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Abstract

This study was conducted to determine the sub-lethal toxicity of Captan® on selected hematological (Hb,
HCT, MCH) growth (K-factor, HSI, SGR), biochemical (serum glucose, protein), and endocrine parameters
(growth hormone, T4 and T,) in Clarias batrachus under chronic exposures. Captan® was administered
at predetermined exposure concentrations (0.53 and 1.06 mg/L) and monitored at day 15, 30 and 45 of
the experimental periods. The experimental groups showed significantly lower values (p < 0.05) of
haemoglobin content, haematocrit, MCH in Captan® exposed fish compared to control. Serum glucose
was significantly higher (p < 0.05) in treated fish compared to the control group; reverse was the case for
serum protein concentrations (p < 0.05). Assessment of growth parameters revealed significantly higher k-
factor and SGR in control fish. HSI was however higher in treated fish which highlights the possibility of
liver hypertrophy and hyperplasia of liver cells due to higher exposure and uptake of the herbicide.
Endocrine responses (T3 and T,) emerged as the most sensitive biomarker category, depicting modulated
responses between sub-chronic exposure at day-15 and chronic responses at day-45. In general, the study
findings using these biomarkers indicate that Captan® exposures are capable of inducing stress-specific
effects at the biochemical and physiological levels negatively impacting the overall health and longevity
of such animals. The use of the IBR index provided a visual and easily comprehensible depiction of
toxicity effects and biomarker responses in laboratory exposed fish and we anticipate a greater
applicability in biomarker data from the wild which are largely heterogenous.

Introduction

The increase in human population and the proportional demand for food supply has in turn justified the
massive use of technologies such as no-tillage, chemical and biological nutrition and intensive
application of biocides (herbicides, insecticides and fungicides) (Pretty and Bharucha, 2015; Ogbeide et
al., 2018; Ganie et al., 2021). Following the withdrawal of organochlorine pesticides like DDT and other
chloro-organic herbicides (in the 1970s) other substitute pesticides, including herbicides still occur in high
levels within agroecosystemes, infiltrating air, soil, water and food matrices having adverse consequences
for wildlife and human health (Rashid et al., 2010; Chukwuka et al., 2019). One such popular pesticide is
Captan®, a non-systemic, general use pesticide (GUP) and phthalimide fungicide with predominant
applications in vegetables, fruits and ornamentals farming (Milller et al., 2000). Despite a half-life of less
than 24h in soil and water (half-life in lake water is 7h at 12°C and 1 h at 23°C) (Miiller et al., 2000),
environmental concentrations in surface water have ranged from 0.024-0.26 ug/L within aquatic
environment not proximal to agrarian landscapes to 0.78 pg/L in surface water traversing agrarian
landscapes (Filizola et al., 2005; Konstantinou et al., 2006).

Considering these environmental concentrations, and a low to medium bioaccumulation tendency,
Captan® clearly constitutes a significant ecological risk to both target and non-target life forms of the
aquatic ecosystem (Miiller et al., 2000; Boran et al., 2012). Captan® exposure studies from fish toxicity
studies have revealed deleterious pathological changes in liver, spleen and kidney, developmental toxicity
and loss of vital functions like heart rate (Boran et al., 2012; Zhou et al., 2019). In human and rodents, it
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has demonstrated significant carcinogenic, mutagenic, teratogenic and genotoxic potentials (Xu et al.,
2011; Zhou et al., 2019). Other Captan® studies have recorded marked biochemical changes including
decrease in the activity of microsomal cytochrome P-450, in vivo (Dalvi, 1988) and in vitro signs of
oxidative damage and cytotoxicity in hepatocytes (Suzuki et al., 2004). Notwithstanding the few available
studies on the Captan® toxicity on some vital physiological and biochemical markers in mammals (Dalvi,
1988), information on the chronic effects on fish are particularly sparse (WHO, 1990).

