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Abstract: 7 

The decomposition and quantification of uncertainty sources in ensembles of 8 

climate-hydrological simulation chains is a key issue in climate impact researches. The mainly 9 

objectives of this study partitioning climate internal variability (CIV) and uncertainty sources in 10 

the climate-hydrological projections simulation process, the climate simulation process formed by 11 

six downscaled GCMs under two emission scenarios called GCMs-ES simulation chain, the 12 

hydrological simulation process add one calibrate Soil and Water Assessment Tool (SWAT) model 13 

called GCMs-ES-HM simulation chain. The CIV and external forcing of climate projections are 14 

investigated in each GCMs-ES simulation chain. The CIV of precipitation and ET are large in 15 

rainy season, and the single-to-noise ratio (SNR) are also relatively high in rainy season. 16 

Furthermore, the uncertainty decomposed frameworks based on analysis of variance (ANOVA) 17 

are established. The CIV and GCMs are the dominate contributors of runoff in rainy season. It 18 

worth noting the CIV can propagate from precipitation and ET to runoff projections. In additional, 19 

the hydrological model parameters are the third uncertainty contributor of runoff, which embody 20 

the hydrological model simulate process play important role in hydrological projections in future. 21 

The findings of this study advised that the uncertainty is complex in hydrological, hence, it is 22 

meaning and necessary to estimate the uncertainty in climate simulation process, the uncertainty 23 

analysis results can provide effectively efforts to reduce uncertainty and then give some positive 24 

suggestions to stakeholders for adaption countermeasure under climate change.  25 

Key words: climate change; GCMs; climate-hydrological projections; uncertainty contributor; climate internal 26 

variability; ANOVA 27 

 28 

1. Introduction 29 

Hydrology cycle has been significantly impacted by climate change, a large number of studies 30 

have assessed the future climate projections and quantified corresponding impacts on hydrological 31 

regimes (Vaghef et al. 2019; Anjum et al. 2019; Zhang et al. 2016; Wang et al. 2018). As the 32 
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primary tools for providing the future climate variables in changing environment, GCMs are 33 

employed to drive HMs, such as the SWAT to obtain the future runoff projections in recently 34 

studies (Wang et al. 2020). GCM can be used to simulated the general circulation of the earth’s 35 

atmosphere, which can provide the credible information from past to future meteorological data 36 

(Zhang et al. 2016). Generally, the assessments of the climate change on hydrological regimes are 37 

to drive a hydrological model with an ensemble of GCMs. Statistical downscaling methods 38 

(SDMs) and dynamic downscaling methods are used to obtain a fine spatial resolution of GCMs at 39 

watershed scales. SDMs are effectively and widely used to linkage the gaps of the spatial and 40 

temporal resolution exist between GCMs and HMs (Wang et al. 2020). Future runoff process is 41 

commonly obtained with a sequence of climate simulation process under various emission 42 

scenarios, however, a large body of uncertainties exist in the process of estimating hydrological 43 

projections under climate change impacts (Shen et al. 2018). The different aspects of uncertainty 44 

in the model chain can be categorized as: (Ⅰ) climate simulation uncertainty; (Ⅱ) hydrological 45 

simulation uncertainty. (Byun et al. 2019; Li et al. 2015; Chen et al. 2016; Ficklin et al. 2016; 46 

Zhang et al. 2013; Lee et al. 2016; Nóbrega et al. 2011).  47 

For climate simulation uncertainty, there are three kinds of uncertainty sources:(i) external 48 

forcing, (ii) model response uncertainty, and (iii) internal variability (Hawkins and Sutton 2011; 49 

Deser et al. 2012). The external forcing uncertainty represents arises from the anthropogentic 50 

forcing employed in emission scenarios (Yu et al. 2020). Model response uncertainty is 51 

explanation as the different climate change model may output different responses for the same 52 

forced information. The internal uncertainty explains as the natural variability of the precipitation 53 

and temperature etc., which describes the natural process in the atmosphere, ocean, and their 54 

couple uncertainties (Pesce et al. 2019). The inherently chaotic internal processes in the climate 55 

system are cascading to the hydrological processes (Lafaysse et al. 2014). The similarly 56 

larger-scale atmosphere circulation may lead to different local-scale climate projections, this 57 

local-scale of internal variability can be dominantly accounted by the downscaling method 58 

(Lafaysse et al. 2014). Take the statistical downscaling method for example, it uses a stochastic 59 

process to produces climate projections at finer scales for a certain large-scale pattern, and the 60 

performance of estimating internal variability, moreover, the internal variability plays a significant 61 

important role in climate change projections (Doi and Kim 2020). On the base of independently of 62 
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the external forcing, the internal variability of climate projections has been analyzed by many 63 

studies to estimate the uncertainty range of a chosen forced response and obtain a robust detection 64 

of climate change effects (Steinschneider et al. 2015; Schindler et al. 2015; Nerantzaki et al. 65 

2020).  66 

For the hydrological simulation uncertainty which included input data, hydrological model 67 

structure and model parameters (Lee et al. 2016;  Xue et al. 2014; Yen et al. 2014; Nerantzaki et 68 

al. 2019; Zhang et al. 2013; Qin et al. 2014; Zhang et al. 2013; Lee et al. 2016; Galavi et al. 2020). 69 

Among the hydrological modeling uncertainty, the uncertainty from model structure mainly 70 

caused by the mathematical model, it is able to portray the real characteristic of the basin (Gupta A 71 

and Govindaraju R S 2019) and it can be expressed by parameters. The contribution of parameters 72 

uncertainties is significant impacts in the model output, the different parameters may due to the 73 

runoff changing in opposite directions (Zhang et al. 2019). In addition, parameter uncertainty is 74 

relatively to control by some conceptual or empirical parameters and an appropriate calibration 75 

method (Wu and Chen 2015). The inappropriate estimation of main parameters may result in 76 

non-negligible uncertainty, for this reason, parameters uncertainty has received most attention of 77 

previous studies (Nerantzaki et al. 2019). There are several methods for quantifying the model 78 

parameters uncertainty analysis, such as the Sequential Uncertainty Fitting algorithm (SUFI2) 79 

