Very Early Onset of Leber’s Mitochondrial Optic Neuropathy in Pediatric Females: Case Report and Review of the Literature

DOI: https://doi.org/10.21203/rs.3.rs-828505/v1

Abstract

Background

Leber’s hereditary optic neuropathy is a rare mitochondrial disease that usually begins in the second/third decade of life and affects generally young adult males. The information is scarce on the female phenotype particularly when onset is at a very young age and the diagnosis is challenged by other more frequent conditions. Aim of this study is to highlight the pediatric female phenotype by a literature review and by adding a new case.

Methods

The literature search was conducted on Pubmed in the period September 2020-February 2021 using “Child”, “Leber Hereditary Optic Neuropathy”, “females” “girls” keywords. We add a three years old girl with genetically confirmed Leber’s hereditary optic neuropathy.

Results

55 of 968 articles reported pediatric in girls accounting for 226 cases, male to female ratio 1,8:1. Mean age at onset was 11 years. The onset at the age of 3 years was described in only 3 girls, including our case. Acute bilateral mild visual impairment was the most common clinical presentation, associated to papilledema in 14% of the cases who underwent fundus oculi examination. Partial visual recovery occurred in 50% (30/60). Idebenone treatment was administered in 5/30.

Conclusion

LHON is extremely rare in very young females and represents a diagnostic challenge for the pediatrician. It should be considered even in young girls with acute-subacute visual loss, bilateral pseudo-papilledema, VEP changes non responding to steroid therapy.

What Is Known

Leber’s hereditary optic neuropathy usually affects young males in second-third decade of life with female/male ratio of 1:5. Pediatric onset is rare and poorly described: acute onset is the most frequent modality of presentation and papilledema can occur.

What Is New

In pediatrics, the gender difference is less evident, in our narrative review the female/males ratio is 1:1,8. Mean onset age in females is 11 years with minimum onset age of 3 years, described in only three cases worldwide.

Introduction

Leber hereditary optic neuropathy (LHON) is a mitochondrial genetic disease that leads to acute or subacute painless loss of vision, over a period of weeks to months. Affected individuals usually carry one of the three major mitochondrial DNA (mtDNA) mutations (ND1 3460G>A, ND4 11778G>A, ND6 14484T>C), but more than 30 types of mtDNA mutations play a role in disease expression. The penetrance of these genetic defects is incomplete and influenced by the phenomenon of heteroplasmy, by other modulatory genes and also by epigenetic factors, making genetic counseling extremely difficult [1]. Genic mutations cause altered oxidative phosphorylation in complex 1 of mitochondrial respiratory chain with increased levels of reactive oxygen species and apoptosis of retinal ganglion cells and their axons. 

LHON occurs in about 1: 30000 people in the general population [2]. Males are mostly affected in their second or third decade of life: patients with classic LHON experience visual loss between 15 to 35 years of age, childhood onset occurs in 11,5% of the cases [3]. The age limit for childhood onset is variable according to different studies: mean age at onset of the disease is about 6,8 years of age (range 2-11y) in European centers and about 10 years (mean 8,7 years, range 3,4-17) in the Chinese population [4,5,6]. In childhood also, males are more affected than females [4,6]. The mean onset age in girls is not described. 

The clinical presentation of pediatric LHON allows to distinguish three forms of disease: acute, slowly progressive and subclinical.The information is scarce on the female phenotype particularly when onset is at a very young age [50,58].

When ultra-rare phenotypes are involved, the diagnosis is challenged by other similar and more frequent pediatric neurological and neuro-ophthalmological conditions such as optic nerve drusen, optic neuritis and other optic neuropathies [105,108]. Treatment with Idebenone has been shown to contrast progression of the disease towards blindness in many patients, but it has to be started early in the course of the disease [112]. The aim of this study is to highlight the young female phenotype of LHON by an extensive literature review and by adding a new case with very early onset, as a contribution to early recognition of the disease.

Methods

We report a three years old girl with genetically confirmed LHON. Therapeutic and diagnostic acts and the analysis of the clinical case were performed with the consent of her parents. 

Moreover, we conducted a literature review looking for pediatric cases of LHON occurring in females. Our search was performed in PubMed, from inception up to 20 September 2020, with the following search terms combinations: “Childhood Leber Hereditary Optic Neuropathy AND females”, “Leber mitochondrial Optic Neuropathy in pediatrics AND females” and also “Leber Hereditary Optic Neuropathy AND girls” to consider also adult female cases with pediatric onset. All the articles were screened reading titles, abstract and, as needed, text. 

Among eight articles excluded, full text remained unavailable, so we extracted available information from the abstract [62-69].

After duplicates removal, 968 articles were analyzed. All the articles with lack of clinical data, lack of information about age at onset, impossibility of extracting information separately by sex and age were excluded, as well as cases regarding only boys and with adult onset only [70-103]. Fifty-five articles were eligible and were analyzed to extract relevant clinical information. [1,4-10,14,16-61] (Fig.1).

Tables 1: 55 articles about LHON occurring in females [1,4-10,14,16-61]

Article

 

Type of study

Pediatric LHON (n°.)

Female cases (n°.)

Age at onset or mean (y)

Type of onset 

Neuro-ophthalmological data

Recovery

1.[16]

Case series 

 

1

8

No data available

Decline in visual acuity

No data available

2.[17]

Retrospective study (19)

 

2

I: 15 

 

II: 10 

 

 

Acute onset

I: visual acuity at nadir (RE:LE) 0,005 log MAR in both (moderate visual impairment)

 

II: visual acuity at nadir (RE:LE): 0,1 log MAR in both (mild visual impairment)

No

 

 

Partial

3.[18]

Perspective study (53)

3

I: 7

II: 11

III: 14

 

I: slowly progressive

II: subclinical

III: acute

Fundus oculi: unknown peripapillary microangiopathy

I: partial

II: partial

III: No

4.[10]

 

 

 

Case report (LHON plus)

1

11

Acute bilateral onset 

Visual acuity: RE 0,1 LE 0,08 logMAR(mild: moderate)

Goldmann Perimetry: Central scotomas 

Fundus oculi: Atrophy of optic disc 

Normal PEV 

 

No 

5.[19]

Retrospective study (9)

 

8

10 

 

Acute onset 

I: Visual acuity (RE: LE):0,1: 0,3 logMAR (mild: mild)

Goldmann perimetry: paracentral scotoma in both eyes. 

Fundus oculi: pale optic discs temporally 

VEP: delayed P100 latecies for large check sizes and no recordable responses for small check sizes

 

II: Visual acuity: (RE: LE): 0,1:0,1 logMAR (mild: mild)

Goldmann perimetry: l central scotoma in OD. 

Fundus oculi: hyperemia and turgor of the optic papilla. 

 

III: Visual acuity: (RE: LE):0,2: 0,1 (mild: mild)

 Goldmann perimetry: central scotoma in both eyes. 

Fundus oculi: hyperemic disc and peripapillary telangiectatic microangiopathy

I: no 

 

 

 

 

II: No with 18 months Idebenone therapy

 

 

III: no with Idebenone therapy (discontinued) 

6.[20]

 

Retrospective study

(19)

 

2

I: 3 

 

II: 17 

No data available 

I: Visual acuity(RE:LE): 0,4:0,1 logMAR

 

II: Visual acuity(RE:LE): 0,5: 1 logMAR

 

No data available

7. [21]

Case report (3) 

1

15 

Acute onset

Visual acuity (RE:LE): 0,2:0,1 (mild)

Fundus oculi: pale optic disc 

Goldmann perimetry: central scotomas in both eyes with small fenestrations 

No with therapy

8. [22]

Case report (2) 

1

9

Acute onset

Fundus oculi: bilateral optic disc atrophy in both eyes 

Goldmann perimetry: central scotomas in both eyes 

Spontaneous partial recovery

9. [23]

Retrospective study (32)

12 

2

I: 15 

 

 

 

 

II: 16 

 

 

Acute onset

I: Visual acuity(RE:LE): CF/CF (profound visual impairment)

Color vision: 0/12 bilaterally

Fundus oculi: bilateral optic disc hyperemia in both eyes, peripapillary microangiopathy

Visual fields test: central scotomas in both eyes

 

II : Visual acuity (RE:LE): 0,1 logMAR bilaterally (mild impairment)

Color vision: 5/12 bilaterally

Fundus oculi: bilateral optic disc hyperemia in both eyes peripapillary microangiopathy

Visual fields test: central scotomas in both eyes

 

No data available 

10. [24] 

Retrospective study: 

(3)

1

17 

 

 

Slowly progressive

Visual acuity slowly decreasing in 20 years until CF:CF

Fundus oculi: bilateral optic disc atrophy in both eyes 

Visual fields test: central scotomas in both eyes

No 

11. [7]

Case report

1

No data available 

Decline in central visual acuity

No data available 

12. [25]

Case report

2

1

12 

Acute onset 

Visual acuity:     RE finger counts, LE: +1,3 logMAR

Goldmann perimetry: bilateral central scotomas. 

Fundus oculi: hyperemia and turgor of the optic papilla. 

 

Partial visual recovery with steroids.

13. [26]

Retrospective study

3

2: 10 

 

 

1: 13 

 

Acute onset

I: Visual acuity (RE:LE): 0,02/0,02 logMAR, Fundus oculi: optic disc pale 

II: Visual acuity (RE:LE): 0,1 logMAR /, CF*, Fundus oculi: optic disc pale 

 

III: Visual acuity (RE:LE): 0,05:0,05 logMAR, Fundus oculi: optic disc pale

No data available

14. [4]

 

 

 

 

Retrospective study: (180) 

 

 

14 

 

1

 

 

 

1

10

 

 

 

No data available

 

 

Acute bilateral LHON

 

 

Slowly progressive LHON 

 

 

 

BCVA* (RE*: LE*): 0,3 +/- 0,3 logMAR (mild-mild)

Fundus oculi: Diffuse optic disc atrophy without microangiopathy

OCT: diffuse RNFL* thinning 

 

BCVA (RE/LE): 0,6 +/- 0,1 logMAR (mild:mild)

Fundus oculi: Atrophy of temporal sector of optic disc, variable microangiopathy

OCT: RNFL* reduction in temporal quadrant

 

No 

 

 

 

Partial visual recovery

15. [9]

Case report (LHON plus)

1

17

Acute onset

Goldmann perimetry: bilateral central scotomas. 

