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Abstract 
 
Backgroud: Patients with sepsis complicated by anemia have a higher risk of mortality. It 
is clinically important to study the risk factors associated with the prognosis of this disease. 
The aim of this study was to establish a predictive model of mortality during hospitalization 
by extracting clinical data from the Medical Information Mart for Intensive Care III (MIMIC-
III) database. 
 
Methods: The clinical data of patients with sepsis complicated by anemia in the MIMIC-III 
database were retrospectively analyzed. Indexes were screened by stepwise logistic 
regression (LR), and machine learning predictive models such as Decision Tree (DT), 
Random Forests (RF), and eXtreme Gradient Boosting (XGBoost) were developed and 
compared, identifying advantages and disadvantages of each model.  
 
Results: A total of 13,547 patients with sepsis complicated by anemia were included in 
the study, among which 1,827 died during hospitalization and 11,720 were still alive at 
discharge. The preliminary stepwise regression model selected 20 clinical indexes, 
including Elixhauser comorbidity index, maximum blood urea nitrogen (BUN), and 
maximum hemoglobin reduction. The predictive models showed good discriminative ability 
(area under the receiver operating characteristic curve [AUROC]:LR, 0.777; DT, 0.726; RF, 
0.788; XGBoost, 0.815) and goodness of fit (area under the precision-recall curve [AUPRC]: 
LR, 0.350; DT, 0.290; RF, 0.400; XGBoost, 0.428). The Shapley Additive exPlanation 
(SHAP) values in the XGBoost model showed that Elixhauser comorbidity index, maximum 
BUN, maximum hemoglobin reduction, ventilator use within 24 hours of admission, and 
age were significant features for predicting in-hospital mortality in patients with sepsis 
complicated by anemia.  
 
Conclusions: The XGBoost model had better discrimination ability and goodness of fit 
when compared with other models. Machine learning algorithms have significant practical 
value in the development of an early warning system for patients with sepsis complicated 
by anemia. 
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Background 
Sepsis has been recognized as an important cause of mortality in critically ill patients and is 

associated with a high incidence of multiple organ dysfunction. It is not rare in clinical practice to 

find sepsis complicated by anemia, because most patients with severe sepsis for more than 3 days 

will suffer from anemia [1]. The etiology and pathogenesis of sepsis complicated by anemia are 

varied. Previous studies have explored the possible causes of anemia, including red blood cell 

destruction, myelosuppression, decreased erythropoietin, and iatrogenic blood loss [2-6]. However, 



several studies have shown that there may be other causes of anemia during the acute phase of sepsis, 

including the degradation of the glucose calyx of the vascular endothelial membrane [7,8] leading 

to the entry of large amounts of tissue fluid into the blood vessels, the dilution of hemoglobin after 

massive fluid infusion [9], etc. 

Moreover, patients with sepsis complicated by anemia have a higher risk of mortality, since 

severe anemia will aggravate tissue hypoxia, leading to further deterioration of organ function and 

circulation disorders [10,11]. Meanwhile, severe anemia, which often requires blood transfusion, 

also increases the risk of infection [10]. Hence, it is clinically important to study the risk factors 

associated with the prognosis of sepsis complicated by anemia. The aim of this study was to 

establish a predictive model of mortality during hospitalization for patients with sepsis complicated 

by anemia by extracting clinical data from the Medical Information Mart for Intensive Care III 

(MIMIC-III) database. Due to the limitations of traditional statistical methods in dealing with 

covariates and missing values in retrospective studies, we adopted three machine-learning models, 

namely Decision Tree (DT), Random Forests (RF), and eXtreme Gradient Boosting (XGBoost), 

and compared their respective advantages and disadvantages. Such tools can be used to explore the 

risk factors of patients with sepsis complicated by anemia and to predict their mortality risk. 

 
Materials and methods 
Database 

MIMIC is a large online clinical data set of critically ill patients created by the Massachusetts 

Institute of Technology (MIT) in 2003 [12,13]. MIMIC-III was released at the end of 2015, and 

includes 28,000 additional records compared with MIMIC-II; the data were cleansed and proofread 

to simplify their structure and increase their reliability. 

This study was based on the MIMIC-III database, and the project was approved by the Beth Israel 

Deaconess Medical Center and the MIT Institutional Review Board. Since all protected private 

information was identified and removed, individual patient consent was no longer required. As this 

project is a retrospective and observational study, the clinical data of patients with sepsis were 

extracted by database management software and language tools; all relevant data were exported, 

processed, and analyzed by data analysis software. Such analysis does not have any impact on the 

treatment of patients and has good safety [13]. A Collaborative Institutional Training Initiative 

(CITI) license was obtained (number 8761695), together with the permission to use the MIMIC-III 

database in accordance with the relevant regulations. 