Various biomolecules, including glucose and proteins in serum proteins, antioxidant enzymes e.g., SOD,
CAT and GST, endocrine parameters and hematological parameters have been used as biomarkers of
measurable toxic effects of exposure to stressors (Adeogun et al., 2015; Adeogun et al., 2018; Jerome et
al., 2020). However, biomarker usage in the field can be limited by data acquisition constraints which
make the use of multivariate methods impracticable (Beliaeff and Burgeot, 2002). In such situations, a
simple procedure that integrates and summarize biomarker responses into simplified interpretation is
required. Thus, the complementary use of biomarkers with multiple interpretations to validate toxic
responses is evolving into the use of a more simplified integrated biomarker response (IBR) index for
stress response assessment in organisms under pollution regimes (Samanta et al., 2018; Paul et al.,
2020).

Although the environmental impact of Captan® is expected to be limited by its high rate of hydrolysis
(Mdiller et al., 2000) its continuous bioavailability implicates continuous and widespread human-usage
and a resultant replenishment of environmental levels that increases risks of chronic exposures and
effects (WHO, 1990). It is with this backdrop, that chronic toxic effects of Captan® was examined using
critical endpoints i.e., haematological biomarkers (haemoglobin, total red blood cell count, total white
blood cell count, mean corpuscular haemoglobin), growth biomarkers (condition factor, hepatosomatic
index, specific growth rate), endocrine biomarkers (growth hormone, tri-iodothyronine, tetra-iodothyronine)
and biochemical biomarkers (total serum protein, total serum glucose) in the air breathing catfish, Clarias
batrachus. The responses of each endpoint were integrated into a single index of toxicity via the
integrated biomarker response (IBR) protocol.

Materials And Methods

Fish maintenance and care

Adult specimens of the freshwater, air-breathing catfish, Clarias batrachus (n= 150) used in the study
were purchased from an aquaculture farm at Basirhat, District North 24 Parganas, West Bengal. It was
then transported to the Aquatic Toxicology laboratory, Barasat Government College, West Bengal [weight
108.4 £ 2.6 g (mean + SD); length 18.3 + 0.9 cm (mean + SD)]. Flow-through outdoor tanks (capacity
6000 L) was used during fish acclimation in the laboratory for a total period of four weeks. They were
maintained in chlorine free tap water (pH 7.5-7.8), 12:12 h light-dark cycle and natural temperature. A
continuous oxygen supply to the water tanks was made available by means of air pumps (3-Watt Sobo
548A Aquarium Air Pump, China). A commercial fish diet having 30-35% crude protein was fed to the fish
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ad libitum @ 3% of their body weight. Partial water renewal (30-35%) was done on every alternate day to
ensure healthy water quality. The various experimental procedures that the fish were subjected to abided
by the guidelines of Institutional Biosafety Committee, The University of Burdwan (approval no:
BU/IBSC/20/Z0/34).

Test Chemical

Analytical grade Captan® (3aR,7aS)-2-{(trichloromethyl) sulfanyl]-3a,4,7,7a-tetrahydro-1H-isoindole-
1,3(2H)-dione) C4HgCI3NO,S, belonging to the phthalimide class of fungicides (molecular weight 300.59

g/mol; Jardine Distribution Inc.) was used as test solution.
Experimental design
Chronic toxicity study

Two sublethal concentrations of Captan® 0.53 and 1.06 mg/L, termed T1 and T2 respectively, were
determined from fractions i.e., 1/10t", 1/20™ respectively of predetermined Captan® 96h LCs (10.63
mg/l) (Saha, 2021). Captan® was measured using High Performance Liquid Chromatography (HPLC-
Agilent 1260 Infinit, Agilent, Santa Clara, CA, USA) after an initial pre-treatment of the test solution. Since
the difference between nominal and measured concentration was less than 5%, nominal values were
used during the study. The fish were divided into three sets (ten fish per replicate): two Captan®-treated
sets and control as per randomized design (Gomez and Gomez, 1984). There was a total of four
replicates per set. Stock solution (1000 mg/L) of Captan® was made and stored in clean glass reagent
bottles. An overhead tank filled with deep tube well water was used for dilution. The water and Captan®
were entirely replenished after every three days in order to ensure the exact concentration and desired
water quality during the entire period. Food was given to the fish 3-4 times a day until there was notable
visual satiation. All the bioassays and water quality analysis were done following the protocols of
American Public Health Association (APHA, 2012). The standard water quality parameters assayed
throughout the experimental tenure are summarized in supplementary file.

