Path tracking control strategy of emergency collision avoidance is the research hotspot for intelligent vehicles, and active four-wheel steering and integrated chassis control such as differential braking are the development trend for the control system of intelligent vehicle. Considering both driving performance and path tracking performance, an active obstacle avoidance controller integrated with four-wheel steering (4WS), active rear steering (ARS) and differential braking control (RBC) based on adaptive model predictive theory (AMPC) is proposed. The designed active obstacle avoidance control architecture is composed of two parts, a supervisor and an MPC controller. The supervisor is responsible for selecting the appropriate control mode based on driving vehicle information and threshold of lateral and roll stability. In addition, a non-linear predict model is employed to obtain the future states of the driving vehicle. Then the AMPC is used to calculate the desired steering angle and differential braking toque when the driving stability indexes exceed the safety threshold. Finally, the proposed collision avoidance path tracking control strategy was simulated under emergency conditions via Carsim-Simulink co-simulation. The results show that the controller based on AMPC can be used to tracking the path of obstacle avoidance and has good performance in driving stability under emergencies.