1.Cao H, Wang L, Nawaz MA, Niu M, Sun J, Xie J, Kong Q, Huang Y, Cheng F, Bie Z. Ectopic expression of pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in Arabidopsis. Front Plant Sci. 2017;8:2052.
2.He Y, Yang X, Xu C, Guo D, Niu L, Wang Y, Li J, Yan F, Wang Q. Overexpression of a novel transcriptional repressor GmMYB3a negatively regulates salt-alkali tolerance and stress-related genes in soybean. Biochem Biophys Res Commun. 2018;498(3):586–591.
3.Yang R, Jie L, Zhong L, Wei S, Wu Z, Hu H, Zhang Y. ERF transcription factors involved in salt response in tomato. Plant Growth Regul. 2018;84(3):573–582.
4.Cai R, Yang Z, Wang Y, Lin Y, Peng X, Qian L, Chang Y, Jiang H, Yan X, Cheng B. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tiss Org. 2014;119(3):565–577.
5.Li Y, Chu Z, Luo J, Zhou Y, Cai Y, Lu Y, Xia J, Kuang H, Ye Z, Ouyang B. The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B. Plant Biotechnol J. 2017;16(6):1201–1213.
6.Turan S, Cornish K, Kumar S. Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci. 2005;6(9):1337–1348.
7.Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR. The trihelix family of transcription factors-light, stress and development. Trends Plant Sci. 2012;17(3):163–171.
8.Diego Mauricio ROP, Corrêa LGG, Raúl TE, Bernd MR. Green transcription factors: A chlamydomonas overview. Genetics. 2008;179(1):31–39.
9.Wang XH, Li QT, Chen HW, Zhang WK, Ma B, Chen SY, Zhang JS. Trihelix transcription factor GT–4 mediates salt tolerance via interaction with TEM2 in Arabidopsis. BMC Plant Biol. 2014;14(1):339.
10.Hyeong Cheol P, Lyang KM, Hwan KY, Joo Mi J, Jae Hyuk Y, Chul KM, Young PC, Jae Cheol J, Byeong Cheol M, Huck LJ. Pathogen- and NaCl-induced expression of the SCaM–4 promoter is mediated in part by a GT–1 box that interacts with a GT–1-like transcription factor. Plant Physiol. 2004;135(4):2150–2161.
11.Wang LW, He MW, Guo SR, Zhong M, Shu S, Sun J. NaCl stress induces CsSAMs gene expression in Cucumis sativus by mediating the binding of CsGT–3b to the GT–1 element within the CsSAMs promoter. Planta. 2017;245(5):889–908.
12.Sánchez-Aguayo I, Rodríguez-Galán JM, García R, Torreblanca J, Pardo JM. Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta. 2004;220(2):278–285.
13.Espartero J, Pintor-Toro JA, Pardo JM. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol. 1994;25(2):217–227.
14.Ma C, Wang Y, Gu D, Nan J, Chen S, Li H. Overexpression of S-adenosyl-l-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. Int J Mol Sci. 2017;18(4):847.
15.Kamal AHM, Cho K, Kim DE, Uozumi N, Chung KY, Lee SY, Choi JS, Cho SW, Shin CS, Woo SH. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep. 2012;39(9):9059–9074.
16.Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A. Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem. 2008;391(1):381–390.
17.Hyun-Ju H, Jin-Woo H, Hyun Dae H, and Jong Won H. Overexpression of S-adenosylmethionine synthetase gene from Pyropia tenera enhances tolerance to abiotic stress. Plant Breed Biotech. 2017;5(4):304–313.
18.Tassoni A, Franceschetti M, Bagni N. Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem. 2008;46(5):607–613.
19.Qi YC, Wang FF, Zhang H, Liu WQ. Overexpression of suadea salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco. Acta Physiol Plant. 2010;32(2):263–269.
20.Biao G, Xiu L, Vandenlangenberg KM, Dan W, Shasha S, Min W, Yan L, Fengjuan Y, Qinghua S, Xiufeng W. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol J. 2014;12(6):694–708.
21.Guo Z, Tan J, Zhuo C, Wang C, Xiang B, Wang Z. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnol J. 2014;12(5):601–612.
22.Zhuo C, Liang L, Zhao Y, Guo Z, Lu S. A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation. Plant Cell Environ. 2018;41(9):2021–2032.
23.Li B, He L, Guo S, Li J, Yang Y, Yan B, Sun J, Li J. Proteomics reveal cucumber Spd-responses under normal condition and salt stress. Plant Physiol Biochem. 2013;67(3):7–14.
24.Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999;27(1):297–300.
25.Magali L, Patrice D, Gert T, Kathleen M, Yves M, Yves VDP, Pierre R, Stephane R. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–327.
26.Kamiab F, Talaie A, Khezri M, Javanshah A. Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul. 2014;72(3):257–268.
27.Lou Y, Guan R, Sun M, Han F, He W, Wang H, Song F, Cui X, Zhuge Y. Spermidine application alleviates salinity damage to antioxidant enzyme activity and gene expression in alfalfa. Ecotoxicology. 2018;27:1323–1330.
28.Yi Z, Li S, Liang Y, Zhao H, Hou L, Yu S, Ahammed GJ. Effects of exogenous spermidine and elevated CO2 on physiological and biochemical changes in tomato plants under iso-osmotic salt stress. J Plant Growth Regul. 2018:1–13.
