[1]R.S. Tuan, A.F. Chen, B.A. Klatt, Cartilage regeneration., J. Am. Acad. Orthop. Surg. 21 (2013) 303–11. doi:10.5435/JAAOS-21-05-303.
[2]Nixon AJ, Rickey E, Butler TJ, et al. A chondrocyte infiltrated collagen type I/III membrane (MACI® implant) improves cartilage healing in the equine patellofemoral joint model. Osteoarthritis Cartilage.2015Apr;23(4):648-60.doi: 10.1016/j.joca.2014.12.021.
[3]Mithoefer K, Acuna M. Clinical outcomes assessment for articular cartilage restoration[J].J Knee Surg.2013,26( 1) : 31-40doi: 10.1055/s-0032-1333308.
[4]Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum Dis Clin North Am. 2013 Feb;39(1):1-19. doi: 10.1016/j.rdc.2012.10.004.
[5]Bitton R. The economic burden of osteoarthritis. Am J Manag Care. 2009 Sep;15(8 Suppl):S230-5. PubMed PMID: 19817509.
[6]K. Ye, C. Di Bella, D.E. Myers, et al, The osteochondral dilemma: Review of current management and future trends, ANZ J. Surg. 84 (2014) 211–217. doi:10.1111/ans.12108.
[7]A.K. Dewan, M.A. Gibson, J.H. Elisseeff, M.E. Trice, Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques, Biomed Res. Int. 2014 (2014). doi:10.1155/2014/272481.
[8]E. Kon, G. Filardo, A. Di Martino, M. Marcacci, ACI and MACI, J. Knee Surg. 25 (2012)017–022. doi:10.1055/s-0031-1299651.
[9]K. Mithoefer, T. Mcadams, R.J. Williams, et al. Mandelbaum, Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: An evidence-based systematic analysis, Am. J. Sports Med. 37 (2009) 2053–2063. doi:10.1177/0363546508328414.
[10]Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM. Bone Morphogenetic Proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys. 2014 Nov 1;561:64-73. doi:10.1016/j.abb.2014.07.011.
[11]Yang J, Zhang YS, Yue K, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering[J]. Acta Biomaterialia,2017, 57: 1⁃25. DOI: 10.1016/j.actbio.2017.01.036.
[12]López⁃Ruiz E, Jiménez G, Kwiatkowski W, et al. Impact of TGF⁃β family-related growth factors on chondrogenic differentiation of adipose⁃derived stem cells isolated from lipoaspirates and infrapatellar fat pads of osteoarthritic patients[J]. Eur Cell Mater, 2018,35: 209⁃224. DOI: 10.22203/eCM.v035a15.
[13]Taniyama T, Masaoka T, Yamada T, et al. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein⁃2[J]. Artificial Organs, 2015, 39(6): 529⁃535. DOI: 10.1111/aor.12409.
[14]Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272-88. doi: 10.7150/ijbs.2929.
[15]Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005 Dec;36(12):1392-404. DOI: 10.1016/j.injury.2005.07.019.
[16]Crecente-Campo Jose, Borrajo E, Vidal A, et al. New scaffolds encapsulating TGF⁃β3/BMP⁃7 combinations driving strong chondrogenic differentiation[J]. Eur J Pharm Biopharm, 2017, 114: 69⁃78.DOI: 10.1016/j.ejpb.2016.12.021.
[17]Krase A, Abedian R, Steck E, et al. BMP activation and Wnt-signalling affect biochemistry and functional biomechanical properties of cartilage tissue engineering constructs. Osteoarthritis Cartilage. 2014 Feb;22(2):284-92. doi: 10.1016/j.joca.2013.11.011.
[18]Iwakura T, Sakata R, Reddi AH. Induction of chondrogenesis and expression of superficial zone protein in synovial explants with TGF⁃β1 and BMP⁃7[J]. Tissue Eng Part A, 2013, 19(23⁃24): 2638⁃2644. DOI: 10.1089/ten.TEA.2013.0047.
