1. Wilson, R. and D.J.A.j.o.v.r. Francis, Fimbriae and enterotoxins associated with Escherichia coli serogroups isolated from pigs with colibacillosis. 1986. 47(2): p. 213-217.
2. Kaper, J.B., J.P. Nataro, and H.L.J.N.r.m. Mobley, Pathogenic escherichia coli. 2004. 2(2): p. 123-140.
3. Nagy, B. and P.Z. Fekete, Enterotoxigenic Escherichia coli (ETEC) in farm animals. Veterinary research, 1999. 30(2-3): p. 259-284.
4. Chen, X., et al., Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhoea in eastern China. Veterinary microbiology, 2004. 103(1-2): p. 13-20.
5. Shams, Z., et al., Detection of enterotoxigenic K99 (F5) and F41 from fecal sample of calves by molecular and serological methods. Comparative clinical pathology, 2012. 21(4): p. 475-478.
6. Xia, P., et al., Deletion of FaeG alleviated Enterotoxigenic Escherichia coli F4ac-induced apoptosis in the intestine. 2021. 11(1): p. 1-8.
7. Nagy, B. and P.Z. Fekete, Enterotoxigenic Escherichia coli in veterinary medicine. International Journal of Medical Microbiology, 2005. 295(6-7): p. 443-454.
8. Croxen, M.A. and B.B.J.N.R.M. Finlay, Molecular mechanisms of Escherichia coli pathogenicity. 2010. 8(1): p. 26-38.
9. Luo, Y., et al., Toll-like receptor 5-mediated IL-17C expression in intestinal epithelial cells enhances epithelial host defense against F4+ ETEC infection. 2019. 50(1): p. 1-14.
10. Zanello, G., et al., Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. 2011. 6(4): p. e18573.
11. Karthik, L., et al., Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. 2014. 9(3): p. e90972.
12. Lee, C., et al., Effects of dietary supplementation of bacteriophages against enterotoxigenic Escherichia coli (ETEC) K88 on clinical symptoms of post‐weaning pigs challenged with the ETEC pathogen. Journal of animal physiology and animal nutrition, 2017. 101(1): p. 88-95.
13. Heo, J., et al., Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post‐weaning diarrhoea without using in‐feed antimicrobial compounds. Journal of animal physiology and animal nutrition, 2013. 97(2): p. 207-237.
14. Cheng, G., et al., Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in microbiology, 2014. 5: p. 217.
15. Wittebole, X., S. De Roock, and S.M. Opal, A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 2014. 5(1): p. 226-235.
16. Smith, H.W. and M. Huggins, Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology, 1983. 129(8): p. 2659-2675.
17. Jamalludeen, N., et al., Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Veterinary microbiology, 2009. 136(1-2): p. 135-141.
18. Cha, S.B., et al., Effect of bacteriophage in enterotoxigenic Escherichia coli (ETEC) infected pigs. Journal of Veterinary Medical Science, 2012. 74(8): p. 1037-1039.
19. Gu, M.J., et al., Bacillus subtilis protects porcine intestinal barrier from deoxynivalenol via improved zonula occludens-1 expression. 2014. 27(4): p. 580.
20. Sargeant, H.R., H.M. Miller, and M.-A.J.M.i. Shaw, Inflammatory response of porcine epithelial IPEC J2 cells to enterotoxigenic E. coli infection is modulated by zinc supplementation. 2011. 48(15-16): p. 2113-2121.
21. Larsen, S.B., C.J. Cowley, and E.J.C.o.i.i. Fuchs, Epithelial cells: liaisons of immunity. 2020. 62: p. 45-53.
22. Peterson, L.W. and D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 2014. 14(3): p. 141.
23. Gu, M.J., et al., Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol. 2016. 47(1): p. 1-11.
24. Roselli, M., et al., The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. 2007. 137(12): p. 2709-2716.
25. Loos, M., et al., Role of heat-stable enterotoxins in the induction of early immune responses in piglets after infection with enterotoxigenic Escherichia coli. 2012. 7(7): p. e41041.
26. Loos, M., et al., Optimization of a small intestinal segment perfusion model for heat-stable enterotoxin A induced secretion in pigs. 2013. 152(1-2): p. 82-86.
27. Cheon, I.S., et al., Functional characteristics of porcine peripheral T cells stimulated with IL-2 or IL-2 and PMA. 2014. 96(1): p. 54-61.
28. Cassatella, M.A., et al., Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. 1993. 178(6): p. 2207-2211.
29. Seo, B.-J., et al., Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium. 2018: p. 17-0501.
30. Gu, M.J., et al., Hydrolyzed fumonisin B1 induces less inflammatory responses than fumonisin B1 in the co-culture model of porcine intestinal epithelial and immune cells. Toxicol Lett, 2019. 305: p. 110-116.