(Abbaspour KC et al. 2011), the Generalized Likelihood Uncertainty Estimation (GLUE) (Beven 80 

and Binley 1992) and the Parameter Solution (ParaSol) (Griensven and Meixner 2006), these three 81 

techniques are widely been applied in sensitivity and uncertainty analysis of parameters in 82 

hydrological model. The technology of SUFI2 shows the robust ability in estimation the parameter 83 

uncertainty (Zhao et al. 2018; Xue et al. 2014).  84 

In order to obtain a robust detection of climate change effects and give some useful suggestions 85 

to practical decision making, this manuscript focus on analyzing the changing of precipitation, 86 

temperature, ET and runoff under climate change, and evaluating the source of uncertainty 87 

contribution in the two simulations chains.   88 

To segregate the uncertainty contribution of individual sources in hydrological simulated chain, 89 

Bosshard et al. (2013) quantified the uncertainties contributions of an ensemble of hydrological 90 

climate impact projections by using the ANOVA method. The ANOVA technique has fewer 91 

assumptions as compared to other uncertainty analysis methods, such as Bayesian methods and 92 
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GULE (Vaghef et al. 2019). In recently hydrological application, the assessment framework based 93 

on ANOVA has been used to investigated the individual and interaction uncertainty from different 94 

sources (Chawla et al. 2018; Qi et al. 2016; Kujawa et al. 2020; Keller et al. 2019; Wang et al. 95 

2020). However, the different kinds of uncertainty sources have not been estimated equally in 96 

previous researches. They mainly aim on decomposition the GCMs, emission scenarios, 97 

downscaling method, hydrological model structure and parameter for simulation chains (Kujawa 98 

et al. 2020; Shi et al. 2020; Keller et al. 2019). Moreover, to investigate the role of the internal 99 

variability in the overall climate change uncertainty can provide more useful information to 100 

uncertainty estimating of simulation chains and establish more comprehensive framework of 101 

uncertainty analysis (Liu et al. 2012; Schindler et al. 2015; Steinschneider et al. 2015; Nerantzaki 102 

et al. 2020). Therefore, comprehensive and systematical investigating the hydrological climate 103 

change impact and estimating different sources of uncertainty is worth and necessary.   104 

The mainly aim of this study is:(1) to analyze the precipitation, temperature, ET and runoff 105 

projections changing under climate change. (2) to estimate the role of internal variability and 106 

external forcing on the climate-hydrological projections. (3) to quantify the source of uncertainty 107 

contribution on the overall uncertainty. (4) to confirm the important influence factors and 108 

uncertainty source of runoff. The uncertainty decomposition framework of this study shows in 109 

Fig.1. 110 
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 111 

Fig.1. Flowchart of the uncertainty decomposition framework of this study 112 

For this purpose, this manuscript combined six GCMs models under two Representative 113 
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Concentration Pathways (RCPs), which have been based on the fifth phase of the Coupled Model 114 

Intercomparison Project (CMIP5). These climate change scenarios were downscaled by the 115 

statistical downscaling method. Morphing (Belcher et al. 2019) and then a widely used 116 

hydrological model SWAT was used to runoff simulation, the SUFI-2 (Abbaspour et al. 2011) 117 

uncertainty approach for capturing the relatively uncertainty of SWAT model parameters. The 118 

findings of this research may provide some meaningful suggestions on hydrological climate 119 

change impacts and presents a methodology for partitioning uncertainty sources of runoff 120 

projections in a representative watershed in Northeastern of China.  121 

2. Study area and data 122 

2.1. Study area 123 

  The Biliu River basin is located in the Northeastern of China spans 39.54
。
to 40.35

。
N in latitude 124 

and 122.29
。
to 122.93

。
E in longitude with an approximate area of 2085km2 (Fig.2). The Biliu River 125 

Reservoir was built in 1975 and the storage of it is 9.34×108 m3. The mainly utility of this 126 

reservoir is water supply for nearby big cities and cropland irrigation. Another reservoir, called 127 

Yushi Reservoir, which was built in 2001 and located in the upstream of Biliu River, with a 128 

storage capacity of 0.89×108 m3 and a drainage area of 313km2. Because of the reservoir supplies 129 

water to the outside of the basin, thus, the impact of Yushi Reservoir should be considered in the 130 

hydrological model. This study area has the characterized of temperate, monsoon marine climate, 131 

and with the rainy season from June to September. The mean annual precipitation is 746mm, the 132 

average annual temperature is 8.40℃ to 10.3℃, and the maximum and minimum temperatures 133 

are 35.8℃and -23.5℃, respectively.  134 

2.2. Data and climate change scenarios  135 

The historical observed daily precipitation and daily runoff data were available form1978-2004, 136 

the monthly precipitation and runoff data were form 1958-2011, which were obtain from the Biliu 137 

River Reservoir administration and Hydrology Bureau of Liaoning Province. The DEM, land-use 138 

map, and soil type map are obtained from the Data Center for Resources and Environmental 139 

Science, Chinese Academy of Sciences. 140 

The climate data were used output from six GCMs in CMIP5 under RCP4.5 and RCP8.5 141 

emission scenarios: ACCESS1-0, BCC-CSM1.1(m), CESM1-BGC, CESM1-CAM5, CMCC-CM, 142 
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MPI-ESM-MR (Table1). The climate data were extracted for 1980-2004 period, 2041-2065 period 143 

and 2066-2090 period, which defined as reference period, 2050s and 2080s two future period.    144 

 145 

Table 1 Description of CMIP5 climate models and scenarios  146 

Climate Models Country Resolution Scenarios 

ACCESS1.0 Australia 1.88
。

× 2.48
。
 RCP4.5, RCP8.5 

BCC-CSM1.1(m) China 1.13
。

× 1.13
。
 RCP4.5, RCP8.5 

CESM1(BGC) USA 1.3
。

× 0.9
。
 RCP4.5, RCP8.5 

CESM1(CAM5) USA 1.3
。

× 0.9
。
 RCP4.5, RCP8.5 

CMCC-CM Italy 0.75
。

× 0.75
。
 RCP4.5, RCP8.5 

MPI-ESM-MR Germany 1.88
。

× 1.88
。
 RCP4.5, RCP8.5 

 147 

 148 

Fig.2. The location of precipitation gauge, runoff gauge, river, boundaries in Biliu River basin. 149 

 150 
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3. Methodology 151 

3.1 Hydrological modeling and parameter uncertainty assessment 152 

  The SWAT 2012 is used to simulate runoff in this study. SWAT is a physically based water-scale 153 

model which is widely used in investigating hydrological processes around the world (Wang et al. 154 

