[1] https://thetruthaboutcancer.com/lung-cancer-causes/
[2] S. Kligerman and S. Digumarthy, “Staging of non–small cell lung cancer using integrated PET/CT”, Am J Roentgenol(2009), vol. 193, no. 5, pp. 1203–1211.
[3] T. M. Blodgett, C. C. Meltzer, and D. W. Townsend, “PET/CT: Form and Function”, Radiology(2007), vol. 242, no. 2, pp. 360–385.
[4] F. C. Detterbeck, D. J. Boffa, L. T. Tanoue, “The new lung cancer staging system”, Chest(2009), vol. 136, no. 1, pp. 260–271.
[5] S. B. Edge, D. R. Byrd, C. C. Compton, A. G. Frtiz, F. L. Greene, and A. Trotti, Eds., AJCC Cancer Staging Manual (2010). Springer New York, pp. 1471 – 74.
[6] S. B. Edge , C. C. Compton, “The American Joint Committee on Cancer: the 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM”, Ann Surg Oncol(2010), vol. 17, pp. 1471–1474.
[7] E. Tatci, O. Ozmen, Y. Dadali, I. U. Biner, A. Gokcek, F. Demirag, F. Incekara, and N. Arslan, “The role of FDG PET/CT in evaluation of mediastinal masses and neurogenic tumors of chest wall”, Int J Clin Exp Med(2015), vol. 8, no. 7, pp. 11 146–52.
[8] W. Ju, D. Xiang, B. Zhang, L. Wang, I. Kopriva, X. Chen, “Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images”, IEEE T Imag Process(2015), vol. 24, no. 12, pp. 5854–5867.
[9] A. Teramoto, H. Fujita, O. Yamamuro, and T. Tamaki, “Automated detection of pulmonary nodules in PET/CT images: Ensemble false positive reduction using a convolutional neural network technique”,Med Phys(2016), vol. 43, no. 6, pp. 2821–2827.
[10] L. Bi, J. Kim, A. Kumar, L. Wen, D. Feng, and M. Fulham, “Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies”, Computerized Medical Imaging Graphics(2017), vol. 60, pp. 3–10.
[11] L. Xu, G. Tetteh, J. Lipkova, Y. Zhao, H. Li, P. Christ, M. Piraud, A. Buck, K. Shi, and B. H. Menze, “Automated whole-body bone lesion detection for multiple myeloma on 68Ga-Pentixafor PET/CT imaging using deep learning methods”, Contrast Media Mol I(2018), vol. 2018, p. 11.
[12] F. Milletari, N. Navab, and S. A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation”, in Fourth International Conference on 3D Vision (3DV) (2016), pp. 565–571.
[13] Z. Zhong, Y. Kim, L. Zhou, K. Plichta, B. Allen, J. Buatti, and X. Wu, “3D fully convolutional networks for co-segmentation of tumors on PETCT images”, in IEEE ISBI(2018), pp. 228–231.
[14] J. Zhao, G. Ji, Y. Qiang, X. Han, B. Pei, and Z. Shi, “A new method of detecting pulmonary nodules with PET/CT based on an improved watershed algorithm”, PLOS ONE(2015), vol. 10, no. 4, pp. 1–15.
[15] C. Lartizien, M. Rogez, E. Niaf, and F. Ricard, “Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information”, IEEE J Biomed Health(2014), vol. 18, no. 3, pp. 946–955.
[16] Y. Song, W. Cai, H. Huang, X. Wang, Y. Zhou, M. J. Fulham, and D. D. Feng, “Lesion detection and characterization with context driven approximation in thoracic FDG PET-CT images of NSCLC studies”, IEEE Transactions on Medical Imaging(2014), vol. 33, no. 2, pp. 408–421.
[17] Q. Song, J. Bai, D. Han, S. Bhatia, W. Sun, W. Rockey, J. E. Bayouth, J. M. Buatti, and X. Wu, “Optimal co-segmentation of tumor in PET-CT images with context information”, IEEE Transactions on Medical Imaging(2013), vol. 32, no. 9, pp. 1685–1697.
[18] D. Han, J. Bayouth, Q. Song, A. Taurani, M. Sonka, J. Buatti, and X.Wu,“Globally optimal tumor segmentation in PET-CT images: A graph based co-segmentation method”, in Information Processing in Medical Imaging. Springer Berlin Heidelberg(2011), pp. 245–256.
[19] T. Bradshaw, T. Perk, S. Chen, H.-J. Im, S. Cho, S. Perlman, and R. Jeraj, “Deep learning for classification of benign and malignant bone lesions in [F-18]NaF PET/CT images”, J Nucl Med(2018), vol. 59, no. S1, p. 327,
[20] Y. Song, W. Cai, J. Kim, and D. D. Feng, “A multistage discriminative model for tumor and lymph node detection in thoracic images”, IEEE T Med Imaging(2012), vol. 31, no. 5, pp. 1061–1075.
[21] L. Bi, J. Kim, D. Feng, and M. Fulham, “Multi-stage thresholded region classification for whole-body PET-CT lymphoma studies” , in MICCAI(2014),pp. 569–576.
[22] A. Kumar, J. Kim, L. Wen, M. Fulham, and D. Feng, “A graph-based approach for the retrieval of multi-modality medical images”,Med Image Anal(2014), vol. 18, no. 2, pp. 330–342.
[23] Nilendu C Purandare, Venkatesh Rangarajan, “Imaging of lung cancer: Implications on staging and management”, Indian Journal of Radiology and Imaging(2015), vol.25, no.2, pp 109-120.
[24] X. Zhao, L. Li, W. Lu, and S. Tan, “Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network”, Physics in Medicine and Biology (2018), vol. 64, no. 1, pp 1-29.
[25] L. Li, X. Zhao, W. Lu, and S. Tan, “Deep learning for variational multimodality tumor segmentation in PET/CT”, Neurocomputing, pp 1-19.
[26] Z. Zhong, Y. Kim, K. Plichta, B. G. Allen, L. Zhou, J. Buatti, and X. Wu, “Simultaneous cosegmentation of tumors in PET-CT images using deep fully convolutional networks”, Medical Physics(2019), vol. 46, no. 2, pp. 619–633.
[27] W. Cai and G. Sakas, “Data intermixing and multivolume rendering”, Comput Graph Forum(1999), vol. 18, no. 3, pp. 359–368.
[28] A. Quon, S. Napel, C. F. Beaulieu, and S. S. Gambhir, ““flying through” and “flying around” a PET/CT scan: Pilot study and development of 3D integrated 18F-FDG PET/CT for virtual bronchoscopy and colonoscopy,” J Nucl Med(2006), vol. 47, no. 7, pp. 1081–1087.
[29] R. Cheirsilp, R. Bascom, T. W. Allen, and W. E. Higgins, “Thoracic cavity definition for 3D PET/CT analysis and visualization”, Comput Biol Med(2015), vol. 62, pp. 222–238.
[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in ICML(2015), vol. 37, pp. 448–456.
[31] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models” , in ICML Workshop on Deep Learning for Audio, Speech and Language (2013), vol. 30, no. 1, p. 3.
[32] J. C. Fernandez Caballero, F. J. Martinez, C. Hervas, and P. A. Gutierrez, “Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks”, IEEE Transaction on Neural Network(2010), vol. 21, no. 5, pp. 750–770.