[19]Tran LP, Zalzal GH. Laryngotracheal stenosis repair using cartilage-derived morphogenic proteins: A pilot study. Ann Otol Rhinol Laryngol. 2006 Jun;115(6):477-81.DOI:10.1177/000348940611500613
[20]Miyamoto Y,Mabuchi A,Shi D, et al.A functional polymorphism in the 5' UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet.2007 Apr;39(4):529-33. Epub 2007 Mar 25. DOI: 10.1038/2005.
[21]Cho TJ,Gerstenfeld LC,Einhom TA.Differential temporal expression of members of the transfoming growth factor beta superfamily during murine fracture healing.J Bone Miner Res.2002;17(3):513-520. DOI: 10.1359/jbmr.2002.17.3.513
[22]Guo CA, Liu XG, Huo JZ, et al. Novel gene-modified-tissue engineering of cartilage using stable transforming growth factor-beta1-transfected mesenchymal stem cells grown on chitosan scaffolds. J Biosci Bioeng. 2007 Jun;103(6):547-56. DOI: 10.1263/jbb.103.547.
[23]Takahara M, Harada M, Guan D, et al. Developmental failure of phalanges in the absence of growth/differentiation factor 5. Bone. 2004 Nov;35(5):1069-76.DOI:10.1016/j.bone.2004.06.020.
[24]Feng G, Wan Y, Balian G, et al. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors. 2008;13(6):857-861.DOI: 10.1080/08977190802105917.
[25]Spiro RC, Liu L, Heidaran MA, et al. Inductive activity of recombinant human growth and differentiation factor-5.Biochem Soc Trans.2000;28(4):362-8. PubMed PMID:10961920.
[26]Katayama R, Wakitani S, Tsumaki N, et al. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford).2004 Aug;43(8):980-5. DOI: 10.1093/rheumatology/keh240.
[27]Bobacz K, Ullrich R, Amoyo L, et al. Stimulatory effects of distinct members of the bone morphogenetic protein family on ligament fibroblasts. Ann Rheum Dis. 2006 Feb;65(2):169-77. DOI: 10.1136/ard.2004.022756.
[28]Frisch J, Rey-Rico A, Venkatesan JK, et al. TGF-β gene transfer and overexpression via rAAV vectors stimulates chondrogenic events in human bone marrow aspirates. J Cell Mol Med. 2016 Mar;20(3):430-40. doi:10.1111/jcmm.12774.
[29]Deng Y, Sun AX, Overholt KJ, et al. Enhancing chondrogenesis and mechanical strength retention in physiologically relevant hydrogels with incorporation of hyaluronic acid and direct loading of TGF⁃β[J]. Acta Biomater, 2019, 83: 167⁃176. DOI: 10.1016/j.actbio.2018.11.022.
[30]Takahashi N, Rieneck K, van der Kraan PM, et al. Elucidation of IL-1/TGF-beta interactions in mouse chondrocyte cell line by genome-wide gene expression. Osteoarthritis Cartilage.2005 May;13(5):426-38.DOI: 10.1016/j.joca.2004.12.010.
[31]Almeida HV, Liu Y, Cunniffe GM, et al. Controlled release of transforming growth factor⁃β3 from cartilage⁃extra⁃cellular⁃matrix⁃derived scaffolds to promote chondrogenesisof human⁃joint⁃tissue⁃derived stem cells[J]. Acta Biomater, 2014,10:4400⁃4409.DOI:10.1016/j.actbio.2014.05.030.
[32]Askari M, Bonakdar S, Anbouhi MH, et al.Sustained release of TGF ⁃β1 via genetically⁃modified cells induces the chondrogenic differentiation of mesenchymal stem cells encapsulated in alginate sulfate hydrogels[J]. J Mater Sci Mater Med, 2018, 30(1):7.DOI:10.1007/s10856⁃018⁃6203⁃9.
