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Abstract
The weapon target assignment (WTA) problem is an important task to tactical arrangements in military commitment operations. It describes the optimal
method to allocate defenses in opposition to threats in �ghting situations. It is an NP-complete issue in which no accurate outcome for all conceivable
situations is known. The time performance of created algorithms is a major challenge in modeling the WTA problem, which has only been lately considered in
related papers. This article introduces a new algorithm called Swarm Urochordate Algorithm (SUA) which is inspired nature by tunicates to solve the WTA
problem. The suggested method is compared to nine metaheuristic approaches recently established for 30 well-known testing benchmarks. Convergence and
computer complexity are also examined. The experimental �ndings show that the method presented works better than previous competing metaheuristic
approaches.

1. Introduction
Several previous obstacles to access control over a large number of technical advancements in the sector of military, such as equipment, arm as well as
military automobiles, have not been su�cient to avoid the con�icts. The risk reduction in this uncertainty situation is not simple, raises interest in decision
support systems which may improve defense outcomes [1–5]. However, defense resources must be deployed with strict criteria, ideally at minimal cost, in
order to reduce damage on the protecting area.

Tactical planning, especially for computer-based systems, is a tough job because of many potential situations. Air defense techniques are complex because
aerial targets have a high degree of mobility and are able to take very quick and tough choices. Special algorithms have thus been created to tackle WTA
issues, which while at times failing to provide the optimal solutions overall, provide a high quality distribution that reduces the danger stage in global world. In
this article, we propose an approach named Swarm Urochordate Algorithm (SUA) for the designing of WTA strategy. Good quality answers were achieved even
for big situations in testing in a regulated algorithm response time.

The issue of assignment is an example of Waffen-Target Assignment (WTA) problem. Given two different sets, of resources and prey, the waffen problem is
used for allocating each of the resources to destination that minimizes the endurance of the commitments. It also maximizes the asset endurance after an
adversary attack, thus �nding the optimal method to assign the present resources at destination in defense planned scenarios. The authors [6–7] discussed
two distinct defense models, an offensive approach and a bene�t-based one. The bene�t-based model includes planned incensed defense, which requires
information on what objectives, while the offensive-based model applicable to that plans which are de�ned in [30]. Each incoming target gets a value in the
target-based model that sums up its degree of danger. If assets has plan, it forms group that can have risk related to damage, a mathematical estimate of the
chance that assets may cancel the plan. The danger stage decreases to the anticipated endurance value, representing the assets harmful probability impact
on the warning stage [8–15]. For this model, the waffen goal is to reduce the total anticipated value of the objectives surviving all commitments by following a
commitment. The development of operations over time is another feature of the WTA model. The static model dubbed the SWTA issue assumes that
defensive operations develop in one step. The issue of dynamic weapons target assignment (DWTA) takes many defensive cycles into account during in
progress defense operations.

2. Optimization Algorithms Related To Waffen-target
The clear listing approach would provide a worldwide answer to this issue if we could check all potential combinations of arms in a particular situation in an
acceptable amount of time. The SWTA issue is a NP-complete problem, which means that a comprehensive explore did not a feasible technique for the
questions arisen. Methods that are heuristic, should important because in a SUA period they may offer almost optimum answers. In the middle of the last
century, �rst investigations of the WTA issue emerged in the area of operations research [31–38]. Classical optimization techniques at that time include
implied listing, branch and bounding algorithms, integral linear as well as dynamic implementation of algorithms [13]. The author [2] presented the MMR
method to the WTA solution. This greedy method is only optimal for a certain kind of WTA issue because it assumes the likelihood of loss to be resource
independent. Researcher [37] has improved the MMR with the �ndings that have been demonstrated in previous works [11]. Naturally inspired heuristic
techniques have led to a fresh generation of ideas enhancing WTA issue modeling. The author [36] incorporated dominion-particular information in the
crisscross method and a limited search technique based on genetic algorithms (GA). They suggested a hungry eugenic contribution to improved outcomes.
Other studies [16–30] focused on hybridizing several bio inspired techniques, integrating them in order to enhance the outcomes by bringing together the
bene�ts provided by each. The optimization related to particle swarm is an algorithm for grouping techniques that were integrated in [39], enhancing PSO
locally and globally. The work related to WTA problem solving techniques for PSO and GA is also decribed in [40]. The combination of ACO as well as GA
techniques was explored in [41] and in [33]. While these �ndings signi�cantly reduce the initial degree of danger in battle situations, computing time may be
prohibitive as the issue size increases. The decision to take an air danger defense outline needs a response time of one to two sec [10]. Many studies have
results produced for hours following operating methods and compromise its practical uses [34–36]. The �ndings produced by [11], [12] revealed the two
distinct kinds of GA, twine-implementation and group-implementation GA. The chromosome in group-implementation GA is the resource order followed by an
MMR algorithm process [12][37]. Every GA Algorithm was run 30 different variants of seed and unseeded with 15 stochastic created situations. Seed types of
both GA algorithms carry out better as compared to unseeded types, although the GA strings were better suited to aerial situations involving 40 resources and
80 targets in big scenarios. However, the testing was restricted to one instance for every outline size. The authors [9–10] examined heuristic determinisms and
non determinisms for WTA solutions [39–42]. Various algorithms calculated the optimal values throughout iterative search in one second; however the
experiments were restricted to outlines with up to 30 assets as well as 30 objectives. The authors [1] presented a partition-based Waffen-Target problem
creation method in which a neighborhood search technique for very high scale was utilized to handle nonlinear optimizer issues. The research applied a novel
version of the Ant Colony System (ACS) [3] to the WTA issue by introducing a simultaneous multi-colony approach for improving performance. GACS has
produced excellent outcomes over a fair period of time, including big outlines with up to 80 assets as well as 80 objectives.
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3. Heuristic Techniques
Algorithms related to greedy address optimizer issues by picking the option that best matches the target function at that time by �nding an optimum local
solution for iterations. For comparative reasons, we utilized the gullible technique [37], here called the MMR2, since it is widely known that it produces superior
results [11] from [2][3], and called here MMR1. Both methods contain vector V of prey values as well as P (matrix) to die probability as input parameters, and
vector S as output. Unlike MMR1, outcome of MMR2 independently searches all prey values as well as assets to �nd group that presently optimizes threat
value reduction. As with all such algorithms, the target value will decrease for the following iteration after assigning a resource to one objective, lowering the
danger level de�ned with the prey. MMR algorithms are extremely fast to give answers, even for huge situations. MMR2 achieves the optimal global optimum
more often and is highly successful for non-complex input situations.