Fundus oculi: bilateral optic atrophy, but not peripapillary telangiectasia and retinal degeneration.

 

No data available

16. [27]

Case report

2

I: 3 

 

 

 

II: 4

 

 

Acute onset

I: visual acuity (RE:LE): 0,5:0,15 logMAr (normal: mild)

Fundus oculi: slightly pale optic disc

VEP: reduced amplitude

 

II: : visual acuity (RE:LE): 0,15: 0,12 logMAR (mild:mild)

 

 

Mild improvement: visual acuity (RE:LE) 0,7:0,2 logMAR 14 years later

Mild improvement: visual acuity (RE:LE) 0,2:0,7 logMAR 14 years later

17. [28]

Retrospective study: (13)

10 

2

I: 13 

 

II: 14 

 

 

Acute onset

I: visual acuity RE:LE : 0,02/0,01 logMAR (profound visual impairment)

 

II: visual acuity RE:LE 0,05/0,04 logMAR (moderate: severe)

No data available 

18. [29]

Retrospective study: 

(5)

2

I: 7 

 

 

II: 14 

 

 

Acute onset

I: visual acuity (RE: LE): 0,12/0,4 logMAR (mild visual impairment)

Goldmann perimetry: large centrocecal scotoma in both eyes

 

II: 0,05/0,1 moderate visual impairment 

Fundus oculi: vascular tortuosity of central retinal vessels, microangiopathy in both eyes, no reflex on fovea on both eyes 

Visual field test: large centrocecal scotoma in both eyes 

VEP: decreased amplitude and delayed latencies in both eyes

No data available 

19. [30]

Retrospective study (15)

2

I: 14 

 

 

 

 

 

 

II: 15 

 

Acute onset

Visual acuity (RE:LE): 0,1:0,08 logMAR (mild: moderate)

Fundus oculi: vascular tortuosity of central retinal vessels, microangiopathy in both eyes

Visual field test: large centrocecal scotoma in both eyes 

VEP: decreased amplitude and delayed latencies in both eyes, bilateral hearing loss

 

Visual acuity (RE:LE): 0,06:0,06 (moderate: moderate)

 

No data available 

20. [31]

Retrospective study; 

(25)

1

10 

Acute onset

Visual acuity: 0,12/0,2 logMAR (mild: mild)

No data available

21. [32]

Case report

1

12 

Acute onset but atypical presentation (convergent strabismus, horizontal nystagmus in condition     of progressive ataxia, progressive ophthalmoplegia, referactary epilepsy)

 

Visual acuity: 0,05:0,05 (moderate: moderate)

Field visual test: centrocecal scotomas in both eyes 

Fundus oculi: bilateral optical disc atrophy

No data available 

22. [33]

Case control study:

1

12 

Acute bilateral onset 

Visual acuity: +1,00 logmar bilaterally (20/200=0,1)

Fundus oculi: Diffuse Optical Atrophy

Goldmann Perimetry: Centrocecal scotomas 

Modest horizontal nystagmus

No 

23.  [34]

Retrospective study: (18)

15 

9

 

I: 6

II, III: 9

IV, V: 10 

VI: 11

VII: 12 

VIII: 15 

IX: 17 

 

No data available

Visual acuity (RE:LE): 

I: 0,8/0,8 logMAR 

II: 0,08/0,05 logMAR III: 0,6/0,6 logMAR, paracentral scotomas 

IV: 0,04/0,04 logMAR central scotomas V: 0,8/0,8 logMAR

VI: 0,8/0,3 logMAR paracentral scotomas 

VII: 0,8/0,8 logMAR

VIII: 1/0,6 logMAR paracentral scotomas 

IX: 0,6/0,6 logMAR

I, III, V, VII, VIII, IX : partial spontaneous visual recovery

 

II, IV, VI: No recovery 

 

24. [35]

Retrospective study

1

14 

Acute onset

Visual acuity (RE:LE): 0,1:0,1 logMAR  (mild: mild)

Goldmann perimetry: centrocecal scotoma

Fundus oculi: optic disc pale in temporal sector 

No data available 

25.  [36]

Retrospective study: (14)

1

15

Acute onset: first in RE and then in LE

Visual acuity (RE:LE): 0,1:0,1 (mild: mild)

 

 

No data available 

26. [1]

Retrospective study: 

(9)

2

 

I: 9

II: 15 

 

Acute onset

Visual acuity (RE: LE): 

I: 0,3/0,12 (mild: mild)

II: 0,2/0,10 (mild:mild)

No data available

27.[37]

Retrospective study: (61)

15 

2

Both 14 

No data available

No data available

No data available

28  [38]

Retrospective study: (29)

14 

9

 

I, II: 7 

III: 8

IV, V, VI: 9 

VII: 10 

VIII: 12 

IX: 16 

 

No data available

Visual acuity (RE: LE): 

I: 0,01/0,01 logMAR (profound) II: 0,12/0,6 logMAR (mild: mormal)

III: 0,01/0,01 logMAR (profound)

IV: 0,08/0,05 logMAR (moderate) V: 0,1/0,6 logMAR (mild: normal) 

VI: 0,4/0,12 logMAR (normal:mild)

VII: 0,25/0,5 logMAR (mild: normal)

VIII: 0,3/0,25 logMAR (mild: mild)

IX: 0,08/0,09 logMAR (moderate: moderate)

 

No data available

29. [39]

Retrospective study 

25 

10

I, II, III, IV, V: 12 

VI, VII, VIII, IX: 17 

X: 14 

No data available

No data available

No data available

30. [40]

 

Case report LHON-MELAS overlap syndrome

1

11

Acute onset 

Visual acuity: CF in both eyes (profound: profound)

Fundus: RE: dilatation and tortuosity of all branches of central retinal vein, intraretinal hemorrhage, hyperemic disc LE: pinkish optic disc, mild tortuosity of small and medium arterioles

Fluorescein     Angiography: RE: delayed venous filling LE: normal

 

Partial recovery with Q10 coenzyme 

31.  [41]

Retrospective study: 

(9)

2

 

I: 8 

II. 15 

 

 

Acute onset

Visual acuity (RE: LE): 

I: 0,1/0,1 (mild: mild)

II: 0,05/0,05 (moderate: moderate)

No data available

32.  [42]

Case report: 

(5)

2

 

I: 7

II: 12 

 

Acute onset

Visual acuity (RE:LE):

I: 0,02:0,3 logMAR (severe: mild)

II: Not available

Partial spontaneous recovery

33. [43]

Retrospective study: (34)

15 

3

I: 14 

II: 11 

III: 5 

 

 

No data available

No data available

No data available

34. [44]

Observational Perspective Study: 

(26)

11 

3

I: 6

II: 5

III: 14

 

No data available

I: CF/CF (profound)

II: 0,1/0,1 logMAR (mild)

III: 0,05/0,05 logMAR (moderate)

No data available 

35. [45]

Retrospective study: 

(34) 

 

3

 

I: 6 

II: 4

III: 14 

 

 

Acute onset

Best Visual Acuity (BCVA) (RE:LE): 

I: RE 0,125 LE 0,25 logMAR (mild: normal)

II: RE 0,6 LE 0,6 logMAR (normal)

III: RE 0,8  LE 0,6 logMAR (normal)

 

I: no s recovery

II, III: partial spontaneous recovery

36. [46]

Retrospective study: 

(9)

1

15 

Acute onset

Visual acuity: CF both (profound)

Partial visual recovery

37. [47]

Retrospective study: 

(16) 

2

 

I: 15 

II: 17 

 

Acute onset

Visual acuity (RE:LE):
 I: 0,03: 0,05 logMAR (severe: severe)

II: 0,06: 0,1 logMAR (moderate: mild)

No data available

38. [48]

Case report: LHON-MELAS overlap

1

12 

Acute onset:     loss of vision in both eyes. One month later, vertigo, anhedonia, hearing loss, migraine attack

Visual acuity: RE: 0,2 LE: 0,03 logMAR (mild:severe)

Fundus oculi: both optic nerves pale

Fundus autofluorescence: bilateral hyperfluorescent optic nerve deposits

Standard automated perimeter: severe bilateral visual loss

OCT: RNFL thickening (3,54 mm)

VEP: reduced amplitudes with prolonged P100 wave latencies bilaterally. 