[33]Gonzalez⁃Fernandez T, Tierney EG, Cunniffe GM, et al. Gene delivery of TGF⁃β3 and BMP2 in an MSC⁃Laden alginate hydrogel for articular cartilage and endochondral bone tissue engineering [J]. Tissue Eng Part A,2016,22(9⁃10):776⁃787.DOI:10.1089/ten.TEA.2015.0576.
[34]Ko JY, Kim Kl, Park S, et al. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells[J]. Biomaterials,2014,35(11):3571⁃3581.DOI:10.1016/j.biomaterials.2014.01.009
[35]Duchi S, Doyle S, Eekel T, et al. Protocols for culturing and imaging a human ost-eochondral model for cartilage biomanufacturing applications[J]. Materials,2019,12(4):640-660. DOI: 10.3390/ma12040640.
[36]Li C,Bi W,Gong Y,et al. Transforming growth factor-beta1 inhibits tissue engineering cartilage absorption via inducing the generation of regulatory T cells. J Tissue Eng Regen Med. 2016 Feb;10(2):E113-20.doi: 10.1002/term.1777.
[37]Riera KM, Rothfusz NE, Wilusz RE, et al.Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration. Arthritis Res Ther.2011;13(6):R187.doi:10.1186/ar3515.
[38]Hu WQ, Zhao JN, Xu HD, et al. Research advances of growth factors in cartilage repair[J]. J Clin Pathol Res, 2015, 35(3): 474⁃478.DOI:10.3978/j.issn.2095⁃6959.2015.03.027.
[39]Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development anddisease. Genes Dev. 2015 Jul 15;29(14):1463-86. doi:10.1101/gad.266551.115.
[40] Zheng YH, Su K, Jian YT, et al. Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs. J Tissue Eng Regen Med. 2011 Jul;5(7):540-50. doi: 10.1002/term.346.
[41]Correa D, Somoza RA, Lin P,et al. Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation[J]. Osteoarthr Cartil, 2015, 23:443-453.DOI: 10.1016/j.joca.2014.11.013.
[42]Yang W, Cao Y, Zhang Z, et al. Targeted delivery of FGF2 to subchondral bone enhanced the repair of articular cartilage defect[J].Acta Biomater, 2018, 69: 170⁃182.DOI:10.1016/j.actbio.2018.01.039.
[43]Argün M, Öner M, Güney A, et al. The healing of full-thickness articular cartilage defects in rabbits: successful results with fibroblast growth factor. Eklem Hastalik Cerrahisi. 2010 Dec;21(3):147-52.PubMed PMID: 21067496.
[44]Shi S,Wang C,Acton AJ,et al. Role of sox9 in growth factor regulation of articular chondrocytes[J].J Cell Biochem,2015;116(7):1391-400. DOI: 10.1002/jcb.25099.
[45]Zhang Z,Wang Y,Li M,et al. Fibroblast growth factor 18 increases the trophic effects of bone marrow mesenchymal stem cells on chondrocytes isolated from late stage osteoarthritic patients.[J].Stem Cell Int,2014;2014(2014):1-8. DOI: 10.1155/2014/125683.
[46]Mori Y, Saito T, Chang SH, et al. Identification of fibroblast growth factor⁃18 as a molecule to protect adult articular cartilage by gene expression profiling[J].J Biol Chem, 2014, 289: 10192⁃10200. DOI: 10.1074/jbc.M113.524090.
[47]Howard D,Wardale J,Guehring H,et al. Delivering rhFGF-18 via a bilayer collagen membrane to enhance microfracture treatment of chondral defects in a large animal model [J].J Orthop Res,2015; 33 (8):1120-7. DOI: 10.1002/jor.22882.
[48]Barr L, Getgood A, Guehring H, et al. The effect of recombinant human fibroblast growth factor⁃18 on articular cartilage following single impact load[J]. Journal of Orthopaedic Research, 2014, 32(7): 923⁃927. DOI: 10.1002/jor.22622.