Blood collection and haematological assays

The anaesthetization of fish was done with 1% benzocaine solution in distilled water. Blood was collected
at 15- day interval i.e., three times for the entire 45-day exposure period. Blood was drawn by caudal
venipuncture of fish using a sterile 5 ml 22-gauge needle syringe (Dispovan, India), quickly transferred to
EDTA vacutainer tubes (Becton Dickinson, USA) and tapped with fingers to prevent clotting of blood. A
small portion of blood was collected without EDTA and spun in cooling microcentrifuge at 4000 rpm for
20 minutes at 4°C. A 20-200 pl capacity micropipette (Eppendorf, India) was used to draw the straw-
coloured serum, poured to 1.5 ml microcentrifuge tubes and preserved at -20 °C. The analysis of Protein
Content in Serum Samples (PCSS), Glucose Content in Serum Samples (GCSS), Growth Hormone (GH),
Triiodothyronine (T3) and Tetraiodothyronine (T,) was done within 48 hours.
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The blood Haemoglobin (Hb) level was measured using Sahli's haemoglobinometer and 0.1 N HCI. The
endpoint was noted when the colour in the sample tube matched with that of the standard tube following
continuous dilution of the sample with distilled water (Dacie and Lewis, 2016). Capillary tubes were used
to draw blood, spun in a micro-haematocrit centrifuge for 3-5 minutes at 6000 rpm. Post centrifugation, a
scale was used to measure the length of packed erythrocytes and the entire column of blood (Bain et al.,
2016). For the estimation of Total Red Blood Cell Count (TRBCC) and Total White Blood Cell Count
(TWBCC), 0.02 ml of blood was added to 3.98 ml of Hayem's fluid and Turk’s fluid respectively in a small
glass tube. It was then slightly shaken to maintain a uniform suspension of cells in the solution. The cells
were then counted under Neubauer's haemocytometer (Rohem, India). Haematocrit (HCT), TWBCC,
TRBCC and Mean Corpuscular Haemoglobin (MCH) were expressed as:

HCT (%) = (Length of packed erythrocytes + total length of blood column) x100

TWBCC (10° mm3) = [Total number of white blood cells counted in 4 squares of haemocytometer (N,p,)
x dilution factor (D¢ of 50)] = [4 x volume factor (V; of 0.1)]

TRBCC (10° mm™®) = [Total number of red blood cells counted in 5 squares of haemocytometer (N,,.) X
dilution factor (D of 200)] + [5 x volume factor (V; of 0.1)]

MCH (pg) = [Haemoglobin (g dL™") x 10] + TRBCC (10® mm3)
Growth analyses of fish

The growth pattern in fish was measured on the basis of morphometric and organo-somatic parameters
like Condition Factor (K), Hepatosomatic Index (HSI) and Specific Growth Rate (SGR). The assay was
done after every 15d, 30d and 45 d. The length and weight of fish were recorded using a meter scale and
electronic balance (Model: SF-400D). K, HSI and SGR were estimated by standard formula following the
methods of Le Cren (1951) and Kaviraj et al. (2004):

Condition Factor (K, g cm™) = (Fish mass, g) + (Total length of fish, cm)3 x 100
Hepatosomatic Index (HSI, %) = (Weight of liver in fish, g) + (Total weight of fish, g) x 100

Specific Growth Rate (SGR, % day™) = [Log natural of final body weight of fish (W;, g) — Log natural of
initial body weight of fish (W,, g)] + Time interim (t) x 100

Serum hormone analyses

The analysis of Growth hormone (GH) assay was done using heterologous competitive ELISA according
to the method described by Lal and Singh (2005). The plasma T5 and T, levels were determined by ELISA

kits provided by Pishtaz Teb Co. (Tehran, Iran).