No data available

 

 

 

39. [49]

Perspective study: (9)

2

I F: 8

II F: 9 

 

Acute onset 

I: Visual Field Index (VFI) * 0%

II: VFI* 3%

Partial recovery with gene therapy 

40. [50]

Clinical trial (16) 

12 

3

I: 8

II: 9

III: 7 

 

No data available

I: BCVA RE: 0,9, LE: 1,2 logMAR 

II: BCVA RE:0,2, LE:0,2 logMAR

III: BCVA LE:2 (normal) logMAR

No improvement with gene therapy at 12 months

41. [51]

Retrospective study: (105)

36 

20

I: 7

II: 9

III: 11

IV, V, VI, VII, VIII, IX, X, XI: 15

XII, XIII: 13 

XIV, XV, XVI: 16 

XVII, XVIII, XIX, XX: 17 

 

No data available

No data available

No data available

42.  [52]

Retrospective study: 

(101)

45

13

I: 5

II: 6

III: 10 

IV: 11 

V, VI: 13 

VII: 14 

VIII IX: 15 

X: 16 

XI XII XIII: 17 

 

 

No data available

Visual acuity (RE: LE) : 

I: hand movement profound visual impairment

II: 0,1:0,1 logMAR moderate impairment

III: 0,02:0,03 logMAR severe impairment

IV: 0,08: 0,06 logMAR moderate impairment

V: 0,15: 0,15 logMARmild impairment VI: 0,2:0,15 logMAR mild impairment

VII: 0,1:0,1 logMAR mild impairment

VIII: 0,03:0,05 logMARSevere impairment IX: CF (profound impairment)

X: 0,02: 0,25 logMAR severe impairment

XI: 0,1:0,2 logMAR mild impairment XII: 0,06: 0,1 logMAR moderate impairment

XIII: 0,1:0,1 logMAR mild impairment

No data available

 

 

 

 

 

 

 

 

 

 

 

 

 

43. [6]

Perspective study: 

(119) 

 

89 

10 

 

 

 

 

 

 

 

 

 

 

Median age: 10,6 

 

 

 

 

 

 

 

Median age: 9,8 

 

Acute onset: 54/89

 

 

 

 

 

 

 

Slowly progressive onset: 35/89

 

Visual acuity: (RE:LE) 0,06 ± 0,46 logMAR

Fundus oculi: bilateral optic nerve edema or hypereaemia with/without telangiectatic vessels; 

temporal optic pallor with vascular tortuosity in both eyes;  temporal optic pallor with microvascular tortuosity in the right eye and optic nerve hyperemia with telangiectatic vessels in left eye.

OCT: greater RNFL thickness in inferior and superior quadrants

 

Visual acuity 0,12 ± 0,03 logMAR

Fundus oculi: temporal optic atrophy without changes in the vessels in both eyes; diffused atrophy of the optic disk in both eyes.

OCT: reduced RNFL thickness in temporal quadrant

VEP: from a serious conduction defect to the absence of a waveform.

 

 

No data available

 

 

 

 

 

 

 

 

No data available

44.  [14]

Case report: 

 

2

Median age: 7,5 

Acute onset

 

Visual acuity (RE:LE):

 I: 0, 25/0,13, logMAR 

 II: 0,5/0,8 logMAR

Fundus oculi: pallor of optic papilla 

                   

I no visual recovery 

II: partial visual recovery (Visual acuity RE:LE : 0, 6/0,8)

45. [53]

Perspective observational study: (103)

No specific datas about childhood LHON  

23

Range: 24+/-10

 

Acute onset: bilateral visual impairment

BCVA: 0,1+/-0,03 logMAR in both eyes (mild)

No data available

46. [5]

 

Retrospective study: 

 (27)

27 

 

5

 

 

 

 

 

2

 

Median age: 8,2

 

 

 

 

 

Median age: 7,5

 

 

Acute onset (17)

 

 

 

 

 

Slowly progressive onset (4)

 

 

 

 

BCVA (RE:LE): 

2:Light perception (profound)

RE:     0,03         LE: 0,03 logMAR(severe-severe)

RE:     0,79         LE: 0,79  logMAR (normal-normal)

RE:     0,91        LE: 1,00  logMAR (normal-normal)

 

BCVA (RE:LE): 

RE: 0,17      LE: 0,02 logMAR (mild: severe)

RE: 0,17      LE: 0,25 logMAR (mild: mild)

 

 no visual recovery

 

 

 

 

 

 

47. [54]

Retrospective study: 

(44 pediatric cases of optic neuropathy)

12 

2

No data available (certainly<14 )

No data available 

Visual acuity at 15 y: 0,8 +/- 0,4 in both eyes (Normal)

 

No data available

48. [55]

 

 

Perspective study

(9)

2

I F: 8

II F: 9 

 

 

Acute onset 

I: VFI 0%

II: VFI 3%

Partial recovery with gene therapy 

49. [56]

Retrospective study: (352)

 

3

I: 10 

II: 17 

III: 15 

 

No data available

I: moderate visual impairment

II: mild visual impairment

II: mild visual impairment

No data available

50. [57]

Case series (10) 

 

1

16 

Acute onset followed by Visual allucinations without cognitive impairment

Visual acuity: light perception and hand movements in both eyes (profound)

No data available 

51. [58]

Retrospective study on gene therapy efficacy: (53)

No specific datas about childhood LHON  

5

16 +/-5 

No data available

Improving with gene therapy: baseline BCVA 1,94 logMAR +/-0,31 (normal)

Not improving with gene therapy: Baseline BCVA 1,76 +/- 0,42

(normal)

2F improvement with gene therapy

3F no improvement with gene therapy

52. [59]

 

Case report

1  

1

11

Acute onset: poor vision LE

Visual acuity at onset: LE  0,02      logMAR

Automated perimetry: central scotoma in LE

Normal OCT

VEP: reduced P50 amplitude and normal N95 in the left eye

Stable at 5 year with Idebenone 

53.[8]

Retrospective study: 

(64)

17 

6

I: 6 

II:6 

III: 4

 

I: 7 

II: 4

III: 13

 

 

Subacute (3F)

 

 

 

Slowly progressive (3F)

I: Visual acuity: BCVA RE: 0,2 LE: 0,4 logMAR (mild: normal)

II: Visual acuity: BCVA RE: 0,125 LE: 0,2 logMAR (mild: mild)

II: Visual acuity: BCVA RE: 1  LE: 0,4 logMAR  (normal: normal)

 

I: Visual acuity: BCVA RE: 0,125  LE: 0,6 logMAR  (mild: normal)

II: Visual acuity: BCVA RE: 0,125 LE:  0,16 logMAR     (mild:mild)

II: Visual acuity: BCVA RE: 0,8  LE: 0,62 logMAR (normal: normal)

 

I: no     recovery

II: no 

III: spontaneous recovery

 

I: no 

II: spontaneous recovery

III: no 

54. [60]

Retrospective study: (16)

13 

1

16 

Acute onset

BCVA (RE:LE): 0,1 logMAR / finger counts (mild: profound)

Partial recovery: 0,1/0,06 logMAR

55. [61]

Retrospective study: (1520)

123

34 

 

<5 Y: 1/1

5-9Y: 1/3

No data available

No data available

No data available

Abbreviations: BCVA*: best corrected visual acuity RNFL*: Retinal Nerve Fiber Layer RE*: right eye LE*: left eye CF*: counting fingers HM*: hand movement  VFI*: Visual Function Index

Results

Case Report

A 3-years-old girl was admitted due to recent onset of visual impairment. The parents reported normal previous psychomotor development, growth and visual behavior. Previous personal history was not relevant, including pharmacological therapies. Family history was silent for visual disturbances and neurological disorders. In the previous months parents noticed that the girl brought her eyes close to the table during drawing and she turned the head to favour vision with her left eye; she didn’t follow images on a screen and when the right eye was covered she complained of not seeing anything. She never complained headache and vomiting. On arrival she had poor visual acuity (right eye less than 1.0 logMAR, left eye equal to 0,4 logMAR), the neurological examination was normal with the exception of vision loss. The cognitive function was normal with the exception of visual attention skills defect. The fundus oculi examination revealed a raised optic papilla with blurred edges more pronounced in the right eye and tortuous vessels, consistent with bilateral moderate papilledemaBrain magnetic resonance imaging (MRI) was normal except for mild bilateral flattening of the posterior sclera, associated with mild perineural cerebrospinal fluid in the optic nerve sheet. The ultra-sounds of the posterior eye and optic nerve excluded the optic nerve Drusen.  In the suspicion of pseudotumor cerebri, a lumbar puncture was performed and revealed an opening pressure of 200 mmH2O (normal range100-200 mmH2O), with normal spinal fluid chemical-physical and biochemical parameters.  Blood exams, serological investigations and Angiotensin Converting Enzyme levels were normal. Acetazolamide therapy was started with transient improvement of optic disk swelling. In the following days visual acuity had worsened (right eye 0,1 logMAR, left eye 0,8 logMAR) and eccentric fixation at distance was noted. Visual evoked potentials were performed and showed bilaterally decreased amplitudes and delayed latencies of the P100 cortical response. Cerebrospinal fluid oligoclonal bands and serum antibody testing for aquaporin-4 and myelin oligodendrocyte glycoprotein were all negative. In the hypothesis of optic neuritis, Methylprednisolone 30 mg/kg bolus was administered for 3 days, followed by a tapering course of corticosteroids orally administered.  Despite steroid treatment, visual evoked potentials worsened sequentially from right to left eye.  A second brain and orbits MRI performed two months later was normal, except for symmetrical signal alteration in the black substance of the midbrain. Considering the clinical and electrophysiological deterioration during steroid treatment, atypical for optic neuritis, despite the female sex and young age, we hypothesized LHON. The molecular analysis of mitochondrial DNA found the homoplasmic mutation 3460G>A in gene MT-ND1 suggestive for LHON. The mother and sister were carriers of the same variation, in the absence of clinical symptoms. The exome analysis targeted on optic neuropathy phenotype, to rule out co-occurrence of other forms of optic neuropathy was negative. Optical coherence tomography (OCT) showed a marked reduction in thickness of retinal nerve fiber layer in all areas (Fig.2). Four months after disease onset, off-label Idebenone therapy was started following written informed consent by the parents, to reduce mitochondrial dysfunction. The brain MRI one year after the first one was completely normal. 

At follow up three years later, during Idebenone therapy, the visual acuity improved and was equal to 0,22 logMAR in the left eye and 0,7 logMAR in the right eye. Colour vision tested with Ishihara tables showed an incomplete red-green colour deficiency while contrast sensitivity remained abnormal. Visual field testing confirmed the presence of a central scotoma. Visual fatigue, crowding effect and glare were unchanged relevant symptoms hampering daily activities. Visual evoked potentials were stable compared to the previous ones and the OCT showed a small progression of the atrophy of retinal ganglion cells (Fig 3). 

