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Abstract

This paper studies Radhakrishnan-Kundu-Laksmannan equation which is used to describe the pulse

propagation in optical fiber communications. By using improved modified extended tanh-function method

various types of solutions are extracted such as bright solitons, singular solitons, singular periodic wave

solutions, Jacobi elliptic solutions, periodic wave solutions and Weierstrass elliptic doubly periodic solu-

tions. Moreover, some of the obtained solutions are represented graphically.
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1 Introduction

Nonlinear evolution equations play a major role in a variety of scientific and engineering fields, such as

ocean engineering, optical fiber communications, plasma physics and fluid dynamics. The studies of Soli-

ton solutions for non-linear evolution equation attracted many researchers and one can review the articles

([1]-[27]). The Radhakrishnan-Kundu-Laksmannan (RKL) equation that describe the pulse propagation in

optical fibers has been studied by some authors. In [1], author obtained a single soliton solution for the

RKL equation. In [2], authors studied bifurcations of exact travelling wave solutions for the generalized

RKL equation. In [3], author obtained bright and dark soliton solutions for the Radhakrishnan–Kundu–

Lakshmanan equation by Lie group analysis. In [4], authors established optical solitons of the RKE equation

by the extended trial function integration scheme. In [5], authors obtained chrip-free optical bight soliton

solutions for the RKE equation. In [7], author obtained periodic and solitary wave forms of exact general

solutions for the RKE equation.

In this work, the improved modified extended tanh-function method is implemented to the Radhakrishnan-

Kundu-Laksmannan equation. The proposed method gives more and variety types of solutions than other

methods. These solutions including bright solitons, singular solitons, singular periodic wave solutions, Jacobi

elliptic solutions, periodic wave solutions and Weierstrass elliptic doubly periodic solutions. In the end of

the paper, two-dimensional and three-dimensional graphs of some solutions are introduced for knowing the

physical interpretation.
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2 Governing model

The RKL equation is given by [7]:

i qt + a qxx + b |q|2nq + i β qxxx + i α (|q|2nq)x = 0 ; n 6= 0. (1)

where q = q(x, t) is a dependant complex-valued variable represents the wave profile, the temporal and spatial

coordinates are represented by the variables t and x respectively, n ∈ Q is the arbitary index, i2 = −1, a, b,

α and β are parameters of equation (1).

Assuming that the solution of equation (1) has the form:

q(x, t) = P (ζ) ei(−kx+ωt+θ0), ζ = x− νt (2)

Where k,w and θ0 represent the soliton frequency, the wave number and the phase constant. Substituting

by equation (2) into equation (1), the real part can be written as:

−P (ζ)
(
ak2 + βk3 + ω

)
+ (a+ 3βk)P ′′(ζ) + (b+ αk)P (ζ)2n+1 = 0 (3)

And the imaginary part can be written as:

−P ′(ζ)
(
2ak + 3βk2 + ν

)
+ α(2n+ 1)P (ζ)2nP ′(ζ) + βP (3)(ζ) = 0 (4)

Integrating the imaginary part (4) with respect to ζ, setting the integration constant to zero, so equation

(4) can be rewritten as:

−P (ζ)
(
2ak + 3βk2 + ν

)
+ αP (ζ)2n+1 + βP ′′(ζ) = 0 (5)

From equation (3), and considering the principle of linear independence, we can conclude:

k = − a

3β
and ω = − 2a3

27β2
,where a =

3βb

α
(6)

Taking into consideration equation (6), and applying the transformation P = Q
1
n , equation (5) can be simply

rewritten as:

−a2n2Q(ζ)2 − 3αβn2Q(ζ)4 + 3βνn2Q(ζ)2 − 3β2nQ(ζ)Q′′(ζ) + 3β2nQ′(ζ)2 − 3β2Q′(ζ)2 = 0 (7)

Applying the integration scheme over equation(7) leads to the solution of equation (1) as shown in the next

sections.

3 Improved modified extended tanh-function method

In this section, the improved modified extended tanh-function method is described as follows [1, 28]:

Assuming the non-linear evolution equation (NLEE) with two independent variables t and x:

P (u, ux, ut, uxx, utt, uxt, ...) = 0, (8)
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where u = u(x, t) is an unknown function symbolize the solution of the NLEE (8) and P is a polynomial in

u and its various partial derivatives. Mostly, the soliton solution integration schemes principally based on

supposing a variable ξ as a linear conjunction of the independent variables x and t to convert the NLEE into

an ordinary differential equation(ODE):

H (S, S′, S′′, S′′′, ...) = 0, (9)

The elaborated procedures of the proposed integration scheme will be presented in the following steps:

Step–1: Considering that the NLEE (8) holds

u(x, t) = u(ξ), ξ = x− νt. (10)

where ν is a constant symbolizes the wave speed and will be determined later. Employing the transformation

of equation (10) will leads to the ODE (9).