Analyses of serum protein and serum glucose
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The Protein Content in Serum Samples (PCSS) and Glucose Content in Serum Samples (GCSS) was
estimated following the method of Bradford (1976) and glucose colorimetric detection kit (Invitrogen,
Carlsbad, USA) respectively.

Calculation of IBR

Integrated biomarker responses (IBRs) using various parameters (blood, growth, endocrine and
biochemical) exposed to different concentrations of Captan® was estimated and multi-biomarker
response in Clarias batrachus depicted as star plots. Multi-biomarker response was analyzed according
to the methodology proposed by Beliaeff and Burgeot (2002) with modifications by Guerlet et al. (2010).
Briefly, for each tissue, the general mean (m) and standard deviation (s) of a given biomarker was
calculated (including data from all treatments), and subsequently standardized to obtain Y, i.e, Y = (X —
m) / s, where X is the mean biomarker value of a given treatment. Thereafter Z was calculated as Z = -Y
or Z = +Y according to the expected biological effect, with “-” representing an inhibition of a biological
effect and “+” representing an induction (such evaluation was based on the average baseline biomarker
values). Then, biomarker scores (S) were calculated as S = Z + |[Min|, where Z = 0 and |Min| is the
absolute value of all Y calculated for a given biomarker (including all measurements). The scores (S) of
all biomarkers measured in a given treatment and tissue were depicted as Star plots. The IBRs were
calculated according to the following formulas:

Ai = S;/2 sinB (S; cosB + S;;1 SinB)
where B= Arc tan (S;;1 sina/ S;- Sj;; cosa) and a= 21/ n, S,41 = S;.

where, Ai is the area connecting the two scores (S), S; and S, are two consecutive clockwise scores
(radius coordinates) of a given star plot, and nis the number of biomarkers used for calculations. The IBR

index for each biochemical parameters were then standardized to calculate the mean value of each
biomarker.

Statistical Analyses

The Shapiro-Wilk test examined the normality distribution of data and data transformation was applied in
case of asymmetry to conform to normality while Levene's test was utilized to check homogeneity. The
Graph Pad Prism 9.1.1 computer program (Prism, USA) was employed for data analysis. Comparisons
between control and exposed fishes were performed by two-way ANOVA followed by Dunnett's
Comparison Test to determine significant differences among the means (p<0.05 - Gomez and Gomez
1984). Results are summarized as mean * standard deviation (SD). Principal component analysis (PCA),
as multivariate test for association between parameters was performed using Statistica®. Difference in
means across quantified biomarker responses was also depicted using Graph Pad Prism ®version 7. The
Kaplan—Meier estimator, also known as the product limit estimator, is a non-parametric statistic used to
estimate the survival of test organism during exposure period. For all analysis, statistical significance
was ascertained at no less than p < 0.05.
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Results And Discussion

Acute toxicity

The Kaplan—Meier curve demonstrates that Captan® had a concentration and duration-dependent
adverse impact on the overall survival rates of Clarias batrachus compared with the control group
(Mantel-Cox log-rank test; p < 0.05) (Figure 1a-b). From the 96h LCxj curve, it is observed that higher
concentration of Captan® is required to achieve 50% mortality within 24h. It further reveals that this
concentration to achieve 50% mortality in exposed population decreased gradually with increasing
duration. This is a strong indication that Captan® is more lethal with increased exposure duration. The
relationship between the 24h LCs, and 96h LCs indicates the toxicity of Captan® increases by a factor
of 0.73 within 96 hours of exposure (Figure 1a). However, the wider error bar for 24-hour LCs indicates a
wider possibility of responses that could lead to varied mortality patterns (higher or lower than 50%
mortality). The smaller error bars for LCs at higher exposure duration i.e., 48, 72 and 96 h LCy indicate
limited variations in mortality patterns (Figure 1a). From the survival curve, there was a 100% survival
likelihood Clarias batrachus at control and at the lower exposure concentrations i.e., 9 mg/L (Figure 1b).
The survival curve also depicts that the likelihoods of survival was higher at lower Captan® exposure
concentrations for both shorter (< 50 hours) and longer exposure durations (>100 hours) (Figure 1b)
(Mantel-Cox log-rank test; p < 0.05).

