSF-TLBO −2.0965(1) −1.90516(0) −1.90514(0) (0, 0, 0) 0 −1.98169 0.0956748 60 60

G16 −1.90516 WMSF-TLBO −1.90516(0) −1.90516(0) −1.90516(0) (0, 0, 0) 0 −1.90516 9.81569e− 16 100 100

HSF-TLBO −1.90516(0) −1.90516(0) −1.90516(0) (0, 0, 0) 0 −1.90516 8.01875e− 16 100 100

NCVSF-TLBO 8213.33(4) 8213.33(4) 8717.17(3) (4, 0, 0) 668.685 8233.48 100.768 0 0

G17 8853.54 WMSF-TLBO 8857.39(0) 8942.7(0) 9234.29(0) (0, 0, 0) 0 8988.52 128.138 100 0

HSF-TLBO 8857.33(0) 8939.84(0) 9210.4(0) (0, 0, 0) 0 8960.6 104.235 100 0

NCVSF-TLBO −13.6421(4) −0.866024(0) −0.674973(0) (0, 0, 0) 0 −1.55513 2.63514 84 56

G18 −0.866025 WMSF-TLBO −0.866025(0) −0.866009(0) −0.860728(0) (0, 0, 0) 0 −0.865376 0.00138706 100 60

HSF-TLBO −0.866025(0) −0.866024(0) −0.863875(0) (0, 0, 0) 0 −0.865751 0.000645271 100 80

NCVSF-TLBO 32.6558(0) 32.6613(0) 46.1546(0) (0, 0, 0) 0 33.8854 2.94461 100 0

G19 32.6556 WMSF-TLBO 32.6558(0) 32.6613(0) 46.1559(0) (0, 0, 0) 0 33.443 2.75087 100 0

HSF-TLBO 32.6557(0) 32.6597(0) 35.3435(0) (0, 0, 0) 0 32.8748 0.740456 100 4

NCVSF-TLBO 1.02608e− 97(3) 2.08294e− 97(3) 0.0694016(3) (1, 2, 0) 0.145683 0.00277606 0.0138803 0 0

G20 0.204979 WMSF-TLBO 0.0801573(1) 0.259324(1) 0.981122(3) (0, 1, 0) 0.0243059 0.339315 0.197291 0 0

HSF-TLBO 0.0469487(2) 0.180092(1) 1.10409(2) (0, 1, 0) 0.02787 0.269931 0.250122 0 0

NCVSF-TLBO 0(3) 0(4) 309.66(3) (2, 2, 0) 333.698 12.3864 61.932 0 0

G21 193.725 WMSF-TLBO 193.725(0) 324.986(0) 906.837(0) (0, 0, 0) 0 386.296 193.77 100 16

HSF-TLBO 193.725(0) 193.755(0) 999.999(0) (0, 0, 0) 0 309.366 234.237 96 48

NCVSF-TLBO 0(12) 0(12) 3998.1(10) (9, 3, 0) 2.65004e+ 06 159.924 799.62 0 0

G22 236.431 WMSF-TLBO 141.833(13) 9832.31(19) 20000(3) (14, 5, 0) 2.06585e+ 06 10754.5 5523.94 0 0

HSF-TLBO 0(9) 19917.4(7) 20000(6) (5, 2, 0) 442453 13928.5 8229.91 0 0

NCVSF-TLBO −0.0009(0) 0(0) 0(0) (0, 0, 0) 0 −3.6e− 05 0.00018 100 0

G23 −400.055 WMSF-TLBO −399.937(0) −100.046(0) −0.295254(0) (0, 0, 0) 0 −128.008 145.137 100 0

HSF-TLBO −400.055(0) −77.9528(0) −0.0766(0) (0, 0, 0) 0 −134.04 154.896 100 16

NCVSF-TLBO −5.50801(0) −5.50801(0) −5.50801(0) (0, 0, 0) 0 −5.50801 2.53818e− 15 100 100

G24 −5.50801 WMSF-TLBO −5.50801(0) −5.50801(0) −5.50801(0) (0, 0, 0) 0 −5.50801 2.45925e− 15 100 100

HSF-TLBO −5.50801(0) −5.50801(0) −5.50801(0) (0, 0, 0) 0 −5.50801 2.60843e− 15 100 100

3.5. Fitness and feasibility convergence graphs

Fitness and feasibility convergence graphs for representing problems are dis-
played for Proposed Algorithms in following:
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Figure 2: Fitness and feasibility convergence graphs of G01
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Figure 3: Fitness and feasibility convergence graphs of G02
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Figure 4: Fitness and feasibility convergence graphs of G03
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Figure 5: Fitness and feasibility convergence graphs of G04
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Figure 6: Fitness and feasibility convergence graphs of G05
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Figure 7: Fitness and feasibility convergence graphs of G06
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Figure 8: Fitness and feasibility convergence graphs of G07
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Figure 9: Fitness and feasibility convergence graphs of G08
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Figure 10: Fitness and feasibility convergence graphs of G09
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Figure 11: Fitness and feasibility convergence graphs of G10
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Figure 12: Fitness and feasibility convergence graphs of G11

5 10 15 20 25 30
−1

−0.98

−0.96

−0.94

−0.92

−0.9