29.Elsayed AI, Rafudeen MS, El-Hamahmy MAM, Odero DC, Hossain MS. Enhancing antioxidant systems by exogenous spermine and spermidine in wheat (Triticum aestivum) seedlings exposed to salt stress. Funct Plant Biol. 2018;45(7):745–759.
30.Radhakrishnan R, Lee IJ. Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.) by spermidine promotes plant growth against salt stress. Acta Physiol Plant. 2013;35(12):3315–3322.
31.Ikbal FE, Hernández JA, Barba-Espín G, Koussa T, Aziz A, Faize M, Diaz-Vivancos P. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J Plant Physiol. 2014;171(10):779–788.
32.Wang Y, Guo S, Wang L, Wang L, He X, Shu S, Sun J, Lu N. Identification of microRNAs associated with the exogenous spermidine-mediated improvement of high-temperature tolerance in cucumber seedlings (Cucumis sativus L.). BMC Genomics. 2018;19(1):285.
33.Sang Q, Shan X, An Y, Shu S, Sun J, Guo S. Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings’ response to high-temperature stress. Front Plant Sci 2017;8:120.
34.L XD, X B, W R, X S, J YM, Y FB, P F. Molecular cloning and characterization of S-adenosylmethionine synthetase gene from Lycoris radiata. Mol Biol Rep. 2013;40(2):1255–1263.
35.Wang W, Paschalidis P, Feng JC, Song J, Liu JH. Polyamine catabolism in plants: a universal process with diverse functions. Front Plant Sci. 2019;10:561.
36.Zhou T, Wang P, Yang R, Gu Z. Polyamines regulating phytic acid degradation in mung bean sprouts. J Sci Food Agr. 2017;98(9):3299–3308.
37.Wu J, Shu S, Li C, Sun J, Guo S. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol Biochem. 2018;128:152–162.
38.Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2019;9:1945.
39.Fiscaletti D, Angeli D, Tarozzi L, Barozzi GS. Plant polyamines in abiotic stress responses. Acta Physiol Plant. 2013;35(7):2015–2036.
40.Yiu JC, Liu CW, Fang YT, Lai YS. Waterlogging tolerance of welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. Plant Physiol Biochem. 2009;47(8):710–716.
41.Goldsbrough AP, Albrecht H, Stratford R. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J Cell Mol Biol. 2010;3(4):563–571.
42.Sung Un H, Suk-Bae L, Hwang Hyun K, Kyung-Hee P. ATAF2, a NAC transcription factor, binds to the promoter and regulates NIT2 gene expression involved in auxin biosynthesis. Mol Cells. 2012;34(3):305–313.
43.Shan W, Kuang Jf, Chen L, Xie H, Peng HH, Xiao YY, Li XP, Chen WX, He QG, Chen JY, Lu WJ. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. J Exp Bot. 2012;63(14):5171–5187.
44.Feng G, Xiong A, Peng R, Jin X, Jing X, Bo Z, Chen J, Yao Q. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tiss Org. 2010;100(3):255–262.
45.Sang-Gyu K, An-Kyo L, Hye-Kyung Y, Chung-Mo P. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J. 2010;55(1):77–88.
46.Motoyasu Y, Muneo Y, Randeep R, Mitsuko KK, Akio M, Hirohiko H. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. Plant J Cell Mol Biol. 2010;61(5):804–815.
47.Christian D, Kemal K, Wilson IW, Dominique VDS, John M, Dennis ES, Rudy D. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 2010;43(5):745–757.
48.Kou X, Shuang W, Wu M, Guo R, Xue Z, Nan M, Tao X, Chen M, Zhang Y. Molecular characterization and expression analysis of NAC family transcription factors in tomato. Plant Mol Biol Rep. 2014;32(2):501–516.
49.Wang C, Gao G, Cao S, Xie Q, Qi H. Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon, Cucumis melo var. makuwa Makino. BMC Plant Biol. 2019;19(1):75.
50.Zhou L, Yan Z, Zhang X, Yan P, Merewitz E, Xiao M, Huang L, Yan Y. The alterations of endogenous polyamines and phytohormones induced by exogenous application of spermidine regulate antioxidant metabolism, metallothionein and relevant genes conferring drought tolerance in white clover. Environ Exp Bot. 2016;124:22–38.
51.Li Z, Zhou H, Peng Y, Zhang X, Ma X, Huang L, Yan Y. Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regul. 2015;76(1):71–82.
52.Tang YY, Yuan YH, Shu S, Guo SR. Regulatory mechanism of NaCl stress on photosynthesis and antioxidant capacity mediated by transglutaminase in cucumber (Cucumis sativus L.) seedlings. Sci Hortic. 2018;235:294–306.
53.Jefferson RA, Bevan M,., Kavanagh T,. The use of the Escherichia coli beta-glucuronidase as a gene fusion marker for studies of gene expression in higher plants. Biochem Soc T. 1987;15(1):17–18.
54.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25(4):402–408.
55.Rao K, Tvs S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 2000;157(1):113–128.
56.Vicente O, Boscaiu M, Naranjo MÁ, Estrelles E, Bellés JMA, Soriano P. Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ. 2004;58(4):463–481.