Hematological profiles and indices

Assessment of Hb concentration in serum of fish across exposure concentrations revealed that across
exposure intervals, i.e., 15days, 30days and 45days revealed a linear decrease in Hb levels with increased
exposure of Captan® from control to T2 exposure group (fig 2). Similar trends were observed for
haematocrit (Hct) levels, TWBCC, TRBCC, and MCH levels in the control group and across exposure
concentrations. Blood parameters are reliable indicators for fish health and physiology because they
directly reflect the relationship between habitat quality and health status (Adeogun et al., 2015; Burgos-
Aceves et al., 2019). This study showed significantly lower hemoglobin and hematocrit levels in all
treatments after exposure to Captan® compared to the control group (P < 0.05). This reduction in
hemoglobin may be due to the destructive effects of pesticides on tissues that produce hemoglobin,
which could impact the transport and distribution of dissolved oxygen to the tissues for metabolism and
induce respiratory distress in affected fishes (Saravanan et al., 2011).

Along with the hemoglobin (Hb) content and the leukocyte count, the hematocrit is regarded as a key
indicator of the secondary stress response, and non-physiologically low hematocrit values are considered
hallmarks of anemia, a specific pathophysiological stress response (Rebl et al., 2021). From this study,
the changes in the levels of white blood cells following exposure to Captan® may be due to disturbances
in the process of hematopoiesis and subsequent reduction or non-specific immune weakening in fish
(Kumar et al,, 2011). This study also revealed that the number of red blood cells (TRBCC) in all treatments
after exposure to Captan® was less than the control group (P < 0.05). A decline in the number of red
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blood cells primarily indicates the severe anemia caused by herbicide exposure, which reduces the total
protein in blood plasma and has significant implications on the total energy balance of the body
(Ramesh et al., 2009). The lower values of MCH in exposed fishes compared to the control group (P <
0.05) indicate a reduction in size and quantity of hemoglobin of red blood cells, which is diagnostic of
anemia in fish (Rebl et al., 2021). The reduction of MCH could also reflect a large percentage of immature
red blood cells in the bloodstream.

Growth biomarkers

Assessment of growth biomarkers and indices showed that irrespective of exposure intervals, condition
factor (K) was significantly higher in control, followed by T1 and T2. HSI also differed in a linear pattern
from control, followed by T1 and T2, however HSI was higher at highest Captan® exposure
concentrations at T2 and least in control group. SGR on the other hand was significantly higher in control
group and least in T2. The condition factor is an organism-level response, with factors such as nutritional
status and toxic chemical exposure causing greater- than-normal and less-than-normal weights (Adeogun
and Chukwuka, 2011; Ibor et al., 2019). However, the higher condition index values in control compared to
the Captan® exposed fish is considered a reflection of depletion in energy reserves because this index is
positively related to muscle and liver energy content (Stevenson and Woods Jr, 2006; Adeogun et al.,
2013). The HSI on the other hand is one of the various organo-somatic indices and is often associated
with contaminant exposure and response (Hismayasari et al., 2015; Pham and Nguyen, 2019). This is
because the change in size of the liver is a reflection of its being a target organ for toxicity as well as a
primary detoxification organ in fish (Velkova-Jordanoska and Kostoski, 2005; Feist et al., 2015). Thus, the
higher HSI in Captan® exposed fish compared to fish in the control group reflects an increase in size
(hypertrophy) or increased number of hepatocytes (hyperplasia) due to increased xenobiotic uptake and
biotransformation (Adeogun et al., 2016).