Visual rehabilitation in synergy with the family and teachers supported the child in the development of compensatory strategies and multisensory integration. The girl developed compensatory posture with head tilted on the right shoulder, right eye exotropia and hyperfunction of left ocular muscles. At the age of 5 a drawing done by our child shows her self-perception (Fig.4). 

Literature Review 

We identified 55 articles about LHON occurring in females [1,4-10,14,16-61], they are summarized in Table 1. Sixteen were case reports, 32 were retrospective studies and 7 were prospective studies. In total we identified 626 cases of LHON with onset before 18 years. Of these, 226 were females with a male to female ratio of 1,8:1. The mean age at disease onset was 11 years The minimum onset age was 3 years, described in only two cases (1,3%): all other reported females were older at onset of the visual symptoms [50,58].

The onset modality of LHON was described in 91 out of 226 females (41%): the acute onset occurred in 79/91 (86,5 %), subclinical or subacute onset in 4/91 (4,5%) and slowly progressive onset in 8/91 (9%). 

The severity of visual impairment was reported at diagnosis in 118 girls (52%). In the total population, visual impairment was bilateral with sequential involvement of right and left eye. The visual acuity was normal in 24 right eyes (RE) (20%) and in 23 left eyes (LE) (19,5%). The visual impairment was mild (mild =0.3–0.1logMAR) in 65 RE (55%) and 61 LE (52%); it was moderate (0,1-0,05 logMAR) in 12 RE (10%) and in 13 LE (11%); it was severe (0,05-0,02logMAR) in 8 RE (7%) and 10 LE (8,5%); it was profound (<0,02logMAR, counting fingers or light perception) in 9 RE (8%) and in 11 LE (9%). 

The Goldmann perimetry was reported in only 13/226 females (6%), the main finding was central scotomas. Fundus oculi was reported in 36/226 females (16%): - atrophy of the entire optic disc in 6/36; - edema and hyperemia of optic disc in 5/36 (cases with acute onset); - atrophy of temporal sector in 1/36 (cases with slowly progressive onset); - pale optic disc in 9/36; - isolated microangiopathy in 5/36. Edema and tortuous vessels in acute stage of LHON and optic pallor or atrophy in slowly progressive LHON was seen in 10/36. 

The OCT was described in 14/226 females (6%): those with acute onset showed diffuse thinning of retinal nerve fiber layer while those with slowly progressive onset showed atrophy of the temporal sector, in 1 case the OCT was normal. The visual evoked potentials (VEPs) were reported in 18/226 (8%) of the girls and were characterized, at disease onset, by reduced amplitude and delayed latency. 

Data about visual recovery were reported in 27 articles comprising 60/226 females (26,5%). Sixteen out of 60 females (26,5%) received a specific therapy: 5 were treated with Idebenone, 10 with gene therapy and 1 with steroids. Among those treated with Idebenone, 3/5 had no visual recovery and 2/5 had no worsening of visual acuity but stabilization or improvement of the visual defect. Ten underwent gene therapy: 7/10 (70%) recovered and 3/10 (30%) had no visual recovery. One female received steroids without improvement at a follow up performed 8 years later. Forty-four (73,5%) did not receive treatment: 23/44 had no recovery while 21/44 showed spontaneous partial recovery of visual function. Partial visual recovery, with or without therapy, globally occurred in 30/60 (50%) girls. 

Discussion

This study reports the third case of genetically confirmed LHON in a pediatric female with very early age at onset and adds an extensive review of the literature on pediatric female cases. In our patient the onset modality of LHON was with abnormal visual behavior and papilledema at three years of age. The Idebenone treatment allowed slight recovery of vision, followed by stabilization during a 5 years’ follow-up. Research on pediatric LHON is scarce, particularly in females and lacks of systematic phenotype description, particularly at symptoms onset.

In our review of pediatric girls, the mean age at symptoms onset was 11 years, probably for the predominance of Asiatic literature reporting a more advanced onset age in females [4,5,6,7].

In adults the female/male ratio is 1:5 [4,5]. The male prevalence can be explained by a modulatory effect on mitochondrial expression due to some loci on the X-chromosome (DXS8090-DXS1068, DXS1068-DXS8016), the life style (smoking exposition) and hormonal differences [104,105]. By contrast, in pediatrics, this gender difference is less evident. In our study the female/male ratio was of about 1:1,8. Diversity between pediatric and adult age is explainable by being more heavily genetically determined by nuclear modifiers, and by lower hormonal and environmental influences in childhood LHON [4,5,13,104].

Our literature review highlights that the clinical features at onset, are scarcely described in girl, available only in 41% of the cases, since the focus is mainly on genetic characterization. 

The onset modality of LHON was not specified in about half of the girls. The acute onset was the far most frequent mode of presentation, characterized by sequentially bilateral visual loss (reported in 86,5% of our literature review) [1,4-10,1416-61] and also in our case. The visual loss was mild or moderate in the majority of cases. The fundus oculi examination was available in only 16% of the cases and the most frequent presentation was acute with edema of the optic disk. 

In very young children the visual loss may be undetected when monocular or not severe, Moreover, the diagnostic tools available in adults for the characterization of visual loss are difficult to perform at a young age. The onset in girls as young as 3 years is described in only three cases in the literature, including our patient. One of the other two cases was a girl presenting with exotropia and bilateral visual impairment (left eye more than right eye): her fundus examination at onset revealed pale optic disc, VEPs were similar to ours and she never recovered [50].

In the second case, the clinical information is very scarce and reports only that the girl had a mild visual impairment at onset [58]. 

The very early onset LHON presentation challenges the pediatricians, particularly if it includes the pseudo-papilledema. 

Indeed, the differential diagnosis of acute subacute visual loss includes a variety of more frequent medical conditions as well as optic neuritis or other forms of optic neuropathy [105].

In the presence of optic disc edema, the first differential diagnosis is between papilledema due to raised intracranial pressure and pseudo-papilledema, an elevation of the optic disc secondary to local underlying structural conditions, in the absence of raised intracranial pressure.  No gold standard instrumental test exists to distinguish between papilledema and pseudo-papilledema [105]. Clinically, patients with papilledema rarely present a rapidly progressive visual loss and their color vision is typically spared. Furthermore, the papilledema is often associated to signs and symptoms of raised intracranial pressure such as morning headache, diplopia, pulsating tinnitus and vomiting. The differential diagnosis requires brain and spinal magnetic resonance imaging to search for the presence of intracranial or spinal mass lesions, cerebral sinovenous thrombosis, and the nonspecific indicators of pseudotumor cerebri (posterior globe flattening, distention of the cerebrospinal fluid space, empty or partially empty saddle, and transverse venous sinus stenosis)[106]. In patients with normal MRI, the lumbar puncture may be used to evaluate  increased opening pressure, suggesting raised intracranial pressure [105].

The second important differential diagnosis, in cases of papilledema without elevated cerebrospinal fluid pressure (pseudo-papilledema), is with optic nerve drusen, optic neuritis and other optic neuropathies and requires other diagnostic tools such as visual field examination, OCT, optic bulb ultrasounds and visual Evoked Potentials (VEPs). Our literature search retrieved very few data based on these diagnostic tools, probably because they are difficult to perform and interpret in young children [107,108,109].

Among the differential diagnoses of LHON, the most challenging is anterior optic neuritis. Clinically, pain during eyes movements, dyschromatopsia and afferent pupillary defect orient towards optic neuritis. However, afferent pupillary defect is seldom seen in pediatrics because optic neuritis is usually bilateral and pain or  dyschromatopsia are difficult to evaluate at a young age [105]. In these cases, VEPs can be useful even in very young children. In acute LHON, they show amplitude decrease and delayed latency of the P100 peak. Shortening of P50 is an additional feature in those with LHON history longer than 3 months [12]. By contrast, n optic neuritis, VEPs show a predominant delay in the latency of the response, while amplitude is more variably affected, but the most important differential feature is the recovery of optic neuritis but not of LHON, following steroid therapy [12,110].

The LHON diagnosis needs to be confirmed by detection of  mutations in mtDNA: methods such as direct DNA sequencing, polymerase chain reaction, restriction fragment length polymorphism and next generation sequencing techniques can be used to find mtDNA mutations [13]. One of the possible reasons for the rarity of disease onset at very early age is that the significant complex I dysfunction, needed for mitochondrial related optic nerve damage, requires time and usually does not occur before school-age [102].

The diagnosis was a challenge in our case also because the family history was uneventful even if, for the incomplete mitochondrial disorders penetrance, the mother and sister were healthy carriers of the same mutation [104].

The natural history of LHON is characterized by progressive loss of visual function, although the advent of Idebenone treatment provided recovery or stabilization in 2/5 patients [27,39]. The present study of LHON occurring in girls, found reported outcome in 26,5% of the cases. About half of them had visual recovery or stabilization of vision, only a minority received Idebenone (8%) or gene therapy (16%), with variable success. An early therapy can arrest the progression of visual disease; Idebenone has been approved in 2015 by European Union [14,111,113].  Its use is off-label before 12 years of age. It is a strong antioxidant, inhibitor of lipid peroxidation an also interacts with electron transport chain facilitating mitochondrial electron flux bypassing complex I. 

In our patient Idebenone treatment was started before the evolution from papilledema to optic disk atrophy and visual function did not deteriorate during the following 5 years. 

Nowadays, early diagnosis and starting early antioxidant treatment is the only way to counteract deterioration of visual function while gene therapy is on the way.

The main limitations of the present study are the heterogeneity of the collected patients and the incomplete information on some clinical data, even if we used stringent selection criteria. However, this is the first study reporting specific clinical information on the population of pediatric females affected by LHON. To rise clinical awareness on the rarest phenotypes of LHON such as that of young females has important implications for early diagnosis and effective management.  