 
Inclusion and exclusion criteria 

Inclusion criteria: the diagnosis of sepsis was based on the operational scheme of Sepsis 3.0 [14]. 

Sepsis was diagnosed in patients suspected to have infection and with sequential organ failure 

assessment (SOFA) score and quick SOFA (qSOFA) score ≥2. The time when the patient diagnosed 
with sepsis entered the intensive care unit (ICU) was defined as the admission time. The diagnostic 

criteria for anemia [15] were hemoglobin <13.6 g/dL for males and <11.9 g/dL for females. 

Exclusion criteria: 1. incomplete hemoglobin data; 2. not admitted to any ICU; 2. age <16 years; 3. 

repeated admission to ICU (only the first admission was considered); 4. pregnant or in the perinatal 

period; 5. total length of ICU stay <24 hours. 

 
Variable screening 
Most extracted variables were indexes that might reflect tissue oxygen metabolism and common 

indexes related to sepsis-associated organ damage. Indexes with missing data rate ≤30% were 
included in the screening. Clinical and laboratory variables were collected within 24 hours of 

admission to the ICU. General information collected about the patients included: age; gender; vital 

signs, such as minimum systolic blood pressure (SBP), minimum diastolic blood pressure (DBP), 

maximum respiratory rate (RR), and maximum heart rate (HR). The laboratory tests included 

minimum hemoglobin, maximum hemoglobin reduction, maximum hemoglobin reduction rate, 

minimum albumin, minimum red blood cell (RBC) count, minimum hematocrit (HCT), minimum 

mean corpuscular hemoglobin concentration (MCHC), minimum oxygen partial pressure (PO2), 

maximum carbon dioxide partial pressure (PCO2), minimum arterial oxygen saturation (SaO2), 

maximum lactate, minimum oxygen saturation with pulse oximetry (SpO2), maximum B-type 

natriuretic peptide (BNP), maximum serum creatinine, maximum blood urea nitrogen(BUN), 

maximum D-dimer, maximum international normalized ratio (INR), maximum prothrombin time 



(PT), maximum partial thromboplastin time (PTT), minimum platelet count, maximum blood 

glucose, maximum troponin, and maximum uric acid. The incidence of renal failure, dialysis, 

ventilator use, sedation, Elixhauser comorbidity index, and vasoactive drugs such as dobutamine, 

dopamine, epinephrine, norepinephrine, and phenylephrine were also included. In-hospital 

mortality was observed as the outcome event.  

It should be noted that: (1) The relevant indexes within 24 hours include data from 6 hours before 

admission to the ICU to 24 hours after admission, according to the relevant literature[12,13]; (2) 

since blood transfusion could have a direct impact on the hemoglobin level, we discarded 

hemoglobin data taken after transfusion of erythrocytes. 

 
Statistical methods 

Statistical Product and Service Solutions 25 (SPSS 25, International Business Machines 

Corporation, New York, USA) and R 3.5.2 (R Project for Statistical Computing, Austria, Vienna) 

were used for data analysis. Data with normal distribution and homogeneity of variance were 

represented as mean ± standard deviation (X ̅±s). Data not following the normal distribution were 

represented as median (M) and quartiles (P25, P75). Count data were presented as numbers 

(percentages). The Student t test was used to compare normally distributed data. The t' test was 

adopted when the variance of the data was not uniform. The Mann-Whitney U test was used for 

data not following the normal distribution. The chi-square test was used to compare the count data 

between groups. P-values <0.05 were considered statistically significant. 

Further, we used the Python StatsModels module for feature filtering. In this study, a stepwise 

logistic regression model with bidirectional method (combination of forward and backward) was 

used to predict in-hospital mortality and screen variables that might affect outcome events, using 

the Akaike Information Criterion (AIC). The AIC is a standard method used to evaluate the 

complexity of a statistical model and to measure how well it fits the data, and it is based on the 

concept of information entropy. The formula is as follows: 𝐴𝐼𝐶 =  −2 ∗ ln(𝐿) + 2 ∗ 𝐾                                               (1) 

where L is the likelihood value and K is the number of parameters. The AIC increases with the 

number of free parameters to improve the optimization of fitting and avoids the occurrence of 

overfitting as much as possible. Therefore, we selected the minimum AIC information statistics to 

select the most predictive variables and perform feature screening. 