Iterations(1:200:MaxIt)

M
ea

n 
Fu

nc
tio

n 
Va

lu
es

Fitness Convergence Graph of G12

 

 
NCVSF−TLBO
MWSF−TLBO
HSF−TLBO

5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Iterations(1:200:MaxIt)

M
ea

n 
Co

ns
tra

in
ts

 V
io

la
tio

n

Feasiblilty Convergence Graph of C12

 

 
NCVSF−TLBO
MWSF−TLBO
HSF−TLBO

Figure 13: Fitness and feasibility convergence graphs of G12
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Figure 14: Fitness and feasibility convergence graphs of G13
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Figure 15: Fitness and feasibility convergence graphs of G14
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Figure 16: Fitness and feasibility convergence graphs of G15
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Figure 17: Fitness and feasibility convergence graphs of G16
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Figure 18: Fitness and feasibility convergence graphs of G17
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Figure 19: Fitness and feasibility convergence graphs of G18
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Figure 20: Fitness and feasibility convergence graphs of G19
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Figure 21: Fitness and feasibility convergence graphs of G20
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Figure 22: Fitness and feasibility convergence graphs of G21
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Figure 23: Fitness and feasibility convergence graphs of G22
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Figure 24: Fitness and feasibility convergence graphs of G23
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Figure 25: Fitness and feasibility convergence graphs of G24

3.6. Discussion

In this paper, three CHTs named NCVSF, WMSF, and HSF based on the
concept of SF are implemented and integrated with TLBO. The three con-
strained variants of TLBO, namely, NCVSF-TLBO, WMSF-TLBO, and HSF-
TLBO are applied for checking robustness, consistency, and efficiency to solve
the CEC 2006 benchmark functions[26].The Statistical analysis, enable us to
state the following discussion in respect of developed algorithms.
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• G01: For this problem HSF-TLBO is leading algorithm since it is compa-
rable or defeating the remaining based on all statistics used for evaluation.

• G02: For this problem HSF-TLBO is leading algorithm since statistics
displayed that except St.Dev. in all remaining it is winner or comparable.

• G03: For this problem HSF-TLBO is leading algorithm since statistics
analysis displayed that except Best in all remaining it is winner or com-
parable.

• G04: For this problem proposed algorithms are comparable in all statis-
tics except St.Dev. On the basic of St.Dev. we can say that HSF-TLBO
is winner.

• G05: For this problem HSF-TLBO is leading algorithm since statistics
displayed that except St.Dev. in all remaining it is winner or comparable.

• G06: For this problem HSF-TLBO and WMSF-TLBO are leading and
comparable algorithms since statistics are same for these two.

• G07: For this problem for statistics Best, Median, and SR HSF-TLBO is
winner for c and υ, and FR all comparable. For remaining statistics the
performace of HSF-TLBO is not notable.

• G08: For this problem proposed algorithms are comparable in all statis-
tics except St.Dev. On the basic of St.Dev. we can say that NCVSF-TLBO
is winner since other statistics are matched for all.

• G09: For this problem HSF-TLBO is leading algorithm since it is compa-
rable or defeating the remaining based on all statistics used for evaluation.

• G10: For this problem HSF-TLBO is leading algorithm since it is compa-
rable or defeating the remaining based on all statistics used for evaluation.