2020). The model divided the watershed into hydrologic response units (HRUs), each of these 155 

HRUs based on a unique combination of soil, land use and slope characteristics (Nie et al. 2011). 156 

Recently, the model has been developed to estimate the climate change impact on hydrological 157 

regimes in the predict conditions over long periods of future. The SWAT-CUP software was 158 

utilized for calibration and uncertainty assessment of parameters (Abbaspour et al. 2007). SUFI2 159 

algorithm was chosen to calibrate and validate the parameters in the SWAT-CUP (Abbaspour et al. 160 

2004). In order to account for the parameter uncertainty of the model, this manuscript used Latin 161 

hypercube sampling (LHS) to generated hydrological model parameter sets. The Nash-Sutcliffe 162 

model efficiency (ENS), the average relative error (Re), and the coefficient of determination (R2) 163 

are used as objective function, which measure the distance between the observations and the 164 

simulations. Through sensitive analysis of the calibration process, 11 hydrological input 165 

parameters have been generated. The initial iteration of LHS derived 1000 simulations, for all 166 

initial parameter sets, the best 100 parameter sets were selected by the condition as ENS above 0.9, 167 

R2 above 0.9 and Re below 10. 168 

3.2 Climate change scenario and downscaling method 169 

  The CMIP5 have provide future climate database and widely around the world (Kujawa et al. 170 

2020; Zhu et al. 2018; Shi et al. 2020). Six GCMs from CMIP5 were selected to represent the 171 

future climate scenarios under RCP4.5 and RCP8.5 emission scenarios. SWAT hydrological model 172 

was driven by six GCMs and two emission scenarios, for a total of 12 ensemble scenario members 173 

under 2050s and 2080s.  174 

  Because of the simper and easily using merits (Abbaspour et al. 2004; Zhu et al. 2018; Chen et 175 

al. 2010), this manuscript adopts Morphing approach to remove biased from the original GCMs 176 

climate projections, this method involves a shift, a linear stretch (scaling factor), and a 177 

combination of shift and a stretch (Belcher et al. 2005). The downscaled precipitation and 178 
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temperature are calculated by Morphing and shows acceptable performance in the study 179 

watersheds more details of the downscaling process were shown in Zhu et al. (2018).                           180 

3.3 The internal variability estimate method 181 

The internal uncertainty is expected to present the natural viability of the regional climate at 182 

decadal multi-decadal time scale in the simulation chains (Lafaysse et al. 2014). In order to 183 

investigate the internal variability of the hydrological variables, the external component need be 184 

subtracted from variable series, and then the fluctuations of the variable series can be regarded as 185 

the internal variability (Frankcombe et al. 2015). The standard deviation of the ensemble variable 186 

or the residual to quantify the internal variability is the robust method has been applied in many 187 

previous publications (Yu et al. 2020; Maher et al. 2020; Evin et al. 2020; Hingray et al. 2020; 188 

Thompson et al. 2015; Lafaysse et al. 2014).   189 

Generally, the internal variability is quantified by the “detrend” and “differenced”method, 190 

which can separate the internal variability and external forcing (Frankcombe et al. 2015; Kim et al. 191 

2018). In these two methods, firstly, the external forcing can be estimate, secondly, the external 192 

forcing is subtracted from the hydrological variable series, and then the fluctuations of the 193 

variables are regarded as internal variability. (Frankcombe et al. 2015; Zhang and Huang 2013)   194 

3.4 Uncertainty evaluation and decomposition  195 

For a simulated chain as GCMs-ES, the total uncertainty comes from GCMs, external 196 

variability (emission scenarios) and internal variability. 197 

(1) The different components of the total uncertainty  198 

  The hydrological projections can be decomposed by hydrological variability and internal 199 

variability (Evin et al. 2019; Hingray et al. 2019). The raw hydrological projections jiY , under 200 

climate change can be express as Eq. (1).  201 

jijijiY ,,,                                  (1) 202 

Where φi,j is the hydrological variability under the hydrological simulation chain; ηi,j is the residual variance of 203 

the climate variability for the given hydrological simulation chain, it can also be express as internal variability.  204 

   The hydrological variability φi,j of any simulation chain can be defined as Eq. (2): 205 

lkhlkhji ,,,                         (2) 206 

Where μ is the overall mean of hydrological variability under climate change; αh is the effect contributed by 207 
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hydrological model parameters; βk is the effect contribute by GCMs; γl is the effect contribute emission scenarios; 208 

ξh,k,l is the interaction terms of the model.  209 

   On the base of the above expression of the raw output from simulate chains, the overall 210 

variance of the runoff projections  lkhYVar ,,
 as flowing: 211 

                kjhlkhlkh VarVarYVar ,,,,,,                          (3) 212 

Where  lkhVar ,,  is the uncertainty in the hydrological variable under climate change,  kjhVar ,,  is the 213 

uncertainty of internal variability of hydrological variable.  214 

                     kjhkjhkjh VarVarVarVarVar ,,,,              (4) 215 

Where  hVar  is the variance of SWAT model parameters effects;  jVar   is the variance of GCMs model 216 

effect; 
     

is the variance of the emission scenarios；  kjhVar ,,  is the variance of the interaction effects.  217 

(2) The uncertainty quantified and decomposition 218 

This manuscript constructs a three-way ANOVA framework to decomposition the different 219 

uncertainties contribution, this technology has ability to partition the total observed variance into 220 

different sources, and then quantify the contribution of different sources to total variance (Wang et 221 

al. 2018; Aryal et al. 2017).  222 

It based on a biased variance estimator that underestimates the variance when the sample size is 223 

small. In order to diminish the bias effects caused by the different number of levels of the 224 

uncertainty factors, Bosshard et al. (2013) proposed a subsampling method was applied in this 225 

manuscript. This subsampling technology selected two samples from the large sample sets, and 226 

then a new sample can be generated for ANOVA. This study selects two SWAT parameters sets 227 

out of the 100 sets, the superscript j was replaced by g(h, i), which is 2×4950 matrix as 228 

following: 229 
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g                 (5) 230 