[49]Orth P, Kaul G, Cucchiarini M, et al. Transplanted articular chondrocytes cooverexpressing IGF⁃I and FGF⁃2 stimulate cartilage repair in vivo[J]. Knee Surg Sports Traum-atol Arthrosc, 2011, 19(12): 2119⁃30. DOI: 10.1007/s00167⁃011⁃1448⁃6.
[50]Madry H, Kaul G, Zurakowski D, et al. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater. 2013 Apr16;25:229-47. PubMed PMID: 23588785.
[51]Lu S, Lam J, Trachtenberg JE, et al. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially⁃guided osteochondral tissue repair[J]. Biomaterials, 2014, 35(31):8829⁃8839. DOI: 10.1016/j.biomaterials.2014.07.006
[52]Loffredo FS, Pancoast JR, Cai L,et al. Targeted delivery to cartilage is critical for in vivoefficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis Rheumatol.2014;66(5):1247-1255. doi:10.1002/art.38357.
[53]Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: theroad from the laboratory to the clinic, part I(basic concepts)[J]. J Tissue Eng Regen Med, 2008, 2(1):1⁃13.DOI: 10.1002/term.63.
[54]Johnson K, Zhu S, Tremblay MS, et al. A stem cell-based approach to cartilage repair[J]. Science, 2012, 336(6082): 717⁃721.DOI: 10.1126/science.1215157.
[55]Yohei O, et al. Chondroprotective Effect of Kartogenin on CD44-Mediated Functio-ns in Articular Cartilage and Chondrocytes, Cartilage. 5(3) (2014) 172-180. DOI: 10.1177/1947603514528354.
[56]Xu X, Shi D, Shen Y, et al. Full⁃thickness cartilage defects are repaired via a microfracture technique and intraarticular injection of the small-molecule compound kartogenin[J]. Arthritis Res Ther, 2015, 17(1): 20. DOI: 10.1186/s13075⁃015⁃0537⁃1.
[57]Decker R S, et al. Mouse limb skeletal growth and synovial joint development arecoordinately enhanced by Kartogenin, Dev Biol. 395(2) (2014) 255-267. DOI:10.1016/j.ydbio.2014.09.011.
[58]Kwon JY, Lee SH, Na HS, et al. Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of IL-10. Sci Rep. 2018 Sep 14;8(1):13832. doi: 10.1038/s41598-018-32206-7.
[59]Liu C, Li T, Yang ZJ, et al. Kartogenin enhanced chondrogenesis in cocultures of chondrocytes and bone mesenchymal stem cells [J]. Tissue Eng Part A, 2018, 24(11⁃12):990⁃1000. DOI: 10.1089/ten.TEA.2017.0162.
[60]Liu C, Ma X, Li T, et al. Kartogenin, transforming growth factor-β1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells[J].Cell Biology International, 2015, 39(9): 1026-1035. DOI10.1002/cbin.10476.
[61]Lacci KM, Dardik A. Platelet-rich plasma: support for its use in wound healing.Yale J Biol Med. 2010 Mar;83(1):1-9. PubMed PMID: 20351977.
[62]Miyakoshi N, Kobayashi M, Nozaka K, et al. Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits. Arch Orthop Trauma Surg.2005 Dec;125(10):683-92. DOI: 10.1007/s00402-005-0052-y.
[63]Akeda K, An HS, Okuma M, et al, Platelet-rich plasma stimulates porcine articularc-hondrocyte proliferation and matrix biosynthesis. Osteoarthritis Cartilage. 2006 Dec;14(12):1272-80. DOI: 10.1016/j.joca.2006.05.008.
[64]Lee HR, Park KM, Joung YK, et al. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. J Control Release. 2012 May 10;159(3):332-7. doi:10.1016/j.jconrel.2012.02.008.
[65]Siclari A, Mascaro G, Kaps C, et al. A 5⁃year follow⁃up after cartilage repair in the knee using a platelet⁃rich plasma⁃immersed polymer⁃based implant[J]. Open Orthop J, 2014, 8: 346⁃354. DOI:10.2174/1874325001408010346.