Step–2: Supposing that the solution of equation (9) has the form:

u(ξ) =

N∑
i=0

αiφ(ξ)i +

N∑
j=1

βjφ(ξ)j . (11)

where φ(ξ) holds

φ′(ξ) = ε
√
a0 + a1φ(ξ) + a2φ(ξ)2 + a3φ(ξ)3 + a4φ(ξ)4. (12)

where ε = ±1. By virtue of this, different kinds of basic solutions can be revealed.

Step–3: The non-negative integer N is be identified in equation (11) by clenching the balance principle

between the non-linear term with greatest order derivative term in equation (9).

Step–4: Taking into account (12), and substituting by equation (11) into (9), a polynomial of φ(ξ) is

recovered. By equating the coefficients of φi(ξ) to zero, an overdetermined system is emerged. Thus, the

real constants ν, αi(i = 0, 1, ..., N), βi(i = 0, 1, ..., N) are recovered by solving the acquired overdetermined

system. Consequently, the soliton solution of equation (1) will be obtained.

4 Solitons and other solutions For the RKL equation

The solution of equation (1) can be written as q(x, t) = P (x − νt) ei(−kx+ωt+θ0), where P = Q
1
n and this

leads to equation (7). By applying the homogeneous balance principle, the solution of equation (7) can be

written as:

Q(ξ) = α0 + α1φ(ξ) +
β1
φ(ξ)

. (13)

Substituting by equation (13) in equation (7), yields to a polynomial of φ(ξ). Equating the coefficients of

this polynomial to zero, leads to the following system of algebraic equation as follow:

For φ(ξ)−4:

−3a0β
2β2

1(n− 1) + 6a0β
2β2

1n+ 3αββ4
1n

2 = 0. (14)
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For φ(ξ)−3:

6a0α0β
2β1n− 3a1β

2β2
1(n− 1) +

9

2
a1β

2β2
1n+ 12αα0ββ

3
1n

2 = 0. (15)

For φ(ξ)−2:

a2β2
1n

2 +
9

2
a1α0β

2β1n+ 6a0α1β
2β1(n− 1) + 6a0α1β

2β1n− 3a2β
2β2

1(n− 1) (16)

+3a2β
2β2

1n+ 12αα1ββ
3
1n

2 + 18αα2
0ββ

2
1n

2 − 3ββ2
1νn

2 = 0.

For φ(ξ)−1:

2a2α0β1n
2 + 3a2α0β

2β1n+ 6a1α1β
2β1(n− 1) + 6a1α1β

2β1n− 3a3β
2β2

1(n− 1) (17)

+
3

2
a3β

2β2
1n− 6α0ββ1νn

2 + 12αα3
0ββ1n

2 + 36αα1α0ββ
2
1n

2 = 0.

For φ(ξ)0:

2a2α1β1n
2 + a2α2

0n
2 +

3

2
a1α1α0β

2n+
3

2
a3α0β

2β1n− 3a0α
2
1β

2(n− 1) (18)

+6a2α1β
2β1(n− 1) + 6a2α1β

2β1n− 3a4β
2β2

1(n− 1)− 3α2
0βνn

2 − 6α1ββ1νn
2

+3αα4
0βn

2 + 36αα1α
2
0ββ1n

2 + 18αα2
1ββ

2
1n

2 = 0.

For φ(ξ)1:

2a2α1α0n
2 + 3a2α1α0β

2n− 3a1α
2
1β

2(n− 1) +
3

2
a1α

2
1β

2n+ 6a3α1β
2β1(n− 1) (19)

+6a3α1β
2β1n− 6α1α0βνn

2 + 12αα1α
3
0βn

2 + 36αα2
1α0ββ1n

2 = 0.

For φ(ξ)2:

a2α2
1n

2 − 3a2α
2
1β

2(n− 1) + 3a2α
2
1β

2n+
9

2
a3α0α1β

2n+ 6a4α1β
2β1(n− 1) (20)

+6a4α1β
2β1n− 3α2

1βνn
2 + 12αα3

1ββ1n
2 + 18αα2

0α
2
1βn

2 = 0.