Based on the ANOVA theory and the form of Eq. (3) and Eq. (4), the ANOVA model can be 231 

expressed as Eq. (6). It is composed by the mean effects of SWAT model parameters (αh), GCMs 232 

model (βk), emission scenarios (γl ), internal variability(ηh,j,l) and interaction effects (ξh,j,l). The 233 

mean effects can be computer as the deviation of each factors mean value and the global mean 234 
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   ,,, jg
M .  235 

ljhljhljh

jglkjhg MM ,,,,

,),,(,),,(   
             (6) 236 

In the ANOVA model, the total variance of the hydrological variable 
  lkjhg

M
,,,

is expressed as 237 

the total sum of squares (SST), and it can decompose into individual variance of each effect: 238 

                239 

SSISSIVSSCSSBSSASST                   (7) 240 

Where SSA, SSB, SSC is the uncertainty contribution of SWAT model parameters, GCMs, emission scenarios 241 

respectively, SSIV is the internal variability and SSI is the contribution of the interaction effects between SWAT 242 

model parameters, GCMs and emission scenarios.  243 

By this approach, the intercomparisons among the uncertainty contribution of SWAT model 244 

parameter, GCMs, emission scenarios, internal variability and the interaction effects are not 245 

affected by the different sampling number.  246 

4 Results  247 

4.1 hydrological model parameters calibrated and uncertainty  248 

  The SWAT model is constructed based on the historical daily meteorological data and spatial 249 

geographic data of the study basin. Before being used to predict the future runoff, the hydrological 250 

model parameters need to be calibrated and validated. This study divided the calibration period 251 

(1982~1996) and validation period (1997~2011) based on the precipitation and runoff changing 252 

trends. The simulated data from the SWAT was compared with the historical observed data to 253 

ensure its reliability. Three metrics ENS, Re, and R2 are been used to estimate the model 254 

performance during calibrated and validated period. More details about the calibration and 255 

validation were introduced in (Zhu et al. 2018). The SUFI2 method is used to calibrate the 256 

parameters for the 1982-2011 period runoff in study area. The parameters setting was shown in 257 

Table 2.  258 

 259 

 260 

 261 

 262 

 263 

 264 
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Table 2 The selected SWAT model parameters 265 

Parameter Definition Min Max 

CN2 Initial SCS runoff curve number for moisture condition  0.75  1.25  

SURLAG Surface runoff lag coefficient  1.00  23.98  

LAT_TTIME Lateral flow converge coefficient 0.01  179.92  

ESCO Soil evaporation compensation factor 0.01  1.00  

GW_DELAY The delay time 0.37  500.00  

ALPHA_BF Baseflow alpha factors (days) 0.00  1.00  

GWQMN 
Threshold depth of water in the shallow aquifer required for return 

flow to occur 
0.41  499.72  

SFTMP Snowfall temperature -5.00  5.00  

SMFMX Melt factor for snow  1.50  8.00  

TIMP Snowmelt temperature lag factor 0.01  1.00  

   266 

The SUFI2 is used as a parameter uncertainty estimate method for reference period in the study 267 

basin. For final ensemble of the 100 parameter sets generate by the LHS, and then these parameter 268 

sets are put in the SWAT model to generate 100 behavioral simulations which are performance in 269 

Fig. 3 with the help of box plots. Each box represents 100 behavioral simulations which outputs 270 

by the calibrated SWAT model. The length of the box plots denotes the runoff changes range from 271 

100 simulations corresponding to one specific month. The differences between two boxes shows 272 

the parameters effect are quite differently for one given month. It can be seen in Fig. 3 that the 273 

month runoff variability due to SWAT model parameter sets are relatively larger in June to 274 

September. As the flooding season (summer and early autumn) in the watershed, the difficulty of 275 

the flood control measures would remarkably increase in future, hence, the contribution of the 276 

SWAT model parameter sets need be quantified.  277 

 278 

Fig.3. The SWAT model parameters uncertainty of the reference periods.  279 
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4.2 Impacts of climate change on the hydrological-climate projections  280 

4.2.1 The precipitation projections change under climate change   281 

   The future precipitation projections which were compare with the reference period (1980-2004) 282 

and demonstrated in Fig.4. It can be seen that the precipitation projections performance a marked 283 

increase trend in 2050s and 2080s. Lots of GCMs-EM simulation chains shows an increased trend, 284 

except several model chains shows a decreased trend in winter. It can be noted that the 285 

precipitation projections have non-negligible uncertainty in future. This uncertainty of 286 

precipitation propagates through the hydrological model and is amplified in the runoff outputs. 287 

Hence, the precipitation uncertainty under climate change need be investigated previously. 288 

For the 2050s summer, the precipitation changing interval is from an 54.13% increase to -21.2% 289 

decrease, all of the precipitation projections show an increased trend in this period except for 290 

CMCC-CM (-5.04%) and MPI-ESM-MR (-21.20%) under RCP8.5 scenarios. The uncertainty of 291 

precipitation projections is significant in the 2080s winter, which changes from -19.79% to 292 

95.95%. In contrast, the changing rang of spring and autumn are relatively small, among the two 293 

future periods, the uncertainty range of spring is from 31.2% to -21.27% in 2050s, and the range 294 

from 1.71% to 41.18% in 2080s autumn. Compared to the other seasons, the change range of 295 

spring is smallest in 2080s. Fig.4 displays the precipitation changing ratios has a large changing 296 

range for different GCMs in the same emission scenarios as the model uncertainty. And shows 297 

different precipitation changing ratios for each GCM in different emission scenarios as the 298 

external forcing uncertainty.  299 

 300 
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Fig.4. The uncertainty range of the precipitation change is shown for the four seasons.  301 

 302 

4.2.2 The temperature projections change under climate change 303 

The box chart of Fig.5a and Fig.5b shows the maximum and minimum temperature (Tmax and 304 

Tmin) compared to the reference period (1980~2004), the temperature projections show a univocal 305 

increased trend for each season among all GCMs-ES simulation chains. Specifically, in the 2050s 306 

period, the mean temperature increases of 1.95 ℃ under RCP4.5 and 2.73℃ under RCP8.5, 307 

while increase of 2.73 ℃ under RCP4.5 and 4.20℃ under RCP8.5. Moreover, under RCP4.5, 308 

the Tmax increase range in winter and summer is larger than the other season, the mean Tmax in 309 

summer increases of 1.84℃ for 2050s and 2.52℃ for 2080s , while the mean Tmax in winter 310 

increases of 2.17℃ for 2050s and 2.65℃ for 2080s.  311 

Similar increasing trends are also shown in Tmin under RCP4.5, the mean Tmin in winter 312 

increases of 2.17℃ for 2050s and 2.73℃ for 2080s. In addition, under RCP8.5, the greatest 313 

increase of mean Tmax is shown in winter, which increase of 3.50℃ for 2050s and 4.50℃ for 314 