 
Construction of machine learning models 
The models were built by the Scikit-Learn machine learning library in Python, and the features 

selected by stepwise logistic regression were used in the machine learning models. Logistic 

regression (LR) and the DT and RF models were set as the baseline models in this study. 

Furthermore, the XGBoost model [16] was used to explore the risk factors for patients with sepsis 

complicated by anemia and to predict the mortality risk.  

Given n samples of patient data and m features 𝒙𝒊(𝒊 ∈ (0,1,2, … , 𝒎)),the predicted probability 𝒚̂𝒊 of each patient can be calculated as follows: 𝒚̂𝒊 = ∑ 𝒇𝒌(𝒙𝒊),𝑲𝑲=1 𝒇𝒌 ∈ Ϝ                                                       (2)   𝒇𝒌 is the prediction fraction of a single decision tree, and Ϝ is the tree space. In order to obtain the 

optimal solution, the following regularization objectives are optimized: 𝓛(𝝓) = ∑ 𝒍 (𝒚̂𝒊, 𝒚𝒊) +𝒊 ∑ 𝛀(𝒇𝒌)𝒌                                                  (3) 𝛀(𝒇) = 𝜸𝑻 + 12 𝝀||𝝎𝒊||2                                                        (4)   𝒍 is the loss function, used to calculate the losses of the predicted value 𝒚̂𝒊and the true value 𝒚𝒊, 𝛀 

is the penalty term, and 𝑻 is the number of leaves. 𝝎𝒊 is the fraction of leaf node 𝒊, while 𝜸 and 𝝀 
are the coefficient parameters. 

Moreover, in order to make the XGBoost black box model interpretable, the Shapley Additive 

exPlanation (SHAP) value algorithm [17] was used to interpret the model: the following formula 

calculates the contribution 𝝓𝒊 of each feature. 𝝓𝒊 = ∑ |𝑺|!(𝑴−|𝑺|−1)!𝑴! [𝒇𝑺⋃{𝒊}(𝒙𝑺⋃{𝒊}) − 𝒇𝑺(𝒙𝑺)]𝑺⊆𝑵\{𝒊}                                (5) 𝒇(𝒙) = 𝒈(𝒛′) = 𝝓0 + ∑ 𝝓𝒊𝒛′𝒊𝑴𝒊=1                                              (6)   𝑵 is the set of features of the training data set, of dimension 𝑴, while 𝑺 is the subset extracted 



from 𝑵 of dimension |𝑺|. 𝝓𝒊 represents the contribution of feature 𝒊, 𝒇(𝒙) is the prediction value of 

the decision tree, and 𝒛′𝒊 ∈ {0,1}𝑴is the number of features included in the decision path made by 

the sample in all of the M features, with 𝝓0 being constant. 

We randomly divided the patient data in a 4:1 ratio, with 4 portions used as the training set and 1 

portion as the testing set. The Grid Search Method was used to find the best hyperparameters in the 

training set, and 5-fold cross validation was used to avoid overfitting. The XGBoost hyperparameter 

settings are shown in Table S1, while basic information about the training and validation groups is 

shown in Table S2. 

After obtaining the best XGBoost model, the SHAP value algorithm was applied to improve its 

interpretability, and finally to obtain the ranking by importance of all the characteristics related to 

the outcome, while distinguishing between protective factors and risk factors. Further, the area 

under the receiving operating characteristic curve (AUROC) and the area under the precision-recall 

curve (AUPRC) values were used to evaluate the performance of each model. 

 

Results 
Basic information about the patients 

The patient selection process is represented in Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Effect of hemoglobin reduction on in-hospital mortality of patients with sepsis 
LR was used to examine the impact of hemoglobin-related indexes on mortality in patients with 

sepsis, including hemoglobin at admission (HB_0), maximum hemoglobin reduction within 24 

hours (Delta_HB_24h_down_max), and maximum hemoglobin reduction rate within 24 hours 

(Delta_HB_24h_down_max_R). There were significant differences between the survival and death 

groups in hemoglobin and maximum hemoglobin reduction (p<0.001, Table 1). The results showed 

that the decrease of hemoglobin was an independent risk factor for mortality during hospitalization 

in patients with sepsis. 