For φ(ξ)3:

−3a3α
2
1β

2(n− 1) +
9

2
a3α

2
1β

2n+ 6a4α0α1β
2n+ 12αα0α

3
1βn

2 = 0. (21)

For φ(ξ)4:

−3a4α
2
1β

2(n− 1) + 6a4α
2
1β

2n+ 3αα4
1βn

2 = 0. (22)

Solving the system of equations (14-22) using Mathematica to get α0, α1, β1, ai; i = 0, 1, ..., 4 and ν. Thus,
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different types of solutions of equation (1) can be obtained as follows:

Result 1:

Setting a0 = 0, a1 = 0 and a3 = 0, obtain:

α0 = 0, β1 = 0, a2 =
3βνn2 − a2n2

3β2
and a4 = − αα2

1n
2

β(n+ 1)
. (23)

So, the corresponding solution of equation (1) can be written as:

q(x, t) = 3−
1
2n

α1

|α1|
× (24){√

(n+ 1) (3βν − a2)

αβ
sech

(
(x− νt)

√
3βνn2 − a2n2

3β2

)}1/n

× ei
(
a
3β x−

2a3

27β2
t+θ0

)
,

the solution represent a bright soliton with 3βν − a2 > 0.

Or

q(x, t) = 3−
1
2n

α1

|α1|
× (25){√

(n+ 1) (3βν − a2)

αβ
sec

(
(x− νt)

√
3βνn2 − a2n2

3β2

)}1/n

× ei
(
a
3β x−

2a3

27β2
t+θ0

)
,

the solution represent a singular periodic wave solution with 3βν − a2 > 0.

Result 2:

Setting a0 =
a22
4a4

, a1 = 0 and a3 = 0, obtain:

α0 = 0, α1 =
(n+ 1)

(
3βν − a2

)
12αββ1

, a2 = −
n2
(
3βν − a2

)
6β2

and a4 = −
n2(n+ 1)

(
3βν − a2

)2
144αβ3β2

1

. (26)

So, the corresponding solution of equation (1) can be written as:

q(x, t) =
|β1|
β1

{ (n+ 1)
(
3βν − a2

)√
− αβ

(n+1)(3βν−a2) tanh

√
n2(3βν−a2)

3β2

2 (x− νt)


2
√

3αβ
+ (27)

coth

√
n2(3βν−a2)

3β2

2 (x− νt)


2
√

3
√
− αβ

(n+1)(3βν−a2)

}1/n

e
i
(
a
3β x−

2a3

27β2
t+θ0

)

the solution represent a singular soliton with 3βν − a2 > 0.

Or

q(x, t) =
|β1|
β1

{ (n+ 1)
(
3βν − a2

)√
− αβ

(n+1)(3βν−a2) tan

√
n2(3βν−a2)

3β2

2 (x− νt)


2
√

3αβ
+ (28)

cot

√
n2(3βν−a2)

3β2

2 (x− νt)


2
√

3
√
− αβ

(n+1)(3βν−a2)

}1/n

e
i
(
a
3β x−

2a3

27β2
t+θ0

)
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the solution represent a singular periodic wave solution with 3βν − a2 < 0.

Result 3:

Setting a0 =
a22m

2(1−m2)
a4(2m2−1)2 , a1 = 0 and a3 = 0, obtain:

Case 1:

α0 = 0, α1 = ±
√
−a4β − a4βn√

αn
, β1 = 0, a2 =

3βνn2 − a2n2

3β2
and m = 1. (29)

So, the corresponding solution of equation (1) can be written as:

q(x, t) = ±3−
1
2n

{√
(n+ 1) (3βν − a2)

αβ
sech

(√
3βνn2 − a2n2

3β2
(x− νt)

)}1/n

× ei
(
a
3β x−

2a3

27β2
t+θ0

)
,(30)

the solution represent a bright soliton with 3βν − a2 > 0.

Case 2:

α0 = 0, α1 = ±i

(
a2
√
a4
√
β
√
n+1√

α
− 3
√
a4β

3/2ν
√
n+1√

α

)
a2n− 3βνn

, β1 = ±i
n
√
n+ 1

(
a2 − 3βν

)
12
√
α
√
a4β3/2

(31)

a2 = −
n2
(
3βν − a2

)
6β2

and m =

√√
2 + 2

2
.

So, the corresponding solution of equation (1) can be written as:

q(x, t) = ±i

{ 4
√

2
√

(n+1)(3βν−a2)
αβ cn

 (x−tν)
√
−n

2(3βν−a2)
3β2

4√2
|
√√

2+2
2


2
√

6− 3
√

2
+ (32)

23/4
√

6− 3
√

2

(√
n+ 1

√
−n

2(a2−3βν)
β

)

(12
√
αn) cn

 (x−tν)
√
−n

2(3βν−a2)
3β2

4√2
|
√√

2+2
2


}1/n

e
i
(
a
3β x−

2a3

27β2
t+θ0

)
,

the solution represent a Jacobi elleptic function solution.