The specific growth rate of fish is a tool mostly used in aquaculture for the estimation of fish food
conversion rate over a certain period of time, and reduction in SGR can be related to the increase in
pollutant-related stress (Sweilum, 2006). The significantly higher values of SGR in control group
compared to Captan® exposure groups confirms that this herbicide impacts growth rate of exposed
fishes possibly by disrupted metabolism and a resultant lowered food conversion rate.

Endocrine biomarkers

Expression of the pituitary growth hormones (GH) was significantly higher in control group and decreased
linearly from T1 to T2. Patterns of decrease from control to highest exposure group was unchanged
across exposure intervals (Figure 4a). However, irrespective of exposure intervals Tri-iodothyronine (T3)
did not differ significantly between control and T1 (intermediate exposure group), but marked difference
was observed between the control group and highest exposure group. At day 15, thyroxine concentration
in tissue of control fish was significantly lower than group T1 while levels in group T2 were significantly
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higher than T1. At day 30 and 45, the trends reversed where T, showed highest levels in control group
with decreasing levels from T1 group to T2 group.

The concentration-dependent down-regulation of the pituitary growth hormone in Captan® exposure
groups is depictive of toxic effects. Studies have demonstrated negative effects of pollutants, including
xenoestrogens and heavy metals on GH-mediated mechanisms, via interference with the GH receptor
and/or GH transcription (Deane and Woo, 2009). Furthermore, the lower level of T5 in fish exposed to
Captan® compared to control group could be attributed to decrease in T4 plasma concentration due to an
inability of the organism to produce the optimal level T or hypothalamus, pituitary and ovary interaction
(Ruby et al., 1993).0n day-15, the elevated levels of T, level recorded in exposure- group is s consistent
with other species exposed to pesticide (Liu et al., 2011). The increased activity of T, in exposure groups
compared to control group on day 15 may be indicative of sub-chronic adaptive response in exposed fish,
and deployment of growth factors for repair and turnover of somatic cells. Thyroid hormones play
important roles in multiple physiological functions in aquatic animals including development, growth,
and reproduction (Leatherland, 2000). Another possible explanation is the disrupted synthesis of the
circulating thyroid hormones, or disrupted secretion and eventual conversion of T, to T conversion in
exposed fish (Movahedinia et al., 2018). T, generally represents >95% of the thyroid hormone output and
it is typically present in higher quantities than T5 in the blood circulation, with the higher T,
concentrations serving as a pool of prohormone that can be converted into T by 5-iodothyronine
deiodinases in target tissues (Eales, 2006; Zoeller et al., 2007).

Biochemical biomarkers

The changes associated with GCSS and PCSS levels are summarised in Figure 5. Study findings revealed
that GCSS increased linearly and significantly from control group to T1 to T2 across all exposure
concentrations. However, PCSS increased linearly and significantly from control group to T1 to T2 across
all exposure concentrations. The significant differences in glucose concentrations in plasma (p < 0.05)
between the control and treatment fish, following the action of Captan®, may be considered to be the
manifestation of stress. Reports show that marked glucose increase is a general response of fish
experiencing pollutant effects, because fish challenged by environmental pollution may have a higher
turnover of glucose, and more glucose may be produced from non-carbohydrate substrates (Levesque et
al., 2002). Hepatic synthesis of detoxifying enzymes under stress conditions requires high energy levels
that necessitates documented depletion of hepatic glycogen stores and increased deployment of glucose
(Begum and Vijayaraghavan, 1995; Ceron et al., 1997). The observed decreased protein levels may be
seen in starvation, and malabsorption or malnutrition (Pagana and Pagana, 1998) following extended
exposures to stress. Concurrent decrease in total serum protein and a decrease in the haematocrit values
implicates chronic exposures to pollutant toxicity (Adeogun et al., 2015). Change in protein synthesis is
reflective of severity in cellular damage (Osman and Kloas, 2010) and may have dire implications on
physiological activities and effectiveness of the immune system (Svoboda et al., 2001).
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Integrated Biomarkers Response (IBR)