[66]Iida K, Itoh E, Kim DS, et al. Muscle mechano growth factor is preferentially induced by growth hormone in growth hormone-deficient lit/lit mice. J Physiol. 2004 Oct 15;560(Pt 2):341-9.DOI: 10.1113/jphysiol.2004.069500.
[67]Tong YX, Feng W, Wu YM, et al. Mechano⁃growth factor accelerates the proliferation and osteogenic differentiation of rabbit mesenchymal stem cells through the PI3K/AKT pathway[J]. BMC Biochem, 2015, 16: 1. DOI:10.1186/s12858⁃015⁃0031⁃z.
[68]Luo Z, Jiang L, Xu Y, et al. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials. 2015 Jun;52:463-75. DOI: 10.1016/j.biomaterials.2015.01.001
[69] Deng M, Zhang B, Wang K, et al. Mechano growth factor E peptide promotes osteoblasts proliferation and bone-defect healing in rabbits. Int Orthop. 2011 Jul;35(7):1099-106. doi:10.1007/s00264-010-1141-2.
[70]Song Y, Xu K, Yu C, et al. The use of mechano growth factor to prevent cartilage degeneration in knee osteoarthritis. J Tissue Eng Regen Med. 2018 Mar;12(3):738-749. doi:10.1002/term.2493.
[71]Skardal A, Zhang J, Mc Coard L, et al. Photocrosslinkable hyaluronan-gelatin hydro-gels for two-step bioprinting. Tissue Eng Part A. 2010 Aug;16(8):2675-85. doi:1089/ten.TEA.2009.0798.
[72]Han Y, Zeng QY, Li HY, et al. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels[J]. Acta Biomater, 2013, 9(11): 9107 ⁃9117.DOI: 10.1016/j.actbio.2013.06.022.
[73]Gantar A, da Silva LP, Oliveira JM, et al. Nanoparticulate bioactive⁃glass⁃reinforced gellan-gum hydrogels for bone⁃tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2014, 43: 27⁃36.DOI: 10.1016/j.msec.2014.06.045.
[74]Khanarian NT, Haney NM, Burga RA, et al. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration [J]. Biomaterials, 2012, 33(21):5247-5258. DOI: 10.1016/j.bio⁃materials.2012.03.076.
[75]Filardo G, Kon E, Di Martino A, et al. Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med. 2013 Aug;41(8):1786-93. doi: 10.1177/0363546513490658.
[76]Sheehy EJ, Mesallati T, Vinardell T, et al. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels. Acta Biomater. 2015 Feb;13:245-53. doi: 10.1016/j.actbio.2014.11.031.
[77]Formica FA, Barreto G, Zenobi WM. Cartilage-targeting dexamethasone prodrugs increase the efficacy of dexamethasone[J]. J Control Release, 2019, 295: 118⁃129. DOI: 10.1016/j.jconrel.2018.12.025.
[78]Nuttelman CR, Tripodi MC, Anseth KS. Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. J Biomed Mater Res A. 2006 Jan;76(1):183-95. DOI: 10.1002/jbm.a.30537.
[79]Florine EM, Miller RE, Porter RM, et al. Effects of Dexamethasone on Mesenchymal Stromal Cell Chondrogenesis and Aggrecanase Activity: Comparison of Agarose and Self-Assembling Peptide Scaffolds. Cartilage.2013 Jan 1;4(1):63-74. DOI: 10.1177/1947603512455196.
[80]Kim M, Garrity ST, Steinberg DR, et al. Role of dexamethasone in the long⁃term functional maturation of MSC⁃laden hyaluronic acid hydrogels for cartilage tissue engineering[J]. J Orthop Res, 2018,36(6): 1717⁃1727. DOI: 10.1002/jor.23815.
[81]Mendes LF,Katagiri H,Tam WL,et al. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo [J]. Stem Cell Res Ther, 2018,9(1):42. DOI: 10.1186/s13287-018-0787-3.