Result 4:

Setting a0 =
a22(1−m

2)
a4(2−m2)2

, a1 = 0 and a3 = 0, obtain:

α0 = 0, α1 = ±
√
−a4β − a4βn√

αn
, β1 = 0, a2 =

3βνn2 − a2n2

3β2
and m = 1. (33)

So, the corresponding solution of equation (1) can be written as:

q(x, t) =

{
±
√
β + βn√
αn

sech

 (x− νt)
√

3βνn2−a2n2

β2

√
3

}1/n

e
i
(
a
3β x−

2a3

27β2
t+θ0

)
,

(34)
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the solution represent a bright soliton solution with 3βν − a2 > 0.

Result 5:

Setting a0 =
a22m

2

a4(m2+1)2
, a1 = 0 and a3 = 0, obtain:

α0 = 0, α1 = ±
i
(
a2
√
a4
√
β
√
n+1√

α
− 3
√
a4β

3/2ν
√
n+1√

α

)
a2n− 3βνn

, (35)

β1 = ±
in
√
n+ 1

(
a2 − 3βν

)
12
√
α
√
a4β3/2

, a2 = −
n2
(
3βν − a2

)
6β2

and m = 1.

So, the corresponding solution of equation (1) can be written as:

q(x, t) = ±
i
√
β
√
n+ 1

√
−n

2(a2−3βν)
3αβ2

2n

{
tanh

 (x− νt)
√

n2(3βν−a2)
β2

2
√

3

 (36)

− coth

 (x− νt)
√

n2(3βν−a2)
β2

2
√

3

}1/n

e
i
(
a
3β x−

2a3

27β2
t+θ0

)
,

the solution can represent a singular soliton solution with 3βν − a2 > 0.

Result 6:

Setting a0 = 0, a1 = 0 and a4 = 0, obtain:

α1 = 0, a2 =
3βν − a2

3β2
, a3 =

2
(
3α0βν − a2α0

)
3β2β1

and n = 1, with α = 0.

(37)

So, the corresponding solution of equation (1) can be written as:

q(x, t) = α0 cosh


√
βν − a2

3 (x− νt)
β

 e
i
(
a
3β x−

2a3

27β2
t+θ0

)
, (38)

the solution represent a hyperbolic type solution with 3βν − a2 > 0.

Or:

q(x, t) = α0 cos


√
βν − a2

3 (x− νt)
β

 e
i
(
a
3β x−

2a3

27β2
t+θ0

)
, (39)

the solution represent a periodic wave solution with 3βν − a2 > 0.
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Result 7:

Setting a2 = 0 and a4 = 0, obtain:

α1 = 0, a0 = −αβ
2
1

2β
, a1 = −2αα0β1

β
, a3 =

4αα3
0

ββ1
, ν =

a2 + 9αα2
0β

3β
and n = 1. (40)

So, the corresponding solution of equation (1) can be written as:

q(x, t) =

{
α0 +

β1

℘

((
x− t(a2+9αβα2

0)
3β

)√
αα3

0

ββ1
;
2β2

1

α2
0
,
β3
1

2α3
0

)}ei( a
3β x−

2a3

27β2
t+θ0

)
, (41)

the solution represent a Weierstrass elliptic doubly periodic solution.

Result 8:

Setting a0 =
a21
4a2

, a3 = 0 and a4 = 0, obtain:

α1 = 0, α0 = ±

√
3βν − a2

3αβ
, a1 = ±2

√
αβ1

√
3βν − a2√

3β3/2
, a2 = −

2
(
3βν − a2

)
3β2

, and n = 1. (42)

So, the corresponding solution of equation (1) can be written as:

q(x, t) =

{
±

√
3βν−a2
αβ√
3

+
β1

±

 3β2

(
± 2
√
αβ1

√
3βν−a2

√
3β3/2

)
4(3βν−a2)

+ e
±
√

2
3

√
− 3βν−a2

β2
(x−νt)

}
e
i
(
a
3β x−

2a3

27β2
t+θ0

)
.(43)

Where 3βν − a2 < 0.

Result 9:

Setting a0 = 0, a3 = 0 and a4 = 0, obtain:

β1 = 0, a1 =
2
(
3α0βν − a2α0

)
3α1β2

, a2 =
3βν − a2

3β2
, α = 0, and n = 1. (44)

So, the corresponding solution of equation (1) can be written as:

q(x, t) =

{
± α0 sin


√

a2−3βν
β2 (x− νt)
√

3

}ei( a
3β x−

2a3

27β2
t+θ0

)
. (45)

Where 3βν − a2 < 0.