 

Table 1 Logistic regression test for hemoglobin related items 

Items OR 5% 95% p 

Hemoglobin at admission 0.97 0.95 0.99 0.019 

Maximum hemoglobin reduction within 24 hours 0.77 0.66 0.89 0.004 

Fig. 1 Screening process of patients with sepsis complicated by anemia 



Maximum hemoglobin reduction rate within 24 hours 1.45 0.24 8.64 0.733 

 

 
Receiver operating characteristic (ROC) curve 

Further analyses were limited to patients with sepsis complicated by anemia. The ROC curves were 

used to explore the optimal threshold for predicting in-hospital mortality of these patients using 

hemoglobin-related indexes (Fig. 2). The AUROC of hemoglobin at admission, minimum 

hemoglobin, maximum hemoglobin reduction, and maximum hemoglobin reduction rate were only 

0.580, 0.521, 0.611, and 0.606, respectively. These results imply that the use of hemoglobin-related 

indexes alone could not accurately predict the in-hospital mortality of patients with sepsis 

complicated by anemia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Baseline data of patients with sepsis complicated by anemia 

A total of 1,827 patients died during hospitalization. The death group was significantly older than 

the survival group. The proportion of male patients in the death group was significantly lower than 

that in the survival group. Regarding complications, vasopressors, and special procedures, renal 

failure, continuous renal replacement therapy (CRRT) use, ventilator use, sedation, dobutamine use, 

dopamine use, epinephrine use, norepinephrine use, phenylephrine use, and Elixhauser comorbidity 

index were significantly different between the two groups. 

Concerning vital signs, minimum SBP, minimum DBP, maximum HR, maximum RR, and 

minimum SpO2 were significantly different between the two groups. 

In arterial blood gas tests, minimum PO2, maximum PCO2, minimum SaO2, maximum lactic acid 

were significantly different between the two groups. 

Regarding laboratory tests, hemoglobin at admission, minimum hemoglobin, maximum 

hemoglobin reduction, maximum hemoglobin reduction rate, minimum RBC count, minimum HCT, 

minimum MCHC, minimum albumin, maximum BNP, maximum creatinine, maximum BUN, 

maximum blood glucose, maximum troponin, maximum PT, maximum INR, maximum PTT, 

maximum D-dimer, minimum platelet count were significantly different between the two 

groups( Table 2). 

 

Table 2 Baseline data of patients 

 
Fig. 2 ROC curves of hemoglobin-related indexes for predicting in-hospital mortality 

 



Items Survival group Death group p 

General Information    

Age, (years, median[P25,P75]) 69[57,79] 74[61,83] <0.001 

Gender/Male, n(%) 7247(61.83) 1070(58.59) 0.008 

Complications and special procedures    

Renal failure, n(%) 2088(17.82) 413(22.61) <0.001 

CRRT, n(%) 72(0.61) 60(3.28) <0.001 

Ventilation, n(%) 7117(60.73) 1191(65.19) <0.001 

Sedation, n(%) 6836(58.33) 1000(54.73) 0.004 

Elixhauser comorbidity index, 
(median[P25,P75]) 

7[2,13] 13[7,18] <0.001 

Vasopressors    

Dobutamine, n(%) 173(1.48) 54(2.96) <0.001 

Dopamine, n(%) 569(4.85) 233(12.75) <0.001 

Epinephrine, n(%) 779(6.65) 65(3.56) <0.001 

Norepinephrine, n(%) 1657(14.14) 727(32.95) <0.001 

Phenylephrine, n(%) 3383(28.87) 430(23.54) <0.001 

Vital Signs    

Minimum SBP, (mmHg, median[P25,P75]) 88[79,97] 82[71,93] <0.001 

Minimum DBP, (mmHg, median[P25,P75]) 42[36,48] 39[30,45] <0.001 

Maximum HR, (bpm, median[P25,P75]) 102[90,116] 111[95,127] <0.001 

Maximum RR, (bpm, median[P25,P75]) 26[23,31] 29[25,34] <0.001 

Minimum SpO2, (%, median[P25,P75]) 91[78,94] 89[74,93] <0.001 

Arterial Blood Gas    

Minimum PO2, (mmHg, median[P25,P75]) 82[60,111] 68[49,95] <0.001 

Maximum PCO2, (mmHg, 
median[P25,P75]) 

47[42,53] 45[38,55] <0.001 

Minimum SaO2, (%, median[P25,P75]) 97[95,98] 96[93,98] <0.001 

Maximum lactic acid, (mmol/L, 
median[P25,P75]) 

