[1] K. P. Karunakaran, S. Suryakumar, V. Pushpa, and S. Akula, “Low cost integration of additive and subtractive processes for hybrid layered manufacturing,” Robot. Comput.-Integr. Manuf., vol. 26, no. 5, pp. 490–499, Oct. 2010, doi: 10.1016/j.rcim.2010.03.008.
[2] D. Jafari, T. H. J. Vaneker, and I. Gibson, “Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts,” Mater. Des., vol. 202, p. 109471, Apr. 2021, doi: 10.1016/j.matdes.2021.109471.
[3] B. Wu et al., “Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling,” Sci. Technol. Weld. Join., vol. 24, no. 5, pp. 484–494, Jul. 2019, doi: 10.1080/13621718.2019.1580439.
[4] M. P. Sefidi, R. Israr, J. Buhl, and M. Bambach, “Rule-Based Path Identification for Direct Energy Deposition,” Procedia Manuf., vol. 47, pp. 1134–1140, Jan. 2020, doi: 10.1016/j.promfg.2020.04.133.
[5] E. R. Denlinger, J. C. Heigel, P. Michaleris, and T. A. Palmer, “Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys,” J. Mater. Process. Technol., vol. 215, pp. 123–131, Jan. 2015, doi: 10.1016/j.jmatprotec.2014.07.030.
[6] G. d. Janaki Ram, Y. Yang, B. e. Stucker, and C. Robinson, “Use of ultrasonic consolidation for fabrication of multi‐material structures,” Rapid Prototyp. J., vol. 13, no. 4, pp. 226–235, Aug. 2007, doi: 10.1108/13552540710776179.
[7] R. J. Friel and R. A. Harris, “Ultrasonic Additive Manufacturing – A Hybrid Production Process for Novel Functional Products,” Procedia CIRP, vol. 6, pp. 35–40, Jan. 2013, doi: 10.1016/j.procir.2013.03.004.
[8] P. L. Blackwell and A. Wisbey, “Laser-aided manufacturing technologies; their application to the near-net shape forming of a high-strength titanium alloy,” J. Mater. Process. Technol., vol. 170, no. 1–2, pp. 268–276, Dec. 2005, doi: 10.1016/j.jmatprotec.2005.05.014.
[9] J. S. Panchagnula and S. Simhambhatla, “Manufacture of complex thin-walled metallic objects using weld-deposition based additive manufacturing,” Robot. Comput.-Integr. Manuf., vol. 49, pp. 194–203, Feb. 2018, doi: 10.1016/j.rcim.2017.06.003.
[10] C. Greer et al., “Introduction to the design rules for Metal Big Area Additive Manufacturing,” Addit. Manuf., vol. 27, pp. 159–166, May 2019, doi: 10.1016/j.addma.2019.02.016.
[11] P. Almeida, S. Williams, F. Wang, P. Kazanas, J. Ding, and F. Martina, “Wire plus Arc ALM: Developments for large scale aircraft metal components,” Jan. 01, 2012. [Online].Available: https://www.researchgate.net/publication/51999211_Wire_plus_Arc_ALM_Developments_for_large_scale_aircraft_metal_components
[12] J. J. Penney and W. R. Hamel, “Using non-gravity aligned welding in large scale additive metals manufacturing for building complex parts,” Solid Free. Fabr. 2019 Proc. 30th Annu. Int. Solid Free. Fabr. Symp. – Addit. Manuf. Conf., Jan. 2019, Accessed: Nov. 15, 2021. [Online]. Available: https://par.nsf.gov/biblio/10159186-using-non-gravity-aligned-welding-large-scale-additive-metals-manufacturing-building-complex-parts
[13] Y.-A. Song, S. Park, D. Choi, and H. Jee, “3D welding and milling: Part I–a direct approach for freeform fabrication of metallic prototypes,” Int. J. Mach. Tools Manuf., vol. 45, no. 9, pp. 1057–1062, Jul. 2005, doi: 10.1016/j.ijmachtools.2004.11.021.
[14] Y.-A. Song, S. Park, and S.-W. Chae, “3D welding and milling: part II—optimization of the 3D welding process using an experimental design approach,” Int. J. Mach. Tools Manuf., vol. 45, no. 9, pp. 1063–1069, Jul. 2005, doi: 10.1016/j.ijmachtools.2004.11.022.
[15] R. Dwivedi and R. Kovacevic, “Automated torch path planning using polygon subdivision for solid freeform fabrication based on welding,” J. Manuf. Syst., vol. 23, no. 4, pp. 278–291, 2004, doi: 10.1016/S0278-6125(04)80040-2.
[16] K. P. Karunakaran, S. Suryakumar, V. Pushpa, and S. Akula, “Retrofitment of a CNC machine for hybrid layered manufacturing,” Int. J. Adv. Manuf. Technol., vol. 45, no. 7–8, pp. 690–703, Dec. 2009, doi: 10.1007/s00170-009-2002-2.