Conclusions

LHON in the female gender, particularly with early pediatric onset, is extremely rare. Only three cases, including ours, are described as early as at three years. The pediatrician facing a very young girl with acute-subacute visual loss, bilateral pseudo-papilledema, VEP changes non responding to steroid therapy should think to LHON early in the course of the disease after having excluded other more frequent causes. Early and timely diagnosis is important to preserve vision.  

Abbreviations

Best Corrected Visual Acuity (BCVA), Counting Fingers (CF), Intra-Cranial Pressure (ICP), Leber Hereditary Optic Neuropathy (LHON), left eye (LE), Magnetic Resonance Imaging (MRI), mitochondrial DNA (mtDNA), Optical Coherence Tomography (OCT), Retinal Nerve Fiber Layer (RNFL), right eye (RE), Visual Evoked Potentials (VEPs).

Declarations

Funding 

The authors did not receive support from any organization for the submitted work.

Conflict of interest/Competing interest

The authors declare that they have no conflict of interest.

Availability of data and material

The authors confirm that the data supporting the finding of this study are available within the article.

Author’s Contribution

A.S., C.M., S.T. conceptualized the review., S. T. reviewed the literature, evaluated articles for eligibility. C.C, A.S. gave resources about clinical case. C.C, C.M. did critical review of manuscript. S.T., C.M wrote the manuscript. A.S. and F.P. reviewed the article for important intellectual content. A.S and C.M supervised the work. 

Ethical standards

No ethical approval is required

Consent to participate

Parents gave their informed consent prior to their inclusion in the study. 

Consent for publication

Parents gave their written informed consent prior to publication. 

Contributor information

Cristina Malaventura Email address: [email protected] 

Sara Tagliani Email address: [email protected]

Agnese Suppiej Email address: [email protected]

Ceccato Chiara Email address: [email protected]

Francesco Parmeggiani Email address: [email protected]

Acknowledgements: we thank the ophthalmologists dr Cermakova and dr Maritan, the orthoptist Roberta Guerriero for sharing the clinical data, the psychologists Tiziana Battistin for the cognitive evaluation, and Caterina Paderni for the support during the ophthalmological evaluations and the multidisciplinary follow up.