In order to compare the overall stress on C. batrachus, the IBR index was applied. From Table 1, control
exposure group showed higher values of the IBR index for all biomarker parameters compared to T1 and
T2 exposure groups. Reverse trends where IBR index was higher in Captan® exposure groups compared
to fish in control group was observed for HSI and GCSS (Table 1). This is because, unlike the case for
other biomarkers, higher IBR index values for HSI and GCSS indicate adverse reaction from toxicity. As
such, evident from this index, the rank of toxic effects due to Captan® exposures can be ordered as:
T2>T1>T, (control).

The transformed data of all the studied biomarkers are presented as star plot for each site in Figure 6(a-
d). The star plots showing progressive increase in reduction or increase in size of shapes obtained for
each experimental group inherently reflects a gradient in toxic responses. From the size and shape of the
grey area within the star plot, it is clear that T2 Captan® exposure group with the smallest sized star plot
and grey area was the most impacted group, followed by T1, while the control group with the largest
shape and grey area was the least impacted. The reverse trends explained above where large grey areas
for some biomarkers indicate adverse impact is also applicable.

The IBR approach provides a simple tool for a general description of the “health status” of populations, by
integrating different biomarker signals (Leinio and Lehtonen, 2005). Other studies that utilized this IBR
index also demonstrated consistent indications of adverse toxicity impacts regardless of the
considerable variability in the biomarker sets used for the index calculations (Broeg and Lehtonen, 2006;
Damiens et al., 2007).

Table 1. Summary of IBR mean values of different biomarkers to different Captan® concentrations
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Biomarkers  Control (TO) T1 T2
Hb 475 0.0 0.0
HCT 5.09 1.47 0.0
TWBCC 5.11 0.87 0.0
TRBCC 4.51 0.12 0.0
MCH 5.04 0.89 0.0
K 4.53 0.13 0.0
HSI 0.0 201 492
SGR 5.02 0.60 0.0
GH 5.11 1.27 0.0
T3 3.60 402 0.0
T, 1.69 1.54 0.0
T3T, 2.21 3.57 0.0
GCSS 0.00 0.97 5.15
PCSS 4.96 0.54 0.0

Multivariate analysis: PCA

The PCA presents the association between dependent variables (haematological, endocrine, growth and
biochemical parameters) and independent or effect variables (exposure interval and exposure group)
within ordination space (fig 7). Two principal components were extracted with PC 1 axis accounting for
64.7% of the total variance between parameters. From PC1, we infer that irrespective of exposure interval,
that fish from the control group show significant positive association with hematological parameters (Hb,
RBC, WBC, MCH, haematocrit), biochemical (total protein), growth (condition factor, K, SGR), and
endocrine parameters (T3, T4, T5:T4 ratio and GH). This positive association implies that these
parameters generally showed patterns of higher concentration in fish from the control group compared to
fishes exposed to Captan®. On the negative axis of PC 1, the T2 exposure group showed a positive
association with glucose and HSI. This indicates that these parameters showed significantly higher
values in fish from the T2 exposure group than the T1 exposure group and fishes from the control group.
These findings readily corroborate depictions from the difference in means of these parameters across
exposure groups and control.

Page 11/22



From PC 2, the T2 exposure group showed a negative association with the T4:T, ratio and T3 (fig 7). This
indicates that T3:T, ratio, and concentrations of T3 were markedly lower in the highest Captan® exposure

concentration compared to fishes in intermediate exposure concentrations (T1). The significant decrease
in plasma T3 and T5/T, ratio in fish exposed at highest concentrations of Captan® suggests the

inhibitory effect of this herbicide on extrathyroidal conversion of T, to T4 (Eales et al., 1999; Brar et al.,
2010). Quantifying T, and T5 levels has been recommended as a good approach for detecting most

xenobiotic effects on the peripheral thyroid system (Zoeller, 2010). The thyroid system plays a pivotal role
in the body homeostasis and functioning of the nervous, cardiovascular and reproductive systems, and
of body growth control (Danzi and Klein, 2012), and the effects of thyroid hormones mainly depend on
intracellular concentrations of its biologically active and most circulated form T5 (Buha et al., 2018). As

such, the depleted levels of T3 in the highest Captan® exposures portend significant impairments in
physiological homeostasis.