2.2[1.5,3.4] 2.8[1.8,5.4] <0.001 

Laboratory Tests    

Hemoglobin at admission, (g/dL, 
median[P25,P75]) 

10.9[9.7,11.9] 10.4[9.15,11.4] <0.001 

Minimum hemoglobin, (g/dL, 
median[P25,P75]) 

9.1[7.9,10.2] 9.1[8.1,10.3] 0.002 

Maximum hemoglobin reduction, (g/dL, 
median[P25,P75]) 

1.2[0.3,2.9] 0.8[0,1.7] <0.001 

Maximum hemoglobin reduction rate, (%, 
median[P25,P75]) 

11.61[3.00,25.93] 7.61[0,16.16] <0.001 

Minimum RBC count, (×1012/L, 
median[P25,P75]) 

3.135[2.77,3.50] 3.06[2.69,3.50] <0.001 

Minimum HCT, (%, median[P25,P75]) 26.8[23.1,30.1] 27.4[24.0,30.9] <0.001 



Minimum MCHC, (g/dL, median[P25,P75]) 33.4[32.4,34.4] 32.6[31.5,33.7] <0.001 

Minimum albumin, (g/dL, median[P25,P75]) 3.0[2.5,3.4] 2.7[2.2,3.2] <0.001 

Maximum BNP, (pg/mL, median[P25,P75]) 4113[1461,10599] 8833[1885,17864] 0.001 

Maximum creatinine, (mg/dL, 
median[P25,P75]) 

1.1[0.8,1.7] 1.6[1.0,2.7] <0.001 

Maximum BUN, (mg/dL, median[P25,P75]) 21[15,35] 35[22,56] <0.001 

Maximum blood glucose, (mg/dL, 
median[P25,P75]) 

168[137,206] 170[132,228] 0.009 

Maximum uric acid, (mg/dL, 
median[P25,P75]) 

5.8[3.95,8.7] 6.7[4.2,10.5] 0.094 

Maximum troponin, (ng/mL, 
median[P25,P75]) 

0.10[0.04,0.37] 0.13[0.045,0.445] 0.001 

Maximum PT, (s, median[P25,P75]) 15.1[13.8,17.1] 16.3[14.05,21.1] <0.001 

Maximum INR, (median[P25,P75]) 1.4[1.2,1.7] 1.6[1.3,2.2] <0.001 

Maximum PTT, (s, median[P25,P75]) 34.4[28.7,44.9] 38.2[29.9,56.95] <0.001 

Maximum D-dimer, (ng/mL, 
median[P25,P75]) 

2422[1177,5251] 3965[1907,7984.5] <0.001 

Minimum platelet count, (×109/L, 
median[P25,P75]) 

162[114,232] 153[83,236] <0.001 

 
Variable screening by stepwise logistic regression 
Stepwise LR analysis was used to further screen the variables, and 20 variables were included into 

the final model according to the AIC criterion (Table 3). 

 

Table 3 Stepwise logistic regression model for screening the variables 

Items OR Lower.95 Upper.95 p 

Elixhauser_vanWalRaven 1.07  1.06  1.08  <0.001  

Urea.nitrogen_24h_max 1.01  1.01  1.02  <0.001  

Ventilation_24h 2.39  1.96  2.90  <0.001  

Heart.rate_24h_max 1.01  1.01  1.01  <0.001  

Respiratory.rate_24h_max 1.03  1.02  1.04  <0.001  

MCHC_24h_min 0.86  0.82  0.90  <0.001  

Renal_failure 0.57  0.48  0.68  <0.001  

Hematocrit_24h_min 1.08  1.05  1.11  <0.001  

Age 1.01  1.01  1.02  <0.001  

Red.blood.cells_24h_min 0.58  0.48  0.69  <0.001  

Platelet.count_24h_min 1.00  1.00  1.00  <0.001  

PTT_24h_max 1.01  1.00  1.01  <0.001  

Norepinephrine_24h 1.40  1.20  1.64  <0.001  

INR_24h_max 1.07  1.04  1.11  <0.001  

Systolic.blood.pressure_24h_min 0.99  0.99  1.00  <0.001 

CRRT_24h 2.19  1.38  3.49  <0.001  

Delta_HB_24h_down_max 0.58  0.42  0.81  0.001  

Sedation_24h 0.73  0.60  0.89  0.001  

Diastolic.blood.pressure_24h_min 0.99  0.98  1.00  0.011  

Epinephrine_24h 0.71  0.50  1.00  0.047  

 
XGBoost model 

First, we adjusted the learning rate (variable learning_rate) and optimum number of iterations 



(sn_estimators) with the Grid Search Method. Then, we established the maximum depth of the 

decision tree (max_depth), and other parameters. The final hyperparameters are shown in Table S1 

in the Supplementary Material. 

