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Abstract

Dementia, a syndrome characterized by the progressive deterioration of memory and cognition, arises
from different pathologies, with Alzheimer's Disease (AD) its most common cause. Patterns of gene
expression during dementia of different etiologies may function as generalist biomarkers of the
condition. We used RNA-Seq data from the Allen Dementia and Traumatic Brain Injury Study (ADTBI) to
identify differentially expressed genes in brains with dementia. Machine Learning algorithms Decision
Trees (DT) and Random Forest (RF) were used to create models to identify dementia samples based on
their gene expression profile. Importance analyses were conducted to identify the most relevant genes in
each classification model. A total of 1629 differentially expressed (DE) genes were found in brains with
the condition. Gene PAN3-AS1 was the only DE gene across more than three brain regions. The artificial
intelligence models were capable of identifying correctly up to 92.85% of dementia samples. Our
analyses provide interesting insights regarding using brain-specific gene expression profiles as
biomarkers of dementia, identifying genes possibly involved with dementia, and guiding future studies in
prediction and early identification of the syndrome.

Introduction

Dementia is one of the most challenging issues in aging populations. Its prevalence is between 5-7% of
the elderly, affecting around 50 million people worldwide (Prince et al, 2013). Dementia is a clinical
syndrome caused by different etiologies, including complex, multigenic, and even epigenetic causes.
Alzheimer's Disease (AD), vascular dementia, Lewy body disease, frontotemporal dementia, and
Creutzfeldt-Jakob disease are among its most common causes. Traumatic brain injury and alcohol
consumption are also frequent causes of the condition, especially in younger people (Harvey, Skelton-
Robinson and Rossor, 2003; Shively et al, 2012).

Machine Learning (ML) computes probabilities and classifies data based on statistics. This method has
been proved invaluable for disease classification based on images, with growing precision and predictive
power (Rizk-Jackson et al, 2011; Liu et al, 2015). ML is currently used to aid the diagnostics of heart and
liver diseases, diabetes, dengue, and many others (Fatima and Pasha, 2017). RNA-Seq is a high-
throughput technology capable of assessing transcriptomic profiles (Courtney et al, 2010). The
combination of RNA-Seq with ML models can help us identify potential biomarkers of diseases, and
assess the expression of these genes to predict the disease development (Singireddy et al, 2015).

Changes in gene expression caused by neurodegenerative diseases can highlight the pathogenic
mechanisms (Arneson et al, 2018). Identifying these changes may help early predict developing diseases
by the identification of gene expression patterns related to the pathologies. And to further understand the
brain molecular networks involved in the process of memory and dementia, we investigated the
transcriptome patterns of healthy and dementia RNA-Seq data from the Aging, Dementia, and Traumatic
Brain Injury Study (ADTBI, Miller, et al, 2017). We used the set of differentially expressed (DE) genes from
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dementia samples to build ML models capable of predicting the condition. We were capable of
identifying DE genes during dementia and that can be used as biomarkers of the condition.

Methods

Data Acquisition

RNA-Seq data of human brains with and without dementia were extracted from the ADTBI (aging.brain-
map.org). This database contains data of 50282 transcripts of 107 brain transcriptomes. Of the
dementia samples, thirty were from AD, and 21 from different etiologies (vascular, multiple etiologies,
others, and unknown causes), and 56 samples are from non-dementia brains. The parietal cortex (PC),
temporal cortex (TC), forebrain white matter (FWM), and hippocampus are the four sampled areas in the
ADTBI and included in this analysis.

Data Cleansing and Treatment

R language was used to clean and treat the datasets. Data from three files were merged to create the final
dataset (Donor information, Gene Expression Matrix, and Column Samples). We used the column DSM IV
(clinical diagnosis) from within the donor information table to classify samples. We considered all
sources of dementia as just "Dementia’, and the remaining samples as "No Dementia". Non-normalized
Fragments per Kilobase of sequence per million mapped reads (FPKM) data were loaded and DESeq2
library (Love, 2017) to extract differential expression data of the genes. Python module Pandas was used
to further filter the DE genes by false discovery rate (FDR) adjusted p-values, considering significant DE
genes only those with p-adjusted below 0.05.