References

  1. Jia X, Li S, Wang P, Guo X, Zhang Q. mtDNA m.3635G>A may be classified as a common primary mutation for Leber hereditary optic neuropathy in the Chinese population. Biochem Biophys Res Commun. 2010;403(2):237-241. doi:10.1016/j.bbrc.2010.11.017
  2. Yu-Wai-Man P, Votruba M, Burté F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132(6):789-806. doi:10.1007/s00401-016-1625-2
  3. Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin Ophthalmol. 2015;9:1165-1176. Published 2015 Jun 26. doi:10.2147/OPTH.S62021 
  4. Yu-Wai-Man P, Votruba M, Burté F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132(6):789-806. doi:10.1007/s00401-016-1625-2 
  5. Barboni P, Savini G, Valentino ML, et al. Leber's hereditary optic neuropathy with childhood onset. Invest Ophthalmol Vis Sci. 2006;47(12):5303-5309. doi:10.1167/iovs.06-0520
  6. Majander A, Bowman R, Poulton J, et al. Childhood-onset Leber hereditary optic neuropathy. Br J Ophthalmol. 2017;101(11):1505-1509. doi:10.1136/bjophthalmol-2016-310072
  7. Li Y, Li J, Jia X, Xiao X, Li S, Guo X. Genetic and Clinical Analyses of DOA and LHON in 304 Chinese Patients with Suspected Childhood-Onset Hereditary Optic Neuropathy. PLoS One. 2017;12(1).
  8. Balayre S, Gicquel JJ, Mercie M, Dighiero P. Neuropathie optique de Leber de l'enfance. A propos d'un cas de baisse d'acuité visuelle chez une enfant de 6 ans [Childhood Leber hereditary optic neuropathy. A case of a 6-year-old girl with loss of vision]. J Fr Ophtalmol. 2003;26(10):1063-1066.
  9. Ahn YJ, Park Y, Shin SY, Chae H, Kim M, Park SH. Genotypic and phenotypic characteristics of Korean children with childhood-onset Leber's hereditary optic neuropathy [published online ahead of print, 2020 Jun 7]. Graefes Arch Clin Exp Ophthalmol. 2020;10.1007/s00417-020-04757-x. doi:10.1007/s00417-020-04757-x
  10. Watanabe M, Mita S, Takita T, Goto Y, Uchino M, Imamura S. Leber's hereditary optic neuropathy with dystonia in a Japanese family. J Neurol Sci. 2006;243(1-2):31-34.
  11. Murakami T, Mita S, Tokunaga M, et al. Hereditary cerebellar ataxia with Leber's hereditary optic neuropathy mitochondrial DNA 11778 mutation. J Neurol Sci. 1996;142(1-2):111-113. doi:10.1016/0022-510x(96)00165-7
  12. Borrelli E, Triolo G, Cascavilla ML, et al. Changes in Choroidal Thickness follow the RNFL Changes in Leber's Hereditary Optic Neuropathy. Sci Rep. 2016;6:37332. Published 2016 Nov 17. doi:10.1038/srep37332
  13. Wang M, Guo H, Li S, et al. Electrophysiological and Structural Changes in Chinese Patients with LHON. J Ophthalmol. 2020;2020:4734276. Published 2020 Mar 30. doi:10.1155/2020/4734276
  14. Vázquez-Justes D, Carreño-Gago L, García-Arumi E, et al. Mitochondrial m.13513G>A Point Mutation in ND5 in a 16-Year-Old Man with Leber Hereditary Optic Neuropathy Detected by Next-Generation Sequencing. J Pediatr Genet. 2019;8(4):231-234.
  15. Catarino CB, Ahting U, Gusic M, et al. Characterization of a Leber's hereditary optic neuropathy (LHON) family harboring two primary LHON mutations m.11778G>A and m.14484T>C of the mitochondrial DNA. Mitochondrion. 2017;36:15-20.
  16. La Morgia C, Carbonelli M, Barboni P, Sadun AA, Carelli V. Medical management of hereditary optic neuropathies. Front Neurol. 2014;5:141. Published 2014 Jul 31
  17. Franks WA, Sanders MD. Leber's hereditary optic neuropathy in women. Eye (Lond). 1990;4 ( Pt 3):482-5. doi: 10.1038/eye.1990.62. PMID: 2209913
  18. Johns DR, Heher KL, Miller NR, Smith KH. Leber's hereditary optic neuropathy. Clinical manifestations of the 14484 mutation. Arch Ophthalmol. 1993;111(4):495-498. doi:10.1001/archopht.1993.01090040087038
  19.  Nikoskelainen EK, Huoponen K, Juvonen V, Lamminen T, Nummelin K, Savontaus ML. Ophthalmologic findings in Leber hereditary optic neuropathy, with special reference to mtDNA mutations [published correction appears in Ophthalmology 1996 Jul;103(7):998]. Ophthalmology. 1996;103(3):504-514. doi:10.1016/s0161-6420(96)30665-9
  20. Thieme H, Wissinger B, Jandeck C, et al. A pedigree of Leber's hereditary optic neuropathy with visual loss in childhood, primarily in girls. Graefes Arch Clin Exp Ophthalmol. 1999;237(9):714-719. doi:10.1007/s004170050301
  21. Matsumoto M, Hayasaka S, Kadoi C, et al. Secondary mutations of mitochondrial DNA in Japanese patients with Leber's hereditary optic neuropathy. Ophthalmic Genet. 1999;20(3):153-160. doi:10.1076/opge.20.3.153.2281
  22. Acaroğlu G, Kansu T, Doğulu CF. Visual recovery patterns in children with Leber's hereditary optic neuropathy. Int Ophthalmol. 2001;24(6):349-355. doi:10.1023/b:inte.0000006855.48323.f1
  23. Brown MD, Allen JC, Van Stavern GP, Newman NJ, Wallace DC. Clinical, genetic, and biochemical characterization of a Leber hereditary optic neuropathy family containing both the 11778 and 14484 primary mutations. Am J Med Genet. 2001;104(4):331-338.
  24. Dogulu CF, Kansu T, Seyrantepe V, Ozguc M, Topaloglu H, Johns DR. Mitochondrial DNA analysis in the Turkish Leber's hereditary optic neuropathy population. Eye (Lond). 2001;15(Pt 2):183-188. doi:10.1038/eye.2001.57
  25. Chinnery PF, Brown DT, Andrews RM, et al. The mitochondrial ND6 gene is a hot spot for mutations that cause Leber's hereditary optic neuropathy. Brain. 2001;124(Pt 1):209-218. doi:10.1093/brain/124.1.209
  26. Kawasaki A, Borruat FX. Amélioration rapide de la fonction visuelle après perte visuelle aiguë secondaire à une neuropathie optique de Leber [Rapid onset of visual recovery following acute visual loss due to leber's hereditary optic neuropathy]. Rev Neurol (Paris). 2005;161(5):599-601. doi:10.1016/s0035-3787(05)85099-4
  27. Chuenkongkaew WL, Lertrit P, Limwongse C, et al. An unusual family with Leber's hereditary optic neuropathy and facioscapulohumeral muscular dystrophy. Eur J Neurol. 2005;12(5):388-391. doi:10.1111/j.1468-1331.2004.01060.x
  28. Yokoyama T, Fujiki K, Murakami A, Hotta Y. Long-term follow-up of two sisters with Leber's Hereditary Optic Neuropathy. Jpn J Ophthalmol. 2006;50(1):78-80. doi:10.1007/s10384-005-0274-0
  29. Qu J, Li R, Zhou X, et al. The novel A4435G mutation in the mitochondrial tRNAMet may modulate the phenotypic expression of the LHON-associated ND4 G11778A mutation. Invest Ophthalmol Vis Sci. 2006;47(2):475-483. doi:10.1167/iovs.05-0665
  30. Zhou X, Wei Q, Yang L, et al. Leber's hereditary optic neuropathy is associated with the mitochondrial ND4 G11696A mutation in five Chinese families. Biochem Biophys Res Commun. 2006;340(1):69-75. doi:10.1016/j.bbrc.2005.11.150
  31. Wei QP, Zhou X, Yang L, et al. The coexistence of mitochondrial ND6 T14484C and 12S rRNA A1555G mutations in a Chinese family with Leber's hereditary optic neuropathy and hearing loss. Biochem Biophys Res Commun. 2007;357(4):910-916. doi:10.1016/j.bbrc.2007.04.025
  32. Qu J, Li R, Zhou X, et al. Cosegregation of the ND4 G11696A mutation with the LHON-associated ND4 G11778A mutation in a four generation Chinese family. Mitochondrion. 2007;7(1-2):140-146. doi:10.1016/j.mito.2006.11.015
  33. Grazina MM, Diogo LM, Garcia PC, et al. Atypical presentation of Leber's hereditary optic neuropathy associated to mtDNA 11778G>A point mutation--A case report. Eur J Paediatr Neurol. 2007;11(2):115-118. doi:10.1016/j.ejpn.2006.11.015
  34. Bosley TM, Brodsky MC, Glasier CM, Abu-Amero KK. Sporadic bilateral optic neuropathy in children: the role of mitochondrial abnormalities. Invest Ophthalmol Vis Sci. 2008 Dec;49(12):5250-6. doi: 10.1167/iovs.08-2193. Epub 2008 Aug 1. PMID: 18676632.
  35. Yang S, Ma SQ, Wan X, et al. Long-term outcomes of gene therapy for the treatment of Leber's hereditary optic neuropathy. EBioMedicine. 2016;10:258-268. doi:10.1016/j.ebiom.2016.07.002
  36. Liang M, Guan M, Zhao F, et al. Leber's hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation. Biochem Biophys Res Commun. 2009;383(3):286-292. doi:10.1016/j.bbrc.2009.03.097
  37. Qu J, Zhou X, Zhang J, et al. Extremely low penetrance of Leber's hereditary optic neuropathy in 8 Han Chinese families carrying the ND4 G11778A mutation. Ophthalmology. 2009;116(3):558-564.e3. doi:10.1016/j.ophtha.2008.10.022
  38. Zhang J, Zhou X, Zhou J, et al. Mitochondrial ND6 T14502C variant may modulate the phenotypic expression of LHON-associated G11778A mutation in four Chinese families. Biochem Biophys Res Commun. 2010;399(4):647-653. doi:10.1016/j.bbrc.2010.07.135
  39. Zhou X, Zhang H, Zhao F, et al. Very high penetrance and occurrence of Leber's hereditary optic neuropathy in a large Han Chinese pedigree carrying the ND4 G11778A mutation. Mol Genet Metab. 2010;100(4):379-384. doi:10.1016/j.ymgme.2010.04.013
  40. Qu J, Wang Y, Tong Y, et al. Leber's hereditary optic neuropathy affects only female matrilineal relatives in two Chinese families. Invest Ophthalmol Vis Sci. 2010;51(10):4906-4912. doi:10.1167/iovs.09-5027
  41. Hsieh YT, Yang MT, Peng YJ, Hsu WC. Central retinal vein occlusion as the initial manifestation of LHON / MELAS overlap syndrome with mitochondrial DNA G13513A mutation--case report and literature review. Ophthalmic Genet. 2011;32(1):31-38. doi:10.3109/13816810.2010.531880
  42. Liu XL, Zhou X, Zhou J, et al. Leber's hereditary optic neuropathy is associated with the T12338C mutation in mitochondrial ND5 gene in six Han Chinese families. Ophthalmology. 2011;118(5):978-985. doi:10.1016/j.ophtha.2010.09.003
  43. Lin HZ, Pang CY, Chen SP, Tsai RK. Vision improvement in a Taiwanese (Han Chinese) family with Leber's hereditary optic neuropathy. Kaohsiung J Med Sci. 2012;28(12):679-682. doi:10.1016/j.kjms.2012.04.038
  44. Zhou X, Qian Y, Zhang J, et al. Leber's hereditary optic neuropathy is associated with the T3866C mutation in mitochondrial ND1 gene in three Han Chinese Families. Invest Ophthalmol Vis Sci. 2012;53(8):4586-4594. Published 2012 Jul 9. doi:10.1167/iovs.11-9109