• G11: For this problem HSF-TLBO and WMSF-TLBO are leading and
comparable algorithms since statistics are same for these two.

• G12: For this problem proposed algorithms are comparable since statis-
tics are same for these.

• G13: For this problem HSF-TLBO is leading algorithm since it is compa-
rable or defeating the remaining based on all statistics used for evaluation.

• G14: For this problem HSF-TLBO is comparable or winner in all statistics
except median and mean. It is very closed to the winner in these statistics.

• G15: For this problem HSF-TLBO is comparable or winner in all statistics
except mean and St.Dev. It is very closed to the winner in these statistics.

• G16: For this problem after a very closed competition, HSF-TLBO leaded
over WMSF-TLBO based on St.Dev.
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• G17: For this problem HSF-TLBO exclusively leaded over the remaining
algorithms based on almost all statistics.

• G18: For this problem HSF-TLBO exclusively defeated the remaining
algorithms based on almost all statistics with high SR value.

• G19: For this problem HSF-TLBO exclusively defeated the remaining
algorithms based on almost all statistics with some SR value; for while
remaining the SR values is zero.

• G20: This is a hard problem of the suit; therefore, performance of the
proposed algorithms are not notable.

• G21: For this problem HSF-TLBO and WMSF-TLBO are very closed
in competition, but one can declared HSF-TLBO based on its SR values
which is very high as compared to WMSF-TLBO.

• G22: This is the hard problem of the suit; therefore, performance of the
proposed algorithms are not notable, but based on low infeasibility the
claim of declaring HSF-TLBO better as compared to the remaining is
legal.

• G23: This is also a hard problem of the suit, but based on high value of
SR HSF-TLBO can be declared as winner.

• G24: For this problem proposed algorithms are comparable in all statis-
tics except St.Dev. based on it WMSF-TLBO can be declared as winner.

4. Conclusion

Current research work brings in the concept of three constrained versions of
TLBO, NCVSF-TLBO, WMSF-TLBO, and HSF-TLBO. In these algorithms,
for handling the constraints of the problem the platform of superiority of fea-
sibility is used. Where factors upon which the decision of winner is made are
NCV, WM and hybrid of these i.e HSF. These are integrated in the framework
of TLBO to solve COPs. For evaluation purposes CEC-2006 constrained bench-
marks are used. Obtained results from simulations are compared, based on it
the following notables points can be concluded:

• Success Rate (SR): Based on the SR values HSR-TLBO has winning
status since no algorithms among compared existed that can beat it at
any problem of the suit.

• Feasibility Rate (FR): Based on the FR values HSF-TLBO and WMSF-
TLBO are comparable for almost all problem except G21.

• Best Fitness: Based on the Best fitness values HSF-TLBO is leading
algorithm on average problems i.e winner for the competition based on
Best fitness value.
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• Median Fitness: Based on the Median fitness values HSF-TLBO is lead-
ing algorithm on almost all problems i.e winner for the completion based
on Median fitness value.

• Worst Fitness: Based on the Worst fitness values HSF-TLBO is leading
algorithm on almost all problems i.e winner for the completion based on
Worst fitness value.

• c: Based on the the order triple value c HSF-TLBO and WMSF-TLBO
are comparable for whole suit.

• υ: Based on the the υ value HSF-TLBO and WMSF-TLBO are compa-
rable for most problem, but; there exist some problem based on them on
can say HSF-TLBO is in prominent status as compared to WM-TLBO.

• Mean Fitness: Based on the Mean fitness values HSF-TLBO is leading
algorithm on most problems i.e winner for the completion based on Mean
fitness value.

• St.Dev: Based on the St.Dev values HSF-TLBO is winning the compe-
tition since it beat the others compared.

• Over All Conclusions: Over all conclusion about the proposed algo-
rithms is that in most problems HSR-TLBO in winner; therefore, it is the
consistent, robust, and prominent among the compared.

We will work in future keeping in veiw the following tasks:

• To check efficiency and robustness of HSF in other existed NIAs environ-
ments.

• To extend the researched idea for solving other constrained problems.

• To do parameters adjustment for specific type of problems to insure that
certain setting is suitable for certain type problems.

• To check the algorithms efficiency when the order of the implantation of
teacher phase and learner phase are reversed.
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