2080s. Again, the mean Tmax also increases significant in summer and autumn under RCP8.5, 315 

where mean Tmax increases from 2.61℃ for 2050s summer to 4.17℃ for 2080s autumn. There is 316 

a similar increasing trend in Tmin under RCP8.5, and the increases of summer, autumn and winter 317 

are all above 4.0℃. In contrast to the increase temperature in two periods of future, it can be 318 

found that the uncertainty of Tmax and Tmin are largely determined by GCMs. For instances, the 319 

ACCESS1-0 model shows the maximum increases and the CESM1-BGC shows the minimum 320 

increase of Tmax in 2050s summer, however, the MPI-EMS-MR shows the minimum increase of 321 

Tmax in 2080s summer. 322 

  323 



 14 

 324 

Fig.5a The Tmax in 2050s and 2080s under RCP4.5 and RCP8.5 scenarios based on 6 GCMs 325 

compare with reference period (1980-2004). Lower and upper box boundaries indicate the 25th 326 

and 75th percentiles, respectively. The black lines and dots inside the box represent the median and 327 

mean value, respectively. The lower and upper whiskers indicate the 10th and 90th percentiles, 328 

respectively. 329 

 330 
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 331 

Fig.5b The T-min in 2050s and 2080s under RCP4.5 and RCP8.5 scenarios based on 6 GCMs 332 

compare with reference period (1980-2004). Lower and upper box boundaries indicate the 25th 333 

and 75th percentiles, respectively. The black lines and dots inside the box represent the median and 334 

mean value, respectively. The lower and upper whiskers indicate the 10th and 90th percentiles, 335 

respectively. 336 

 337 

4.2.3 The ET projections change under climate change  338 

The ensemble of 1200 GCMs-SDM-HM simulation chains are established to output 1200 sets 339 

ET projections in 2050s and 2080s, the future season ET projections comparing with baseline 340 

period shows in Fig.6a and Fig.6b. For RCP4.5 emission scenarios, the season mean ET 341 

projections shows an obvious increased trend in summer and winter. However, the autumn mean 342 

ET projections demonstrate a relatively smaller increased, some of the models show a decreased 343 

trend. Consistent changing trend can be obtained in RCP8.5 emission scenarios, moreover, the ET 344 

projections shows a diversity between 2050s and 2080s.  345 



 16 

 346 

Fig.6a The ET in 2050s and 2080s under RCP4.5 scenarios based on 6 GCMs compare with 347 

reference period (1980-2004). Lower and upper box boundaries indicate the 25th and 75th 348 

percentiles, respectively. The black lines and dots inside the box represent the median and mean 349 

value, respectively. The lower and upper whiskers indicate the 10th and 90th percentiles, 350 

respectively. 351 

 352 
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 353 

Fig.6b The ET in 2050s and 2080s under RCP8.5 scenarios based on 6 GCMs compare with 354 

reference period (1980-2004). Lower and upper box boundaries indicate the 25th and 75th 355 

percentiles, respectively. The black lines and dots inside the box represent the median and mean 356 

value, respectively. The lower and upper whiskers indicate the 10th and 90th percentiles, 357 

respectively. 358 

 359 

4.2.4 The runoff projections change under climate change 360 

The ensemble of 1200 GCMs-EM-HM simulation chains are established to output 1200 sets 361 

runoff projections in 2050s and 2080s. The 1200 simulation chains, which includes six GCMs, 362 

two emission scenarios, 100 SWAT model parameter sets. The predicted runoff projections of four 363 

seasons in two future periods are compared with the reference period in Fig.7a and Fig.7b, each 364 

box and whisker plots for runoff projections are generated from 1200 simulation chains. For 2050s, 365 

the runoff projections increase more significant in autumn than the other seasons. In terms of 366 

changes in autumn runoff, all projections of runoff show an increased trend in basin, ranging 367 

1.37% -66.01 % under RCP4.5 and -11.99 % -97.08 % under RCP8.5. The projected of summer 368 
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runoff varies from -18.41% to 47.78%, the projects changing show difference among the six 369 

GCMs, for instance, ACCESS1-0 projected an increase 47.78% while CESM1-BGC projects a 370 

decrease -18.41% under RCP4.5. These differences are more significant under RCP8.5, for 371 

example, the ACCESS1-0 projected an increase 70.41% while the other models all demonstrated a 372 

decrease trend. For 2080s, there still exist obvious differences among projections, however, a 373 

relatively consistent increasing trend can be found in autumn under RCP4.5 and RCP8.5. In 374 

contrast, the runoff projections of summer show a decrease trend among five models ranging from 375 

-25.29% to -5.21%, except for CESM1-CAM5 model showed an increases trend of 29.37% under 376 

RCP4.5 scenarios. While the summer runoff projections showed increases from 7.93% to 85.76% 377 

and decreases from -11.6% to -29.15%, the decrease trend is smaller than increase trend, thus, a 378 

slight increase trend with the mean increase value as 11.95% can be found in 2080s under RCP8.5.  379 

In addition, the runoff projections shown a slight increases trend in autumn and winter both 380 

under RCP4.5 and RCP8.5 scenarios, and also shown a small various among different GCMs.  381 

 382 
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 383 

Fig.7a The runoff in 2050s and 2080s under RCP4.5 scenario based on 6 GCMs compare with 384 

reference period (1980-2004). Lower and upper box boundaries indicate the 25th and 75th 385 

percentiles, respectively. The black lines and dots inside the box represent the median and mean 386 

value, respectively. The lower and upper whiskers indicate the 10th and 90th percentiles, 387 

respectively.  388 

 389 
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 390 

Fig.7b The runoff in 2050s and 2080s under RCP8.5 scenario based on 6 GCMs compare with 391 

reference period (1980~2004). Lower and upper box boundaries indicate the 25th and 75th 392 

percentiles, respectively. The black lines and dots inside the box represent the median and mean 393 

value, respectively. The lower and upper whiskers indicate the 10th and 90th percentiles, 394 

respectively.  395 

 396 

Furthermore, the box-and-whisker plots show in Fig.7a and Fig.7b, the upper and lower ends 397 

represent the highest and lowest runoff, and the change range indicated the uncertainty bound. 398 