SHAP is an additive interpretation model. Compared with the traditional feature importance 

graph of the XGBoost model, its significant advantage is that the influence of each feature can be 

described by SHAP value with a clear direction, distinguishing positive and negative effects. As 

shown in Fig. 3, among the variables associated with in-hospital mortality in patients with sepsis 

complicated by anemia, the top 5 factors were Elixhauser comorbidity index, maximum BUN, 

maximum hemoglobin reduction, ventilator use, and age. Considering age as an example, red 

represents older age, while a higher SHAP value indicates a higher risk of mortality, so we 

concluded that the risk of mortality increases with age. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The population was divided into high-risk and low-risk groups according to the median, and the 

survival curve was plotted. The results showed that the survival probability decreased gradually 

over time, with significant differences between the two groups (p< 0.001, Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 SHAP values for the XGBoost model. Each point represents a sample. Red 
(blue) dots represent larger (smaller) values.  A larger SHAP value indicates a 
positive influence on the outcome, and vice versa. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Evaluation of the predictive capabilities of different models 
Compared with the stepwise LR, DT, and RF models, the XGBoost model had the highest AUROC 

value (0.815 vs 0.777, 0.726, and 0.788, respectively), indicating its better discriminating ability 

(Figure 5A). As shown in Figure 5B, the XGBoost model performed better than stepwise LR, DT, 

and RF also in terms of AUPRC (0.428 vs 0.350, 0.290, and 0.400, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
The etiology and pathogenesis of sepsis complicated by anemia are varied. When infection and 

immune system dysfunction occur, the erythrocyte cell membrane develops abnormalities due to 

the damage inflicted by bacteria and immune mechanisms, finally resulting in erythrocyte apoptosis 

[18]. The cytokines induce activation of mononuclear macrophages and enhanced phagocytosis of 

Fig. 5A AUROC of different models Fig. 5B AUPRC of different models 

 
Fig. 4 Kaplan-Meier curves of the high-risk and low-risk groups divided according to the median 



erythrocytes [19]. However, sepsis is usually accompanied by the formation of a large number of 

microthrombi. When erythrocytes pass through the thrombi, mechanical damage can also occur and 

lead to anemia, while patients with sepsis and anemia have more severe tissue hypoxia, are prone 

to organ function and circulation disorders, and have a higher risk of mortality. Therefore, it is of 

great clinical significance to study the prognostic risk of sepsis complicated by anemia. 

Previous studies have shown that the mortality rate of patients with sepsis is greatly increased 

when hemoglobin at the time of admission is lower than 8.0 g/dL [20]. Our study also confirmed 

significant differences in the maximum reduction of hemoglobin at the time of admission and the 

maximum reduction of hemoglobin within 24 hours between patients with sepsis who survived and 

those who died in the hospital. Thus, we limited the analysis to patients diagnosed with sepsis 

complicated by anemia and drew ROC curves with hemoglobin-related indexes to build an early 

warning model of mortality. Regrettably, although a univariable warning model is more convenient 

and intuitive than those involving multiple variables, it has poor early warning capability. This may 

be due to the limited ability of a univariable model to fully reveal the overall patient condition.  

In addition, while many studies have identified risk factors for mortality in patients with sepsis 

complicated by anemia during hospitalization, there is still a lack of usable models to accurately 

predict the clinical outcome of these patients [15,21,22]. Machine learning algorithms can help 

clinical workers to build better prediction models than traditional linear models [ 23 , 24 ]. 

Consequently, we used a stepwise LR model to screen all clinical data of patients with sepsis 

complicated by anemia for factors that may have important influence on in-hospital mortality, and 

constructed DT, RF and XGBoost machine learning predictive models, among which the XGBoost 

model had the best prediction efficiency. Based on these results, we believe that it is absolutely 

necessary to use advanced machine learning methods to build predictive models for clinical diseases 

with complicated pathophysiologic mechanisms and unclear etiopathogenesis. 