Disease modeling

To check whether the dementia samples would cluster together, we have drawn a heatmap with the 1000
lowest false discovery rate-adjusted p-values for each data stratification.

Transcriptome patterns of DE genes were used as input for the classification models Decision Tree (DT)
using R library rpart (Therneau and Atkinson, 2019), and Random Forest (RF), using R library
randomForest (Liaw and Wiener, 2002).

The first model considered all DE genes as classification features. Feature selection was made using all
genes whose attribute importance was superior to 3 defined by the random.forest.importance method
from randomForest library. This step was done for each brain region, and new RF models were created
using only these selected genes.

For the RF models, the number of trees (ntree) and the number of variables at each split (mtry) were
adjusted based on the Out-of-bag error, and the proximity was calculated and visualized using
multidimensional scaling.
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Model metrics analysis

For each created model, a confusion matrix was calculated, containing the total number of true positives
(correctly identified dementia samples), true negatives (correctly identified non-dementia samples), false
positives (non-dementia samples classified as dementia), and false negatives (dementia samples
classified as non-dementia). From these confusion matrices, the accuracy, precision, recall, and F1 score
metrics were calculated for each model. Accuracy is calculated as the ratio of correctly predicted
observations (True positives + True Negatives) over the total number of observations. Precision was
calculated as the ratio of true positives over the total number of positive observations and relates to a low
false-positive rate. Recall, also known as sensitivity, is the ratio of true positives overall real positives (true
positives and false negatives). And finally, the F1 Score measures the test's accuracy based on the
average between precision and recall. All metrics were added to a single comparison data frame.

Data Visualization

R library EnhancedVolcano (Blighe, Rana, and Lewis, 2020) was used to draw the volcano plots showing
DE genes in each data stratification. R library VennDiagram (Chen, 2018) was used to plot a venn
diagram of the four datasets showing DE genes shared between the brain regions. R library ggplot2 was
used to create and visualize DT trees, the Out-of-bag errors, and multidimensional scaling plots. R library
volcanoplot was used to show the significant DE genes.

Functional Enrichment and Protein Network Analysis

STRING (Szklarczyk et al, 2019) database APl was accessed using the lists of DE genes for each
stratification as input. First, each gene was mapped with a non-ambiguous identifier, using
"get_string_ids" method, returning only the best matches for each gene name. The network images were
generated using the "network" method, with nodes connected based on confidence, and with a score of at
least 750, without secondary nodes. Finally, the method "function_annotation" was used for the
functional enrichment of the networks, considering all annotated functions shared by at least 5 nodes
based on Gene Ontology ( The Gene Ontology Consortium, 2019), Reactome (Jassal et al, 2020) or
SMART (Letunic e Bork, 2017). The script to access the API can be found in the author's repository
(github.com/mouradap/StringAPI).

Results

Data Clustering

Our data clustering analysis revealed that taking the 1000 genes with the lowest adjusted p-values, the
dementia samples would group closer than with any other non-dementia sample (Fig. 1). This clustering
is an important indicator that the models are able to find patterns and correctly classify the samples.

Differential Expression of all samples

Page 4/16



We found differential expression patterns in brains with dementia, with a total of 1629 DE genes between
non-dementia samples. There were a total of 1550 overexpressed genes across the brain samples, while
only 79 were under expressed. Of these, 382 DE genes were found in the TC, 377 in the PC, 376 in the
FWM, and 502 in the hippocampus. Figure 2 presents the amount of DE genes through a volcano plot in
the FWM as an example. Only genes with false discovery rate-adjusted p-values below 0.05 were
considered significantly DE (green and gray in the figure).

A Venn diagram was drawn to identify DE genes in all brain regions (Fig. 3). This revealed a total of 24
DE genes shared by at least 2 brain regions. Except for under expressed genes TNFRSF21 in the PC
(-3.37-fold) and OR4C5in the FWM (-3.44 fold), all genes were overexpressed by at least 2.74-fold in the
dementia samples. Gene PAN3-AST was the only DE gene shared by three brain areas (hippocampus,
FWM, and PC), and overexpressed by over 3-fold.

Machine Learning Models

All DT based models had precision over 80%, with Hippocampus model with 100% precision, and the
lowest false-negative rate (Fig. 4A). The Whole-Brain model had a precision of 93.10% (Fig. 4B). The TC
had the highest F1 Score between all models (80%) (Fig. 4C).