Compared with the runoff in reference period, the projected runoff reveals a slight increase in 399 

mean and median values and wide uncertainty range under RCP4.5 and RCP8.5 scenarios. 400 

Accordingly, the runoff projections under RCP8.5 projections demonstrate obvious large 401 

uncertainty than RCP4.5 scenarios. Compared with the other seasons, the summer runoff 402 

projections showed the largest uncertainty brands under two emission scenarios in future. 403 

Observing median values, the summer and autumn projections in 2050s and 2080s show the 404 

non-negligible differences, for example, the median values for summer under RCP4.5 scenario 405 
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feature a decrease in projections as BCC-CSM1.1(m), CESM1-BGC, CMCC-CM AND 406 

MPI-ESM-MR, which ranging from -22.82% to -15.04%, in contrast, the median values show an 407 

increase from 45.55% to 13.79% in projected of ACCESS1 and CESM1-CAM5. In addition, the 408 

median values for the spring runoff projections in 2050s under RCP4.5 portray a consistent slight 409 

increase from 3.23% to 12.51%, only CMCC-CM projection show a decrease as -12%. Overall, 410 

the runoff projected by all GCMs showed a large uncertainty in two future periods. Comparing 411 

2050s and 2080s, it can be found that the lower ends become smaller and the upper ends become 412 

larger, which indicate that the uncertainty bonds increasing from 2050s to 2080s. In addition, 413 

comparing the RCP4.5 and RCP8.5 scenarios, the uncertainty bound of RCP8.5 scenarios are 414 

always larger than RCP4.5.  415 

4.2.5 Impacts of climate factors to runoff change 416 

After analyzing the changes of precipitation, Tmax, Tmin, ET and runoff in future, it can be found 417 

that the different climate factors may produce different contribution to runoff changing. Hence, it 418 

is important to analyze the relationship between the change of runoff and change of climate factors. 419 

In order to determine the relationships between them, the multiple linear regression was performed 420 

for each model chain using changes of precipitation, Tmax, Tmin and ET as the independent 421 

variables and the runoff as the dependent variables. 422 

The regression coefficients for runoff are shown in Table 3 In general, the increase of 423 

precipitation may cause a positive effect on runoff increasing, this trend can be found in all of the 424 

models and scenarios and coefficients at the 0.001 significant level. In contrast, the increase of ET 425 

projections was negatively related to runoff, and there are seven projections at the 0.001 426 

significant level. In addition, the increase Tmax and Tmin may contribute the increase trend of runoff, 427 

however, the coefficients did not pass the significant test even at 0.05 level. Above all, the 428 

precipitation and ET has a larger influence in runoff projection in most model chain. From the 429 

CIV values of precipitation and ET, the internal variability of precipitation and ET may pay an 430 

important role to runoff. Although the runoff changing under climate scenarios have been widely 431 

reported in lots of researches. The large uncertainties were observed in the runoff changing, 432 

external forcing, model response and internal variability.   433 
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Table 3 The multiple liner regression coefficients for runoff (R mm year-1) with maximum temperature (Tmax℃), 434 

minimum temperature (Tmin℃), precipitation (P mm year-1) and ET (mm year-1) in a multiple linear regression 435 

model (R= a1 Tmax+ b1 Tmin+ c1 P+ d1 ET+ e1). p描述显著性水平：***: p<0.001, **: p<0.01, *: p<0.05. 436 

Models a1 b1 c1 d1 e1 R2 

ACCESS1-0_RCP45 22.75 -21.40 0.92*** -0.97*** -197.62** 0.96 

ACCESS1-0_RCP85 61.05 23.89 0.97*** -0.86 -1284.58 0.75 

BCC-CSM1.1(m)_RCP45 20.96 -15.30 0.85*** -0.81*** -237.05 0.92 

BCC-CSM1.1(m)_RCP85 17.26 -13.92 0.84*** -0.76** -205.54 0.93 

CESM1(BGC)_RCP45 28.98 -25.77 0.86*** 0.21*** -209.88 0.93 

CESM1(BGC)_RCP85 81.42 -38.46 0.99*** -0.5 -1370.22*** 0.86 

CESM1(CAM5)_RCP45 18.15 -17.34 0.90*** -0.93 -153.06 0.96 

CESM1(CAM5)_RCP85 22.13 -20.34 0.87*** -0.77*** -265.73 0.96 

CMCC-CM_RCP45 5.92 18.26 0.62*** -0.53 -248.50 0.75 

CMCC-CM_RCP85 15.40 -14.67 0.68*** -0.45* -235.24 0.87 

MPI-ESM-MR_RCP45 29.52 -24.95 0.88*** -1.02*** -224.86 0.94 

MPI-ESM-MR_RCP85 24.93 -15.04 0.77*** -0.65** -348.45 0.90 

  437 

4.3 Evaluation of the uncertainty influence factors of runoff  438 

4.3.1 Quantifying the relative contribution of internal variability and external 439 

forcing  440 

In the GCMs-EM chains, the variety climate projection (precipitation, temperature, ET) trends 441 

in individual model realization results from the superposition of CIV and the external forcing. In 442 

order to investigate the internal variability of the precipitation trends, six GCMs are forced by the 443 

same external forcing, and then the CIV of the precipitation projections had been calculated under 444 

two emission scenarios.  445 

Fig.8 showed the CIV values of precipitation, Tmax, Tmin, ET, precipitation and runoff 446 

projections. From the CIV values of precipitation, the CIV values are higher in June to September 447 

than the other month and the lowest values appeared in December and February. The large 448 

diversity across the individual members demonstrated the important role of internal variability in 449 

June to September precipitation projection. The internal variability plays an important role in rainy 450 

season. Compared with precipitation projections, the CIV values of Tmax and Tmin are relatively 451 

smaller in rainy season than the other month. For ET projections, it can be obtained that the CIV 452 

values are large in May to September, which mean that the internal variability plays an important 453 

role in ET trends in this period. The CIV values of runoff demonstrate that the internal variability 454 
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is higher in rainy season than the other seasons.  455 