In our study, we selected 30 covariates related to sepsis with anemia, further screened them by 

stepwise LR, finally retaining 20 clinical indexes. These indexes were used to construct the DT, RF, 

and XGBoost models to explore the risk factors and predict the risk of mortality. XGBoost is a kind 

of gradient lifting tree model, composed of multiple classification and regression trees (CART) and 

is an example of serial generation model. Each CART divides the patients into two branches 

according to a certain threshold value of each patient characteristic. After multiple grouping, the 

end of each CART tree (leaf node) contains patients with the same risk of mortality. The output 

result of XGBoost is calculated according to the result of the leaf node of each CART. Compared 

with other traditional machine learning models (LR, DT, or RF), XGBoost is an integrated algorithm 

based on a tree model, which not only can deal with the problem of data sparsity, but also can learn 

the nonlinear relationships between features, so as to improve its generalization ability and 

robustness [25,26]. Compared with other models, the XGBoost model has better identification 

ability and better goodness-of-fit. 

In order to make the black box model interpretable, the SHAP algorithm was adopted in this study 

to interpret it. The SHAP value can be used to interpret not only each patient individually, but also 

the outcome of all the patients as a whole. By calculating the marginal contribution of each feature 

of each sample, the feature interpretation of each sample can be deduced from the SHAP value, so 

as to achieve the effect of local interpretation. Using SHAP values in the XGBoost model, we 

analyzed the influence of the characteristic values of each clinical index. Through statistics and 

modeling, we found that Elixhauser comorbidity index, maximum BUN, maximum hemoglobin 

reduction, ventilator use, and age were the primary predictors of in-hospital mortality within the 

first 24 hours of ICU admission in patients with sepsis complicated by anemia. 

The Elixhauser comorbidity index is a commonly used comprehensive scoring system for 

evaluating the prognosis of inpatients with underlying diseases [27], often used in studies to reflect 

disease severity, and is an important confounding factor that needs to be adjusted [28,29]. Indeed, 

both acute organ damage caused by infection in patients with sepsis and basic diseases such as 

diabetes, tumors, and renal failure are closely related to the mortality of sepsis [30,31]. The mortality 

of patients with sepsis is also positively correlated with age [32]. Therefore, it is clinically feasible 

to use the comorbidity index to determine the risk of mortality of patients with sepsis, consistent 

with other studies [33-35]. 

High BUN is a risk factor for mortality in patients with sepsis [36,37]. Indeed, acute kidney injury 

is not rare in patients with sepsis or septic shock. BUN is an important index of renal function [38], 

which can reflect the nutritional intake of critically ill patients over a period of time [39]. However, 



while BUN could be easily affected by diet, renal blood flow, high catabolic metabolism, intake of 

protein or amino acids, as well as intestinal bleeding, hyperthyroidism, and other factors, it is 

traditionally believed that BUN cannot reflect kidney function better than creatinine [40]. However, 

a recent study [41] has shown that elevated BUN, rather than serum creatinine, was closely related 

with increased mortality in critically ill patients whose creatinine was between 0.8 and 1.3 mg/dL. 

Therefore, whether urea nitrogen is more sensitive to kidney injury than creatinine in a certain group 

of critically ill patients remains to be elucidated. 

Our model, based on large databases, showed that the maximum reduction of hemoglobin within 

24 hours in patients with sepsis complicated by anemia was inversely proportional to the risk of 

mortality, that is, the greater the reduction of hemoglobin, the lower the risk of mortality, which 

was inconsistent with our previous understanding. Since we collected hemoglobin values before 

transfusion, the patients did not achieve hemoglobin improvement through transfusion of 

erythrocytes. In our opinion, the large decrease in hemoglobin may be related to iatrogenic 

hemodilution caused by the large amount of fluid resuscitation in patients with sepsis at an early 

stage [42,43]. Due to timely and sufficient resuscitation at an early stage, these patients have better 

prognosis [44,45]. In the SHAP value graph, the absolute value of hemoglobin reduction, rather 

than its proportion, gave a significant contribution, which confirms our view. It is still controversial 

whether patients with sepsis complicated by anemia should receive blood transfusion [46-48]. Our 

results suggest that the maximum hemoglobin reduction within 24 hours was not positively 

associated with the risk of mortality, and that a certain level of decrease in hemoglobin does not 

affect patient outcomes.   

Finally, in the additional files, we further included the top five and top ten contributing indexes 

into the XGBoost model, with no significant decrease in AUROC and AUPRC, which also proves 

that the indexes with high SHAP values had indeed good predictive value (Fig. S1 and Fig. S2). In 

addition, we have established a web page (https://wengzq-lab.cn/sepsismp/) implementing the 

machine prediction model for researchers to visit and evaluate. 