The RF models overall did not score as well as the DT models. The Hippocampus model created with
feature selection had the highest Recall (sensitivity) between all models (77.27%), with the lowest number
of mislabeling of true dementia samples. These comparisons are presented in Table 1.

Feature selection Genes

The attribute importance for feature selection revealed several genes whose patterns could be particularly
useful in the classification of dementia samples. Models for each brain region had different numbers of
selected features. The TC had 9 chosen genes (HDAC11, CNGB3, TRIM56, TBC1D13, PDLIM7, PPP1CB,
ADGRB3, GET4, and TYK2, in ascending order of importance), and the FWM had 7 chosen genes (ARL 170,
OBSCN, STX7, VAPA, CRHR1, SARTAP3, and MARCH?Z2). The hippocampus and the PC both had 3 genes
selected based on the attribute importance: TMEM106B, PCCB, and ZNF358 for PC, and FPGT.TNNI3K,
CRB2,and ST6GALNACZ for the hippocampus.

Protein network analyzes

All DE gene lists were capable of recreating protein functional interaction networks from the STRING
database. The most connected network was created from DE genes from the hippocampus, with 45 direct
nodes connected to the central UBA52 gene, with 7 adjacent protein clusters (Fig. 5).

Functional enrichment

The most-reported process in Gene Ontology in all sample stratifications was the Cellular Process, shared
by around 78% of DE genes. Biological Regulation was the second most reported process, shared by 60%
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of the genes. In Reactome pathways, Signal Transduction was the most present process, followed by
Immune System, Metabolism and Protein Metabolism (present in 19%, 12%, 12%, and 10% of the genes,
respectively). Specific pathways change in each brain region, with relatively fewer participating genes in
each. 'Asparagine-bound N-glycosylation, 'Signal Transduction Diseases', and '"MAPK Family Signaling
Cascades' belong in the pathways of the Hippocampus DE genes. The complete list of functionally
enriched DE genes is available in the supplementary material (Supplementary 1-38).

Discussion

The continuous growth of human elderly populations makes understanding, preventing, and treating age-
related conditions a priority in research and policies for public health. This study attempted to assess
dementia's neuroanatomical expression profile shared throughout multiple etiologies. Our most efficient
models were able to correctly identify up to 92.85% of dementia samples. These models prove that there
are differential expression patterns in brains with some type of dementia. While these models might not
be used as dementia predicting tools, they contain important information about genes in which a
differential expression profile correlates to brains with dementia. This is consistent with a recent
comparative transcriptome study between AD, Frontotemporal Dementia, and Hungtington's Disease
(Annese et al, 2018; Stopa et al, 2018). These models contain important information regarding DE genes
during dementia, pointing to potential biomarkers for the condition.

ML models can predict dementia in RNA-Seq samples. This indicates that we can utilize brain-specific
gene expression profiles as disease biomarkers. Changes in TC, PC, and FWM are sufficient to be
modeled and used to compare and classify dementia. Resultant genes from the importance analysis can
become potential candidate genes for the development of a gene expression panel that could work as a
type of dementia indicator.

Our results show that differences in transcriptome patterns between healthy and dementia brains were
most significant in the Hippocampus. This was expected since there is strong evidence of hippocampus
involvement in the origin and development of dementia. Hippocampus volume loss and shape change is
a common feature to distinguish healthy and Alzheimer's Disease dementia brains (Wang et al, 2003).
This phenotype can also be a potential predictor of future dementia (Apostolova et al, 2010). In addition
to the atrophy, molecular changes in the dementia hippocampus are also reported. The presence of a-
synuclein, of ubiquitin-immunoreactive inclusions, and reduced choline acetyltransferase are molecular
aspects of the hippocampus in dementia of different etiologies (Galvin et al, 1999).