From the CIV values of runoff projections under RCP4.5 and RCP8.5 emission scenarios, it can 456 

be found that the CIV values of rainy season are larger than the other seasons, and the maximum 457 

CIV value of the runoff projections appeared in August. Hence, the internal variability has an 458 

important role in rainy season.  459 

Compared the CIV values of precipitation, temperature, ET and runoff projections, the internal 460 

variability of precipitation and runoff showed obvious increased in rainy season. On consideration 461 

of the summer runoff has significantly influence on the water resources management and flood 462 

control, hence, the uncertainty of runoff projections and the contribution of different uncertainty 463 

sources need be special investigated.  464 

 465 

Fig.8. The CIV values of climate-hydrological projections 466 

 467 

The SNR is defined as the absolute value of ensemble mean divided by the CIV, which can 468 

measure the relative contribution of external forcing and internal variability. The SNR values of 469 

precipitation, temperature, ET and runoff are showed in Fig.9. This metrics convey useful 470 

information about the magnitudes of the forced and internally generated components of climate 471 

projections under future climate change. It can be seen from the Fig.9 that the SNR values of 472 
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precipitation and runoff are relatively smaller than the other climate projections.   473 

The SNR values of Tmax and Tmin demonstrate a relatively higher values in May to October, it 474 

worth noting that the temporal pattern of the SNR is mainly determined by the internal variability 475 

pattern in November to March and by a mainly combination of forced response in April and 476 

October. The SNR of ET is higher in June to October than the other month in 2050s period, and it 477 

is relatively stable in 2080s period. Hence, the external forcing is the mainly components of ET 478 

projections changing. In addition, the SNR of runoff is relatively small which like precipitation. 479 

An important result is that the external forcing contributed a considerable higher component in 480 

temperature and ET changing than precipitation and runoff, and the SNR exhibits higher values in 481 

June to September than the other models in both two emission scenarios and future periods.  482 

 483 

Fig.9 The SNR values of climate-hydrological projections 484 

4.3.2 Contribution analysis of uncertainty sources 485 

As mentioned previously, the uncertainty sources of GCMs-EM involve external forcing, model 486 

response, and internal variability. From the contribution of the external forcing and internal 487 

variability, it can be observed that the external forcing plays an important role in temperature and 488 
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ET changing. In compatible, the SNR values of the runoff are relatively small, with values mostly 489 

around 1 in both scenarios and future periods. However, the SNR values can’t able to quantify the 490 

internal variability and external forcing contribution to total uncertainty.  491 

The ANOVA method is used to quantified the uncertainty contribution of different sources of 492 

uncertainty in 2050s and 2080s.  493 

 494 

      Fig.10 The contribution of uncertainty sources to the runoff in 2050s and 2080s period. 495 

 496 

The contribution of uncertainty sources showed in Fig.10. It is noteworthy that the effect of 497 

internal variability is non-negligible, which is exceeded the contribution due to the GCMs. It 498 

contributes 29%-48% and 31.4% -47.4% of the total variance in 2050s and 2080s, respectively. 499 

The biggest contribution embodies in September in two future periods, which is late flooding 500 

season in watershed. The second significant uncertainty contributor is GCMs, which account for 501 

21% -41% and 15% -33% in 2050s and 2080s, and the biggest uncertainty is in September (2050s) 502 

and August (2080s) respectively. For the SWAT model parameter sets, the contribution accounts 503 

for 4%-39% and 4.8% -32.4% in 2050s and 2080s, respectively. Compared with the previous two 504 

uncertainty sources, the SWAT model parameters main effect the Spring (March to May) and 505 

Winter (December to February) runoff projections. The interaction term contribution to the runoff 506 

projection explaining approximately 8% - 11% and 7% -12% throughout the 2050s and 2080s 507 

periods, respectively. The contribution of emission scenarios is relatively small, which bellows 5% 508 

and 10.5% in 2050s and 2080s, respectively.  509 
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Overall, the results of uncertainty decomposition in Fig. 10 indicate a negligible contribution of 510 

internal variability to the overall uncertainty, and the dominant sources of uncertainty are GCMs 511 

and SWAT model parameters. The results also show that the internal variability and GCMs mainly 512 

effect the runoff in June and October, which contained the entire flood season in Northeastern of 513 

China.  514 

5 Discussion 515 

5.1 Climate-hydrological projections changes 516 

This study estimated climate-hydrological projections changes under climate change impacts in 517 

a respective watershed in Northeastern China. Compared with the reference period, the 518 

temperature and precipitation projections performance an increased trend in two future periods, 519 

and this increased trend is more significant under RCP8.5 emission scenarios and later future 520 

period as 2080s. This finding is consistence with some pervious publications, Wang et al. (2020) 521 

found that the response of hydrological extreme events to climate changing shows much higher in 522 

2070-2099 under RCP8.5 scenarios. The ET projections shows obvious increase trend in summer 523 

and winter, and a relatively small increase trend in autumn, although the two emission scenarios 524 

have a similar changing trend, a diversity changing can also be found between different models 525 

under RCP8.5 periods. For the runoff projections, this study found that there exist a relatively 526 

consist increased trend in autumn than the other seasons in two future periods. From the multiple 527 

linear regression analysis of runoff, the precipitation has a significant positive effect on runoff, and 528 

ET shows a relatively small negative effect on runoff. Hence, the increase precipitation and 529 

relatively small increase ET may due to a relatively obvious increased in autumn.   530 

However, the projected of runoff in future also demonstrated an obvious diversity in future, 531 

especially in Summer and Autumn. On consideration of the two seasons contained the flood 532 

season of the study watershed, the uncertainty of the GCMs-EM-HM simulation chain need be 533 

estimate step to step.  534 

5.2 Internal variability and external forcing   535 

    From climate-hydrological prediction results, it can be found an obvious uncertainty of each 536 

simulation chain. As above mentioned, the internal variability and external forcing influence on 537 

the climate projections is investigated by CIV and SNR two indicates. The GCMs-EM-HM chains 538 



 27 

have been operated for six GCMs under a same emission scenario, and then the CIV and SNR 539 

values of the precipitation and temperature projections have been computed for each 540 