  45. Romero P, Fernández V, Slabaugh M, et al. Pan-American mDNA haplogroups in Chilean patients with Leber's hereditary optic neuropathy. Mol Vis. 2014;20:334-340. Published 2014 Mar 14.
  46. Yum HR, Chae H, Shin SY, Kim Y, Kim M, Park SH. Pathogenic mitochondrial DNA mutations and associated clinical features in Korean patients with Leber's hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2014;55(12):8095-8101. Published 2014 Oct 23. doi:10.1167/iovs.14-15311
  47. Zhang J, Jiang P, Jin X, et al. Leber's hereditary optic neuropathy caused by the homoplasmic ND1 m.3635G>A mutation in nine Han Chinese families. Mitochondrion. 2014;18:18-26. doi:10.1016/j.mito.2014.08.008
  48. Ji Y, Liang M, Zhang J, et al. Mitochondrial haplotypes may modulate the phenotypic manifestation of the LHON-associated ND1 G3460A mutation in Chinese families. J Hum Genet. 2014;59(3):134-140. doi:10.1038/jhg.2013.134
  49. Kolarova H, Catarino CB, Priglinger C, Klopstock T. Charles Bonnet syndrome in Leber's hereditary optic neuropathy. J Neurol. 2019;266(3):777-779. doi:10.1007/s00415-019-09205-3
  50. Yang S, Ma SQ, Wan X, et al. Long-term outcomes of gene therapy for the treatment of Leber's hereditary optic neuropathy. EBioMedicine. 2016;10:258-268. doi:10.1016/j.ebiom.2016.07.002
  51. Yang S, Yang H, Ma SQ, et al. Evaluation of Leber's hereditary optic neuropathy patients prior to a gene therapy clinical trial. Medicine (Baltimore). 2016;95(40):e5110. doi:10.1097/MD.0000000000005110
  52. Jiang P, Liang M, Zhang C, et al. Biochemical evidence for a mitochondrial genetic modifier in the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Hum Mol Genet. 2016;25(16):3613-3625. doi:10.1093/hmg/ddw199
  53. Ji Y, Liang M, Zhang J, et al. Mitochondrial ND1 Variants in 1281 Chinese Subjects With Leber's Hereditary Optic Neuropathy. Invest Ophthalmol Vis Sci. 2016;57(6):2377-2389. doi:10.1167/iovs.16-19243
  54. Garcia GA, Khoshnevis M, Gale J, et al. Profound vision loss impairs psychological well-being in young and middle-aged individuals. Clin Ophthalmol. 2017;11:417-427. Published 2017 Feb 22. doi:10.2147/OPTH.S113414
  55.  Orssaud C, Robert MP, Bremond Gignac D. Neuropathies optiques héréditaires en ophtalmo-pédiatrie [Hereditary optic neuropathies in pediatric ophthalmology]. J Fr Ophtalmol. 2018;41(5):402-406. doi:10.1016/j.jfo.2017.11.017
  56. Yuan JJ, Zhang Y, Wang LL, et al. Visual Field Variability after Gene Therapy for Leber's Hereditary Optic Neuropathy. Ophthalmic Res. 2018;60(3):176-184. doi:10.1159/000487485
  57. Zhang J, Ji Y, Liu X, et al. Leber's hereditary optic neuropathy caused by a mutation in mitochondrial tRNAThr in eight Chinese pedigrees. Mitochondrion. 2018;42:84-91. doi:10.1016/j.mito.2017.12.003
  58.  Kolarova H, Catarino CB, Priglinger C, Klopstock T. Charles Bonnet syndrome in Leber's hereditary optic neuropathy. J Neurol. 2019;266(3):777-779. doi:10.1007/s00415-019-09205-3
  59. Zhang Y, Li X, Yuan J, et al. Prognostic factors for visual acuity in patients with Leber's hereditary optic neuropathy after rAAV2-ND4 gene therapy. Clin Exp Ophthalmol. 2019;47(6):774-778. doi:10.1111/ceo.13515
  60. Kassem A, Karanjia R, McClelland C, Sadun A, Lee MS. Unilateral cone-rod dysfunction and retinal thinning in a child carrying the 14484 mutation of Leber hereditary optic neuropathy. J AAPOS. 2019;23(2):104-106. doi:10.1016/j.jaapos.2018.09.005
  61. Cui S, Yang L, Jiang H, et al. Clinical Features of Chinese Sporadic Leber Hereditary Optic Neuropathy Caused by Rare Primary mtDNA Mutations. J Neuroophthalmol. 2020;40(1):30-36. doi:10.1097/WNO.0000000000000799
  62. 61.Poincenot L, Pearson AL, Karanjia R. Demographics of a Large International Population of Patients Affected by Leber's Hereditary Optic Neuropathy. Ophthalmology. 2020;127(5):679-688. doi:10.1016/j.ophtha.2019.11.014
  63. Szałanda-Hora L. Dziedziczny zanik nerwów wzrokowych typu Kjera [Hereditary optic atrophy of the Kjer's type]. Neurol Neurochir Pol. 1979 Jan-Feb;13(1):107-10. Polish. PMID: 424046.
  64. Santiesteban-Freixas R, Rodríguez-Hernández M, Mendoza-Santiesteban CE, Carrero-Salgado M, Francisco-Plasencia M, Méndez-Larramendi I, Vidal-Casalís S, Rivero-Reyes R, Hirano M. Manifestaciones clínicas e identificación molecular de pacientes con neuropatía óptica hereditaria de Leber en un centro de referencia nacional para la neuroftalmología en Cuba [Clinical manifestation and molecular identification of patients with Leber's hereditary optic neuropathy in a national reference center for neuro-ophthalmology in Cuba]. Rev Neurol. 1999 Sep 1-15;29(5):408-15. Spanish. PMID: 10584242.
  65. Rosenberg T, Kann E, Nørby S. Hereditaer opticusatrofi. En klinisk-genealogisk status over danske "Leber-slaegter" [Hereditary optic nerve atrophy. A clinical-genealogical status over Danish families with Leber disease]. Ugeskr Laeger. 1995 May 8;157(19):2707-11. Danish. PMID: 7770969.
  66. Hotta Y, Fujiki K, Hayakawa M, Nakajima A, Kanai A, Mashima Y, Hiida Y, Shinoda K, Yamada K, Oguchi Y, et al. Clinical features of Japanese Leber's hereditary optic neuropathy with 11778 mutation of mitochondrial DNA. Jpn J Ophthalmol. 1995;39(1):96-108. PMID: 7643491.
  67. Isashiki Y, Ohba N, Uto M, Nakagawa M, Nakano T, Kitahara K, Hotta A, Okamura R, Ozaki M, Futami Y, et al. Nonfamilial and unusual cases of Leber's hereditary optic neuropathy identified by mitochondrial DNA analysis. Jpn J Ophthalmol. 1992;36(2):197-204. PMID: 1513067.
  68. Zakharova EIu, Rudenskaia GE, Karlova IZ, Adarcheva LS, Mikhaĭlova EN. Nasledstvennaia atrofiia zritel'nykh nervov Leber: DNK-diagnostika i kliniko-geneticheskie sopostavleniia v 12 sem'iakh [Leber's hereditary optic neuropathy: DNA-diagnosis and clinico-genetic comparisons in 12 families]. Zh Nevrol Psikhiatr Im S S Korsakova. 2003;103(7):44-50. Russian. PMID: 12938654.
  69. Chelstowska J, Mroczek K, Niebudek D, Małecka-Idzikowska A, Bartnik E, Hanna Nizankowska M, Sasiadek M. Badania kliniczne neuropatii wzrokowej lebera u pacjentów z taka sama mutacja genowa [Clinical examination of Leber hereditary optic neuropathy in patients with the same gene mutation]. Przegl Lek. 2002;59(10):777-9. Polish. PMID: 12632910.
  70. Hudson G, Carelli V, Horvath R, Zeviani M, Smeets HJ, Chinnery PF. X-Inactivation patterns in females harboring mtDNA mutations that cause Leber hereditary optic neuropathy. Mol Vis. 2007 Dec 21;13:2339-43. PMID: 18199976.
  71. Grönlund MA, Honarvar AK, Andersson S, Moslemi AR, Oldfors A, Holme E, Tulinius M, Darin N. Ophthalmological findings in children and young adults with genetically verified mitochondrial disease. Br J Ophthalmol. 2010 Jan;94(1):121-7. doi: 10.1136/bjo.2008.154187. PMID: 20385529.
  72. Filatov A, Khanni JL, Espinosa PS. Leber Hereditary Optic Neuropathy: Case Report and Literature Review. Cureus. 2020 Apr 20;12(4):e7745. doi: 10.7759/cureus.7745. PMID: 32454526; PMCID: PMC7241220.
  73. Tonska K, Kurzawa M, Ambroziak AM, Korwin-Rujna M, Szaflik JP, Grabowska E, Szaflik J, Bartnik E. A family with 3460G>A and 11778G>A mutations and haplogroup analysis of Polish Leber hereditary optic neuropathy patients. Mitochondrion. 2008 Dec;8(5-6):383-8. doi: 10.1016/j.mito.2008.08.002. Epub 2008 Aug 29. PMID: 18801464.
  74. Fujiki K, Hotta Y, Hayakawa M, Saito K, Ara F, Ueda S, Goto T, Ishida M, Yanashima K, Shiono T, et al. A mutation of mitochondrial DNA in Japanese families with Leber's hereditary optic neuropathy. Jinrui Idengaku Zasshi. 1991 Jun;36(2):143-7. doi: 10.1007/BF01876576. PMID: 1681125.
  75. Piotrowska-Nowak A, Krawczyński MR, Kosior-Jarecka E, Ambroziak AM, Korwin M, Ołdak M, Tońska K, Bartnik E. Mitochondrial genome variation in male LHON patients with the m.11778G > A mutation. Metab Brain Dis. 2020 Dec;35(8):1317-1327. doi: 10.1007/s11011-020-00605-3. Epub 2020 Aug 1. PMID: 32740724; PMCID: PMC7584531.
  76. Schieving JH, de Vries BB, Hol F, Stroink H. Plotselinge blindheid: denk aan hereditaire opticusatrofie van Leber [Sudden blindness: consider Leber's hereditary optic neuropathy]. Ned Tijdschr Geneeskd. 2008 Oct 25;152(43):2313-6. Dutch. PMID: 19024058.
  77. Elder MJ, De Cock R. Childhood blindness in the West Bank and Gaza Strip: prevalence, aetiology and hereditary factors. Eye (Lond). 1993;7 ( Pt 4):580-3. doi: 10.1038/eye.1993.126. PMID: 8253243.
  78. Bouquet C, Vignal Clermont C, Galy A, Fitoussi S, Blouin L, Munk MR, Valero S, Meunier S, Katz B, Sahel JA, Thomasson N. Immune Response and Intraocular Inflammation in Patients With Leber Hereditary Optic Neuropathy Treated With Intravitreal Injection of Recombinant Adeno-Associated Virus 2 Carrying the ND4 Gene: A Secondary Analysis of a Phase 1/2 Clinical Trial. JAMA Ophthalmol. 2019 Apr 1;137(4):399-406. doi: 10.1001/jamaophthalmol.2018.6902. PMID: 30730541; PMCID: PMC6459107.
  79. Catarino CB, von Livonius B, Priglinger C, Banik R, Matloob S, Tamhankar MA, Castillo L, Friedburg C, Halfpenny CA, Lincoln JA, Traber GL, Acaroglu G, Black GCM, Doncel C, Fraser CL, Jakubaszko J, Landau K, Langenegger SJ, Muñoz-Negrete FJ, Newman NJ, Poulton J, Scoppettuolo E, Subramanian P, Toosy AT, Vidal M, Vincent AL, Votruba M, Zarowski M, Zermansky A, Lob F, Rudolph G, Mikazans O, Silva M, Llòria X, Metz G, Klopstock T. Real-World Clinical Experience With Idebenone in the Treatment of Leber Hereditary Optic Neuropathy. J Neuroophthalmol. 2020 Dec;40(4):558-565. doi: 10.1097/WNO.0000000000001023. PMID: 32991388; PMCID: PMC7657145.