Most DE genes are involved in trivial cellular processes, such as metabolism and protein regulation.
Proteins involved in the immune response are also overexpressed in this condition, pointing to the role of
the innate immune system in neurodegeneration. This hypothesis is reported by Richards and colleagues
(2016), which states that neurodegenerative disease is the result of chronic activation of an innate
surveillance pathway.
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DE genes shared by the brain regions during dementia are linked to collagen metabolism, tyrosin kinases,
adaptive immunity, protein digestion and absorption, and osteoclast differentiation (Sup. Table 1). Genes
SYKand TYK2Z participate in most of these molecular functions and are differentially expressed in
Temporal Cortex, Parietal Cortex, and Temporal Cortex and Hippocampus, respectively. Indeed, SYK
appears to be directly involved in the susceptibility of vascular dementia (Kim, Kong, and Lee, 2013). In
addition, TYKZ participates in the TYK2/STAT3 signaling pathway that mediates B-amyloid-induced
neuronal cell death (Wan et al, 2010). In the Decision Tree classification model, overexpression of TYK2
(over 7-fold) was the most important feature distinguishing dementia and no dementia brains in our
study.

Other DE genes shared by more than one region are reported in the context of dementia. TNFRSF21 is
known as death receptor 6. This gene is differentially expressed in the Parietal Cortex and Temporal
Cortex in dementia brains and is involved in neuronal apoptosis by binding to B-amyloid precursor protein
and recruiting Caspase 6 (Nikolaev et al, 2009). Gene TIMMZ23B codifies an inner mitochondrial
membrane protein, which is also associated with App plaques in AD (Heinemeyer et al, 2019).

RNA genes and pseudogenes were also important features in distinguishing dementia brains in our
models. These have little to no physiological information available yet. Between these genes, some have
an association with neurodegenerative conditions. RPS27AP4 is a pseudogene differentially expressed in
both Temporal Cortex and Hippocampus is possibly involved with schizophrenia (Xu et al, 2013). Lastly,
MIR181C gene is DE in both Parietal Cortex and Hippocampus, and is involved with microglia-mediated
apoptosis, increased amyloid-beta plasma levels with aging, and cognitive impairment (Fang et al, 2017;
Crespo, Atienza e Cantero, 2019).

Although the deep brain tissues used in this study are not accessible in exploratory examinations, this
effort was important to reveal several transcriptomic aspects of the syndrome. The predictive power of
these models reveals key molecules that may be potentially involved in the development and progress of
the condition. Furthermore, we demonstrated that ML algorithms can be used to classify disease samples
based on transcriptome data. Future studies in the field can allow the development of dementia early
detection tools, promoting healthier aging for the populations.
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Figure 1

Temporal Cortex Differentially Expressed genes in Dementia
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Venn Diagram of differentially expressed genes shared by brain areas
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Decision tree based dementia classification models
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Gene Network of Differentially Expressed genes in the Hippocampus

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Page 15/16



Table1ModelComparisonmetrics.xlsx
Supplementarymaterial1alIDET CxfunctionalEnrichment.txt
Supplementarymaterial2allIDET CxNetwork.png
Supplementarymaterial3allIDEPCxfunctionalEnrichment.txt
Supplementarymaterial4allDEPCxNetwork.png
Supplementarymaterial5allDEHipfunctionalEnrichment.txt
Supplementarymaterial6alIDEHipNetwork.png
Supplementarymaterial7allDEFWMfunctionalEnrichment.txt

Supplmentarymaterial8allDEFWMNetwork.png

Page 16/16


https://assets.researchsquare.com/files/rs-840907/v1/80ba26a766e59f73dfdbd38b.xlsx
https://assets.researchsquare.com/files/rs-840907/v1/de84b3c8edb12938e23c589c.txt
https://assets.researchsquare.com/files/rs-840907/v1/2bd4e88f5428dc7e2bbdeb0b.png
https://assets.researchsquare.com/files/rs-840907/v1/a0d7f35c3903b2c6e6da6e45.txt
https://assets.researchsquare.com/files/rs-840907/v1/628cbe83559fcf04d23bfd8e.png
https://assets.researchsquare.com/files/rs-840907/v1/2e1a126237377e238e8e0e12.txt
https://assets.researchsquare.com/files/rs-840907/v1/f3ef75305be4227709be73c7.png
https://assets.researchsquare.com/files/rs-840907/v1/6b304aae9d2647fb3be8fe4f.txt
https://assets.researchsquare.com/files/rs-840907/v1/b1d43c6a2cb786b2d2f5d7b9.png