GCMs-EM-HM chain.  541 

The findings indicated that the CIV values of precipitation, ET and runoff are large in rainy 542 

season, which consistence contained June and September, the results showed that the internal 543 

variability pay an important role in theses climate projections. The SNR values of precipitation 544 

and runoff are stable among 12 months, it is difficult to determine which is the important influence 545 

source of climate-hydrological projections by the SNR values. Considering the June to September 546 

contains the entirely flood season in research watershed, the annual internal variability and 547 

external forcing uncertainty contribution of runoff projections need be investigated particularly.   548 

5.3 Uncertainty assessment 549 

The ANOVA framework was constructed to quantify the uncertainty sources contribute to the 550 

overall uncertainty, furthermore, in considering the substantial effects of internal variability on the 551 

uncertainty of runoff projections, the uncertainty contribution of internal variability has been 552 

considered to ensure the comprehensive of uncertainty assessment.  553 

From the results from ANOVA framework, the internal variability and GCMs are the main 554 

contributor in runoff projections in rainy season. In addition, the third important effect term is 555 

SWAT model parameter sets, it plays important role in overall uncertainty in January to May and 556 

October to December.  557 

These findings indicate that the internal variability is the important uncertainty sources among 558 

the different sources chosen by this study, which agree with the findings of some previous 559 

publications (Lafaysse et al. 2014; Hingray et al. 2019). Meanwhile, the runoff projections are 560 

significantly impact by the choices of GCMs, this point also has been found in many studies 561 

(Kujawa et al. 2020), for instance, Zhang et al. (2021) found the disparity between different 562 

GCMs may mainly impacted the climate change researches, and the increased sample sized of 563 

GCMs may conduct a complete uncertainty assessment. As an important tool for runoff simulation 564 

and prediction, the hydrological model is a non-negligible uncertainty contributor of overall 565 

uncertainty, among the uncertainty derive form the hydrological model, the model parameters 566 

obtained more attention (Keller et al. 2019; Vaghefi et al. 2019; Nerantzaki et al. 2020). Moreover, 567 
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the contribution of and interaction effect are relatively small compared with the other uncertainty 568 

sources, these findings consist with some previous researches (Bosshard et al. 2013; Qi et al. 2016; 569 

Vaghef et al. 2019).  570 

The quantifying of internal viability has been demonstrated in several previous studies 571 

(Lafaysse et al. 2014; Evin et al. 2019; Hingray et al. 2019), however, most of the studies focused 572 

on decomposition the internal uncertainty of climate system through the GCMs-EM simulation 573 

chains (Doi and Kim. 2020; Yu et al. 2020; Maher et al. 2020; Hawkins and Sutton. 2011). 574 

Moreover, this study indicates that the internal variability, GCMs model, emission scenarios, 575 

hydrological model parameters and interaction effects need be quantified entirely. Because of the 576 

annual distribution contribution of different sources are the important information of uncertainty 577 

analysis. The contribution of uncertainty sources in each month can be found in the uncertainty 578 

quantified results straightforward. 579 

On consideration of the internal variability may propagate in the GCMs-EM-HM simulation 580 

chain and effect the runoff uncertainty. Internal variability and external forcing of precipitation, 581 

temperature and ET can also provide some useful information to runoff uncertainty analysis. For 582 

rainy season, the internal variability and GCMs are the dominant uncertainty in runoff. On the 583 

base of multiple linear regression, the precipitation and ET has significantly influence on runoff, 584 

and their uncertainty can also influence on runoff uncertainty. From the CIV and SNR values of 585 

climate projections, it can be found that the internal variability of precipitation and ET are large in 586 

rainy season. Hence, the internal variability of precipitation and ET may affect runoff to some 587 

extent. Above all, the internal variability obvious role of the in shaping overall uncertainty, and 588 

some of the uncertainty source of runoff projections can be trace bake to precipitation and ET etc.    589 

6 Conclusion 590 

  An ensemble of GCMs-EM-HMs simulation chains were used in this study to estimate the 591 

climate-hydrological projections response to the climate change. Subsequently, the details of 592 

different sources of uncertainty are essential for the runoff prediction and to identify the 593 

fundamental uncertainty source is meaningful to reduce existing uncertainties in future. The main 594 

conclusions of this study can be summarized as flowing: 595 

(1) Based this study analysis of future climate conditions for the Biliu River basin, it can be 596 
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found that an increase in seasonal mean temperature for both emission scenarios, with greatest 597 

increase in summer and autumn. In term of precipitation, it indicates an increased trend in summer, 598 

autumn and winter and a relatively larger uncertainty in summer and winter. Results based on the 599 

SWAT modeling indicated that the ET shows a slight increase in summer and winter, and the 600 

runoff projections trend a diversity changing trend in future, especially in summer and autumn. 601 

Large uncertainty brings difficult to the water resources and flood control management to propose 602 

the adaptation strategy under climate change. 603 

(2) By elucidating the impact of climate internal variability of runoff projections, this study 604 

analysis the internal variability and external forcing of climate projections and find out the 605 

important influence factor of runoff projections. In term of precipitation and ET, the internal 606 

variability is larger in June to September, and the SNR values also shows the internal variability 607 

and external forcing are both important influence factors to runoff. Combining with the internal 608 

variability and GCMs are the dominate uncertainty contributors in June to September. It is worth 609 

noting that the internal variability can propagate in the GCMs-EM-HMs simulation chains, and the 610 

internal variability of runoff projections is remarkable in flood season of study watershed in future. 611 

As the rain season in the study basin, some water resources adaptation measures need be planned 612 

to alleviate the climate change influence, especially in high emission scenarios (RCP8.5) and far 613 

future (2080s). 614 

(3) This study found GCMs, internal variability and SWAT model parameters are the mainly 615 

uncertainty contributor of runoff. In addition, the SWAT model parameters uncertainty 616 

significantly effects runoff projections in spring and winter, thus the calibration of sown melt 617 

parameters needs more attention. The influence of external forcing is smaller in GCMs-EM-HMs 618 

than GCMs-EM, because the uncertainty sources increased and the hydrological simulation 619 

process bring more uncertainty to runoff.  620 

  The findings of this study indicate that the uncertainty of climate-hydrological system is 621 

noticeable in future, these kinds of uncertainties may extremely influence the stakeholders and 622 

local water resources government to provide correct hydrological regulation and flood control 623 

measures. This study also reveal that the internal variability is non-negligible in predicting 624 

climate-hydrological projections, which is worth more research in future.  625 

 626 
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