Or:

q(x, t) =

{
± α0 sinh

2
√
−a2−3βνβ2 (x− νt)

√
3

}ei( a
3β x−

2a3

27β2
t+θ0

)
. (46)
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Where 3βν − a2 > 0.

Result 10:

Setting a1 = 0, a3 = 0 and a4 = 0, obtain:

α0 = 0, α1 = 0, a0 = − αβ2
1n

2

β(n+ 1)
, and a2 =

n2
(
3βν − a2

)
3β2

. (47)

So, the corresponding solution of equation (1) can be written as:

q(x, t) = ±

{csc

 (x−νt)
√
−n

2(3βν−a2)
β2√

3


√

3
√

αβ
(n+1)(3βν−a2)

}1/n

e
i
(
a
3β x−

2a3

27β2
t+θ0

)
. (48)

the solution represents a singular periodic solution with 3βν − a2 < 0.

Or:

q(x, t) = ±

{csch

 (x−νt)
√
−n

2(3βν−a2)
β2√

3


(√

3
√
− αβ

(n+1)(3βν−a2)

) }1/n

e
i
(
a
3β x−

2a3

27β2
t+θ0

)
. (49)

the solution represents a singular soliton with 3βν − a2 < 0.

5 Graphical representation of some solutions

In this section, some of the the obtained solutions are represented graphically for certain values of n, β, α, ν

and a. Figure 1 shows 3D and 2D graphs of the bright soliton solution (24) for (n = 0.5, β = 1.34, α =

2.88, ν = 0.66, a = 0.7). Figure 2 shows 3D and 2D graphs of the singular periodic solution (25) for

(n = 0.5, β = 3.08, α = −2.3, ν = 1.88, a = 2.72). Figure 3 shows 3D and 2D graphs of the singular soliton

solution (27) for (n = 0.5, β = −1.42, α = 3.36, ν = −2.36, a = 2.24). Figure 4 shows 3D and 2D graphs

of the singular periodic solution (28) for (n = 0.5, β = −1.36, α = −0.66, ν = −0.36, a = −2.74). Figure

5 shows 3D and 2D graphs of the bright soliton solution (30) for (n = 0.5, β = −2.42, α = −1.42, ν =

−0.52, a = 0.76). Figure 6 shows 3D and 2D graphs of the singular periodic solution (48) for (n = 0.5, β =

0.82, α = 0.02, ν = −0.4, a = −0.98). Figure 7 shows 3D and 2D graphs of the singular soliton solution (49)

for (n = 0.5, β = −2.04, α = −1.52, ν = −0.82, a = −2.26).
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Figure 1: 3D and 2D graphs of the bright soliton solution (24) for (n = 0.5, β = 1.34, α = 2.88, ν = 0.66, a =

0.7).
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Figure 2: 3D and 2D graphs of the singular periodic solution (25) for (n = 0.5, β = 3.08, α = −2.3, ν =

1.88, a = 2.72).
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Figure 3: 3D and 2D graphs of the singular soliton solution (27) for (n = 0.5, β = −1.42, α = 3.36, ν =

−2.36, a = 2.24).

(a)

-10 -5 5 10
x

20

40

60

80

(b)

Figure 4: 3D and 2D graphs of the singular periodic solution (28) for (n = 0.5, β = −1.36, α = −0.66, ν =

−0.36, a = −2.74).
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Figure 5: 3D and 2D graphs of the bright soliton solution (30) for (n = 0.5, β = −2.42, α = −1.42, ν =

−0.52, a = 0.76).
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Figure 6: 3D and 2D graphs of the singular periodic solution (48) for (n = 0.5, β = 0.82, α = 0.02, ν =

−0.4, a = −0.98).

12



(a)

-10 -5 5 10
x

-6

-5

-4

-3

-2

-1

(b)

Figure 7: 3D and 2D graphs of the singular soliton solution (49) for (n = 0.5, β = −2.04, α = −1.52, ν =

−0.82, a = −2.26).

6 Conclusion

In this article, the Radhakrishnan-Kundu-Laksmannan equation that describes the wave propagation in

optical fibers been studied successfully by applying the improved modified extended tanh-function method.

Various types of solutions were extracted such as bright solitons, singular solitons, singular periodic wave

solutions, Jacobi elliptic solutions, periodic wave solutions and Weierstrass elliptic doubly periodic solutions.

Moreover, 3D and 2D plots of some solutions were introduced to show their features.
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