Conclusion

From this study, the depiction of biomarker responses using haematological, growth, biochemical and
endocrine parameters strongly reflect the toxic potential of Captan® at different levels of biological
organization. The sensitivity and modulations of thyroid hormones T, and T3 at sub-chronic and chronic
exposure duration highlight its potential for the accurate depiction of toxicity in the wild, where toxic
responses are rarely linear due to complex relationships and confounding factors in the environment. As
such, the fish thyroid system may represent a valuable sentinel in aquatic ecosystems for predicting the
actions of chemicals on other vertebrates, including humans. The study findings indicate that
environmental applications of Captan® necessitate regulatory steps and public health awareness due to
the risks it portends to aquatic biota and possibly humans.
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Figure 1

(@) 24, 48,72 and 96 h LC50 values associated with 95% confidence intervals of Captan® and (b)
Kaplan—Meier survival curves of Clarias batrachus exposed to Captan® (Log-rank (Mantel-Cox) test
(recommended); Chi square- 122.3; df 11; P value: <0.0001; P value summary: ****; Are the survival curves
sig different: Yes).
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(a-e): Difference in mean values of haematological parameters (a) Haemoglobin (b) Haematocrit (c) Total
white blood cell count (d) Total red blood cell count (€) Mean corpuscular haemoglobin in Clarias

batrachus exposed to sublethal concentrations of Captan® (0.53 and 1.06 mg/L) for 15, 30 and 45 days.
Where error bars= SD, * denotes significant differences to control within the same exposure time (p<0.05)
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Figure 3

(a-c): Difference in mean values of growth endpoints and indices (a) Condition Factor (K); (b)
Hepatosomatic Index (HSI) (c) Specific Growth Rate (SGR) in Clarias batrachus exposed to sublethal
concentrations of Captan® (0.53 and 1.06 mg/L) for 15, 30 and 45 days. Where error bars= SD, * denotes
significant differences to control within the same exposure time (p<0.05)
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(a-c): Difference in mean values of endocrine biomarkers (a) GH - Growth hormone (b) T3- Tri-
iodothyronine (c) T4- tetra-iodothyronine (thyroxine) in Clarias batrachus exposed to sublethal
concentrations of Captan® (0.53 and 1.06 mg/L) for 15, 30 and 45 days. Where error bars= SD, * denotes
significant differences to control within the same exposure time (p<0.05) Biochemical biomarkers
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(a-b): Difference in mean values of biochemical parameters (a)GCSS- Glucose Content in Serum
Samples, (b) PCSS- Protein Content in Serum Samples of Clarias batrachus exposed to sublethal

concentrations of Captan® (0.53 and 1.06 mg/L) for 15, 30 and 45 days. Where error bars= SD, * denotes

significant differences to control within the same exposure time (p<0.05)
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Figure 6

(a-d): IBR star plots for evaluating (a) haematological (i- Hb; ii- HCT; iii- TWBCC; iv- TRBCC; v- MCH) (b)
growth (i- K; ii- HSI; iii- SGR) (c) endocrine (i- GH; ii- T3; iii- T4; iv- T3: T4) (d) biochemical (i- GCSS; ii-
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PCSS) biomarker responses in C. batrachus exposed to different Captan® concentration (0.53 and 1.06

mg/l).
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Figure 7

Principal component biplot of dependent variables (haematological, endocrine, growth and biochemical
parameters) and independent /effect variables (exposure interval and exposure group).
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