The present study had several important limitations. The MIMIC database contains a large 

amount of clinical information, and by mining the database some hidden characteristics of diseases 

that cannot be found by conventional methods can be revealed, which is useful for prognostic 

purposes and to evaluate drug use or operation risk. However, its main disadvantage is that the data 

come from a single center in the US, and the majority of the population is of white or black ethnicity. 

Due to racial differences, the results may not be applicable to all ethnic groups, and in particular to 

Asian people, who account for a low percentage of the database subjects. Therefore, further 

evaluation of our machine learning prediction model needs to be performed in other large databases 

or, preferably, using prospective cohort studies. 

 

Conclusions 
Our prospective study showed that the XGBoost model had better discrimination ability and 

goodness of fit when compared with other models to accurately predict the mortality in patients 

with sepsis complicated by anemia during hospitalization. It is necessary to use advanced machine 

learning methods to build predictive models for clinical diseases with complicated pathophysiologic 

mechanisms and unclear etiopathogenesis. However, due to racial differences, our results may not 

be applicable to all ethnic groups. 

 
Key Messages 
⚫ Patients with sepsis complicated by anemia have a higher risk of mortality. It is clinically 

important to study the risk factors associated with the prognosis of this disease.  

⚫ This study established a predictive model of mortality during hospitalization by extracting 

clinical data from the MIMIC-III database. The top 5 factors which contribute most were 

Elixhauser comorbidity index, maximum BUN, maximum hemoglobin reduction, ventilator 

use, and age. 

⚫ The XGBoost model had better discrimination ability and goodness of fit when compared with 

other models. Machine learning algorithms have significant practical value in the development 

of an early warning system for patients with sepsis complicated by anemia. 
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Table S1 XGBoost hyperparameter settings 

Hyperparameters Inhosp_flag 

learning_rate 0.05 
n_estimators 100 
max_depth 5 
min_child_weight 0.8 
subsample 0.4 
colsample_bytree 1 
gamma 0.1 
reg_alpha 0.6 
reg_lambda 0.9 

 
Table S2  Baseline data of the training and validation groups 

Items Training Group Validation Group p 
Elixhauser_commorbidity index, (median[P25, 
P75]) 

8[3,14] 8[3,14] 0.890 

Maximum BUN, (mg/dL, median[P25,P75]) 23[15,38] 23[15,37] 0.428 
Maximum hemoglobin reduction, (g/dL, 
median[P25,P75]) 

1.2[0.3,2.7] 1.1[0.3,2.8] 0.807 

Ventilation, n(%) 6650(61.36) 1677(61.18) 0.861 
Maximum RR, (bpm, median[P25,P75]) 27[23,31] 27[23,32] 0.483 
Maximum HR, (bpm, median[P25,P75]) 103[91,118] 103[91,117] 0.998 
Minimum MCHC, (g/dL, median[P25,P75]) 33.3[32.2,34.3] 33.4[32.3,34.3] 0.110 
Renal failure, n(%) 2002(18.47) 499(18.41) 0.942 
Age, (years, median[P25,P75]) 69[58,79] 70[57,80] 0.124 
Minimum HCT, (%, median[P25,P75]) 26.9[23.4,30.2] 26.8[23.2,30.1] 0.442 
Minimum RBC count, (×1012/L, 
median[P25,P75]) 

3.13[2.76,3.51] 3.10[2.74,3.49] 0.265 

Minimum platelet count, (×109/L, 
median[P25,P75]) 

162[110,233] 158[111,227] 0.402 

Maximum PTT, (s, median[P25,P75]) 34.9[28.8,46.5] 34.55[29.2,46.1] 0.793 
Norepinephrine, n(%) 1822(16.81) 437(16.13) 0.391 
Maximum INR, (median[P25,P75]) 1.4[1.2,1.7] 1.4[1.2,1.7] 0.788 
Minimum SBP, (mmHg, median[P25,P75]) 87[78,97] 87[78,97] 0.718 
Sedation, n(%) 6285(58.00) 1551(57.23) 0.472 
CRRT, n(%) 103(0.95) 29(1.07) 0.571 
Minimum DBP, (mmHg, median[P25,P75]) 42[36,48] 42[36,48] 0.575 
Epinephrine, n(%) 677(6.25) 167(6.16) 0.870 
In-hospital mortality, (n,%) 1471(13.57) 356(13.14) 0.551 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. S1 AUROC of XGBoost models with 
different numbers of features  

Fig. S2 AUPRC of XGBoost models with 
different numbers of features 
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