  80. Orssaud C. Cardiac Disorders in Patients With Leber Hereditary Optic Neuropathy. J Neuroophthalmol. 2018 Dec;38(4):466-469. doi: 10.1097/WNO.0000000000000623. PMID: 29384800.
  81. Orssaud C, Bidot S, Lamirel C, Brémond Gignac D, Touitou V, Vignal C. Raxone dans la neuropathie optique de Leber : retour d’expérience parisienne [Raxone in the Leber optical neuropathy: Parisian experience]. J Fr Ophtalmol. 2019 Mar;42(3):269-275. French. doi: 10.1016/j.jfo.2018.06.010. Epub 2019 Feb 1. PMID: 30712826.
  82. Puomila A, Hämäläinen P, Kivioja S, Savontaus ML, Koivumäki S, Huoponen K, Nikoskelainen E. Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur J Hum Genet. 2007 Oct;15(10):1079-89. doi: 10.1038/sj.ejhg.5201828. Epub 2007 Apr 4. PMID: 17406640.
  83. Yu-Wai-Man P, Elliott C, Griffiths PG, Johnson IJ, Chinnery PF. Investigation of auditory dysfunction in Leber hereditary optic neuropathy. Acta Ophthalmol. 2008 Sep;86(6):630-3. doi: 10.1111/j.1600-0420.2007.01078.x. PMID: 18070226.
  84. Shoffner JM, Brown MD, Stugard C, Jun AS, Pollock S, Haas RH, Kaufman A, Koontz D, Kim Y, Graham JR, et al. Leber's hereditary optic neuropathy plus dystonia is caused by a mitochondrial DNA point mutation. Ann Neurol. 1995 Aug;38(2):163-9. doi: 10.1002/ana.410380207. PMID: 7654063.
  85. Lazdinyte S, Schorderet DF, Schaller A, Valmaggia C, Todorova MG. Analysis of Inherited Optic Neuropathies. Klin Monbl Augenheilkd. 2019 Apr;236(4):451-461. English. doi: 10.1055/a-0829-6828. Epub 2019 Mar 4. PMID: 30831606.
  86. Sartore M, Grasso M, Piccolo G, Fasani R, Bergamaschi R, Malaspina A, Ceroni M, Kobayashi M, Semeraro A, Arbustini E, et al. Leber's hereditary optic neuropathy (LHON)-related mitochondrial DNA sequence changes in italian patients presenting with sporadic bilateral optic neuritis. Biochem Mol Med. 1995 Oct;56(1):45-51. doi: 10.1006/bmme.1995.1055. PMID: 8593537.
  87. Meire FM, Van Coster R, Cochaux P, Obermaier-Kusser B, Candaele C, Martin JJ. Neurological disorders in members of families with Leber's hereditary optic neuropathy (LHON) caused by different mitochondrial mutations. Ophthalmic Genet. 1995 Sep;16(3):119-26. doi: 10.3109/13816819509059971. PMID: 8556281.
  88. Black GC, Morten K, Laborde A, Poulton J. Leber's hereditary optic neuropathy: heteroplasmy is likely to be significant in the expression of LHON in families with the 3460 ND1 mutation. Br J Ophthalmol. 1996 Oct;80(10):915-7. doi: 10.1136/bjo.80.10.915. PMID: 8976705; PMCID: PMC505650.
  89. Korkiamäki P, Kervinen M, Karjalainen K, Majamaa K, Uusimaa J, Remes AM. Prevalence of the primary LHON mutations in Northern Finland associated with bilateral optic atrophy and tobacco-alcohol amblyopia. Acta Ophthalmol. 2013 Nov;91(7):630-4. doi: 10.1111/j.1755-3768.2012.02506.x. Epub 2012 Sep 12. PMID: 22970697.
  90. Blanc C, Heran F, Habas C, Bejot Y, Sahel J, Vignal-Clermont C. MRI of the Optic Nerves and Chiasm in Patients With Leber Hereditary Optic Neuropathy. J Neuroophthalmol. 2018 Dec;38(4):434-437. doi: 10.1097/WNO.0000000000000621. PMID: 29300239.
  91. Pfeffer G, Burke A, Yu-Wai-Man P, Compston DA, Chinnery PF. Clinical features of MS associated with Leber hereditary optic neuropathy mtDNA mutations. Neurology. 2013 Dec 10;81(24):2073-81. doi: 10.1212/01.wnl.0000437308.22603.43. Epub 2013 Nov 6. PMID: 24198293; PMCID: PMC3863351.
  92. Mojon DS, Herbert J, Sadiq SA, Miller JR, Madonna M, Hirano M. Leber's hereditary optic neuropathy mitochondrial DNA mutations at nucleotides 11778 and 3460 in multiple sclerosis. Ophthalmologica. 1999;213(3):171-5. doi: 10.1159/000027414. PMID: 10202290.
  93. Kellar-Wood H, Robertson N, Govan GG, Compston DA, Harding AE. Leber's hereditary optic neuropathy mitochondrial DNA mutations in multiple sclerosis. Ann Neurol. 1994 Jul;36(1):109-12. doi: 10.1002/ana.410360121. PMID: 8024249.
  94. Dandekar SS, Graham EM, Plant GT. Ladies with Leber's hereditary optic neuropathy: an atypical disease. Eur J Ophthalmol. 2002 Nov-Dec;12(6):537-41. doi: 10.1177/112067210201200615. PMID: 12510724.
  95. Ventura DF, Gualtieri M, Oliveira AG, Costa MF, Quiros P, Sadun F, de Negri AM, Salomão SR, Berezovsky A, Sherman J, Sadun AA, Carelli V. Male prevalence of acquired color vision defects in asymptomatic carriers of Leber's hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2007 May;48(5):2362-70. doi: 10.1167/iovs.06-0331. PMID: 17460303.
  96. Harding AE, Sweeney MG, Miller DH, Mumford CJ, Kellar-Wood H, Menard D, McDonald WI, Compston DA. Occurrence of a multiple sclerosis-like illness in women who have a Leber's hereditary optic neuropathy mitochondrial DNA mutation. Brain. 1992 Aug;115 ( Pt 4):979-89. doi: 10.1093/brain/115.4.979. PMID: 1393514
  97. Poulton J, Deadman ME, Bronte-Stewart J, Foulds WS, Gardiner RM. Analysis of mitochondrial DNA in Leber's hereditary optic neuropathy. J Med Genet. 1991;28(11):765-770. doi:10.1136/jmg.28.11.765
  98. Kervinen M, Widgren P, Saarela V, Uusimaa J, Remes A. Leber hereditary optic neuropathy mutations and toxic-genetic optic neuropathy - authors' response. Acta Ophthalmol. 2014 Feb;92(1):e78-9. doi: 10.1111/aos.12089. Epub 2013 Feb 25. PMID: 23438023.
  99. De Vries DD, Went LN, Bruyn GW, Scholte HR, Hofstra RM, Bolhuis PA, van Oost BA. Genetic and biochemical impairment of mitochondrial complex I activity in a family with Leber hereditary optic neuropathy and hereditary spastic dystonia. Am J Hum Genet. 1996 Apr;58(4):703-11. PMID: 8644732; PMCID: PMC1914692.
  100. Povalko N, Zakharova E, Rudenskaia G, Akita Y, Hirata K, Toyojiro M, Koga Y. A new sequence variant in mitochondrial DNA associated with high penetrance of Russian Leber hereditary optic neuropathy. Mitochondrion. 2005 Jun;5(3):194-9. doi: 10.1016/j.mito.2005.03.003. PMID: 16050984.
  101. Ng YS, Lax NZ, Maddison P, Alston CL, Blakely EL, Hepplewhite PD, Riordan G, Meldau S, Chinnery PF, Pierre G, Chronopoulou E, Du A, Hughes I, Morris AA, Kamakari S, Chrousos G, Rodenburg RJ, Saris CGJ, Feeney C, Hardy SA, Sakakibara T, Sudo A, Okazaki Y, Murayama K, Mundy H, Hanna MG, Ohtake A, Schaefer AM, Champion MP, Turnbull DM, Taylor RW, Pitceathly RDS, McFarland R, Gorman GS. MT-ND5 Mutation Exhibits Highly Variable Neurological Manifestations at Low Mutant Load. EBioMedicine. 2018 Apr;30:86-93. doi: 10.1016/j.ebiom.2018.02.010. Epub 2018 Feb 24. PMID: 29506874; PMCID: PMC5952215.
  102. Liu HL, Yuan JJ, Tian Z, Li X, Song L, Li B. What are the characteristics and progression of visual field defects in patients with Leber hereditary optic neuropathy: a prospective single-centre study in China. BMJ Open. 2019 Mar 15;9(3):e025307. doi: 10.1136/bmjopen-2018-025307. PMID: 30878986; PMCID: PMC6429856.
  103. Hudson G, Keers S, Yu-Wai-Man P, Griffiths P, Huoponen K, Savontaus ML, Nikoskelainen E, Zeviani M, Carrara F, Horvath R, Karcagi V, Spruijt L, de Coo IF, Smeets HJ, Chinnery PF. Identification of an X-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am J Hum Genet. 2005 Dec;77(6):1086-91. doi: 10.1086/498176. Epub 2005 Oct 11. PMID: 16380918; PMCID: PMC1285165.
  104. Kirkman MA, Yu-Wai-Man P, Korsten A, Leonhardt M, Dimitriadis K, De Coo IF, Klopstock T, Chinnery PF. Gene-environment interactions in Leber hereditary optic neuropathy. Brain. 2009 Sep;132(Pt 9):2317-26. doi: 10.1093/brain/awp158. Epub 2009 Jun 12. PMID: 19525327; PMCID: PMC2732267.
  105. Abu-Amero KK. Leber's Hereditary Optic Neuropathy: The Mitochondrial Connection Revisited. Middle East Afr J Ophthalmol. 2011 Jan;18(1):17-23. doi: 10.4103/0974-9233.75880. PMID: 21572729; PMCID: PMC3085146.
  106. McCafferty B, McClelland CM, Lee MS. The diagnostic challenge of evaluating papilledema in the pediatric patient. Taiwan J Ophthalmol. 2017 Jan-Mar;7(1):15-21. doi: 10.4103/tjo.tjo_17_17. PMID: 29018749; PMCID: PMC5525598.
  107. Rook BS, Phillips PH. Pediatric pseudotumor cerebri. Curr Opin Ophthalmol. 2016 Sep;27(5):416-9. doi: 10.1097/ICU.0000000000000300. PMID: 27491010.
  108. Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2013 Sep 24;81(13):1159-65. doi: 10.1212/WNL.0b013e3182a55f17. Epub 2013 Aug 21. PMID: 23966248.
  109. Chang MY, Binenbaum G, Heidary G, Morrison DG, Galvin JA, Trivedi RH, Pineles SL. Imaging Methods for Differentiating Pediatric Papilledema from Pseudopapilledema: A Report by the American Academy of Ophthalmology. Ophthalmology. 2020 Oct;127(10):1416-1423. doi: 10.1016/j.ophtha.2020.03.027. Epub 2020 May 5. PMID: 32386809.
  110. Naoum S, Bouacha I, Drumare I, Marks C, Defoort-Delemmes S. Druses de la papille de l'enfant : intérêt des différents examens d'imagerie [Optic disc drusen in children: Advantages of various imaging modalities]. J Fr Ophtalmol. 2016 Apr;39(4):341-5. French. doi: 10.1016/j.jfo.2016.02.001. Epub 2016 Mar 31. PMID: 27038536.
  111. Chang MY, Pineles SL. Pediatric Optic Neuritis. Semin Pediatr Neurol. 2017 May;24(2):122-128. doi: 10.1016/j.spen.2017.04.004. Epub 2017 Apr 10. PMID: 28941527.
  112. Gueven N, Ravishankar P, Eri R, Rybalka E. Idebenone: When an antioxidant is not an antioxidant. Redox Biol. 2021 Jan;38:101812. doi: 10.1016/j.redox.2020.101812. Epub 2020 Nov 25. PMID: 33254077; PMCID: PMC7708875.
  113. Manickam AH, Michael MJ, Ramasamy S. Mitochondrial genetics and therapeutic overview of Leber's hereditary optic neuropathy. Indian J Ophthalmol. 2017 Nov;65(11):1087-1092. doi: 10.4103/ijo.IJO_358_17. PMID: 29133631; PMCID: PMC5700573.
  114. Mauri E, Dilena R, Boccazzi A, Ronchi D, Piga D, Triulzi F, Gagliardi D, Brusa R, Faravelli I, Bresolin N, Magri F, Corti S, Comi GP. Subclinical Leber's hereditary optic neuropathy with pediatric acute spinal cord onset: more than meets the eye. BMC Neurol. 2018 Dec 27;18(1):220. doi: 10.1186/s12883-018-1227-9. PMID: 30591017; PMCID: PMC6307307.