[17] Suryakumar Simhambhatla and K.P. Karunakaran, “Build strategies for rapid manufacturing of components of varying complexity,” Rapid Prototyp. J., vol. 21, no. 3, pp. 340–350, Apr. 2015, doi: 10.1108/RPJ-07-2012-0062.
[18] J. D. Spencer, P. M. Dickens, and C. M. Wykes, “Rapid prototyping of metal parts by three-dimensional welding,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 212, no. 3, pp. 175–182, Mar. 1998, doi: 10.1243/0954405981515590.
[19] Y. Zhang, Y. Chen, P. Li, and A. T. Male, “Weld deposition-based rapid prototyping: a preliminary study,” J. Mater. Process. Technol., vol. 135, no. 2–3, pp. 347–357, Apr. 2003, doi: 10.1016/S0924-0136(02)00867-1.
[20] J. Mehnen, J. Ding, H. Lockett, and P. Kazanas, “Design for Wire and Arc Additive Layer Manufacture,” in Global Product Development, A. Bernard, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 721–727. Accessed: Jul. 29, 2013. [Online]. Available: https://dspace.lib.cranfield.ac.uk/handle/1826/7349?mode=simple
[21] P. Kazanas, P. Deherkar, P. Almeida, H. Lockett, and S. Williams, “Fabrication of geometrical features using wire and arc additive manufacture,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., p. 0954405412437126, Feb. 2012, doi: 10.1177/0954405412437126.
[22] X. Chen, C. Wang, X. Ye, Y. Xiao, and S. Huang, “Direct Slicing from PowerSHAPE Models for Rapid Prototyping,” Int. J. Adv. Manuf. Technol., vol. 17, no. 7, pp. 543–547, Apr. 2001, doi: 10.1007/s001700170156.
[23] B. Baufeld, O. V. der Biest, and R. Gault, “Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties,” Mater. Des., vol. 31, Supplement 1, pp. S106–S111, Jun. 2010, doi: 10.1016/j.matdes.2009.11.032.
[24] X. Xiong, H. Zhang, and G. Wang, “Metal direct prototyping by using hybrid plasma deposition and milling,” J. Mater. Process. Technol., vol. 209, no. 1, pp. 124–130, Jan. 2009, doi: 10.1016/j.jmatprotec.2008.01.059.
[25] J. S. Panchagnula and S. Simhambhatla, “Additive Manufacturing of Complex Shapes Through Weld-Deposition and Feature Based Slicing,” p. V02AT02A004, Nov. 2015, doi: 10.1115/IMECE2015-51583.
[26] L. Ren, T. Sparks, J. Ruan, and F. Liou, “Process planning strategies for solid freeform fabrication of metal parts,” J. Manuf. Syst., vol. 27, no. 4, pp. 158–165, Oct. 2008, doi: 10.1016/j.jmsy.2009.02.002.
[27] S. McMains, “Double sided layered manufacturing,” 2002. [Online]. Available: https://www.researchgate.net/publication/228577856_Double_sided_layered_manufacturing
[28] R. Dwivedi and R. Kovacevic, “Process Planning for Multi-Directional Laser-Based Direct Metal Deposition,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 219, no. 7, pp. 695–707, Jul. 2005, doi: 10.1243/095440605X31535.
[29] Y. Ding, R. Dwivedi, and R. Kovacevic, “Process planning for 8-axis robotized laser-based direct metal deposition system: A case on building revolved part,” Robot. Comput.-Integr. Manuf., vol. 44, pp. 67–76, Apr. 2017, doi: 10.1016/j.rcim.2016.08.008.
[30] F. Liou, K. Slattery, M. Kinsella, J. Newkirk, H.-N. Chou, and R. Landers, “Applications of a hybrid manufacturing process for fabrication of metallic structures,” Rapid Prototyp. J., vol. 13, no. 4, pp. 236–244, Aug. 2007, doi: 10.1108/13552540710776188.
[31] Y. Chen, C. Zhou, and J. Lao, “A layerless additive manufacturing process based on CNC accumulation,” Rapid Prototyp. J., vol. 17, no. 3, pp. 218–227, 2011, doi: 10.1108/13552541111124806.
[32] J. Panchagnula and S. Simhambhatla, “Inclined Slicing and Weld-Deposition for Additive Manufacturing of Metallic Objects with Large Overhangs using Higher Order Kinematics.,” Virtual Phys. Prototyp., doi: 10.1080/17452759.2016.1163766.
[33] S. Suryakumar, K. P. Karunakaran, U. Chandrasekhar, and M. A. Somashekara, “A study of the mechanical properties of objects built through weld-deposition,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 227, no. 8, pp. 1138–1147, Aug. 2013, doi: 10.1177/0954405413482122.