4. Swarm Urochordate Algorithm (Sua)
Input

Initialize Population value.

Output

Optimal calculation.

Step 1: Procedure Tunicate technique

Step 2: Introduce different vectors and extreme iterations.

Step 3: Put value of population as 2.

Step 4: Put extreme iteration as 3.

Step 5: The swarm value should be used NIL in the beginning.

Step 6: The while do loop SUA be used in order to go to extreme iterations.

Step 7: For loop is then used for increment swarm values.

Step 8: Now compute the �tness value.

Step 9: The bounded value is used for further calculations in this step.

Step 10: Here the different formulas are used to calculate the force and Swarm behaviour value.

Step 11: Then the random value is being compared in if loop.

Step 12: If loop will end when all the bounded values are used.

Step 13: Then the best optimal solution is calculated using if, for loop and BEST function is used.

Step 14: After lot of iterations the best value is calculated.

Step 15: The return is used at the end.

Step 16: The approach will end when the �nal optimal values are received.

5. Swarm Urochordate Algorithm (Sua) For Waffen-target Application
The overall heuristics rule of SUA is similar as the de�ned in Fig. 1. SUA method uses a concurrent approach which improves search and optimises the CPU
time. MMR2 �nds the optimal pair for every interaction in which the pairings are not sorted according to the original resource sequence. Therefore, we
investigated if the search order in step four of the SUA algorithm was changed as de�ned in Fig. 1. We utilised the same structured graph order of the resource
sequence generated by the MMR2 algorithm in the SUA graph instead of following the provided order. The �ndings indicated that the target survival values
were reduced by this design, although slight.

The approach proposes an additional method for limiting repeats of the best values inside each population sequential algorithm, preventing premature
convergence. The most used routes get a penalty approach that reduces their appeal by stopping the criteria after a speci�c time of CPU. This initially speeds
up the convergence so that a local optimum may be taken advantage. We decided to generate the optimal value frequently at CPU time. If the CPU time is
more than the de�ned time, the SUA algorithm is reset to their original exploratory stimulation value. The best answers are stored in a memory list to ensure
that they are not lost in evolution.

6. Experimental Outcomes And Discussion
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In this evaluation, thirty common benchmark tests are used to evaluate the presentation of the developed method.

6.1. Test benchmarking and comparison algorithms
The twenty-nine test formulas (F1 – F29) are used in this work. Eight widely known algorithms are selected for comparison in order to verify the performance
of the proposed method. The search agent count for each algorithm is 30. It is noted that there are 30 search agents who are reasonable to solve optimization
issues due to the increased number of search representatives, the greater the chance of �nding the optimum in global point.

 
Table 1

Competitor algorithm parameters values
Technique Numerical point

TSA Exploring Factor

Extreme Value

Genetically numbering

79

0–3

999

SUA Exploring Factor

Extreme Value

Genetically numbering

79

0–4

999

GWO Exploring Factor

Extreme Value

Genetically numbering

79

1–3

999

PSO Exploring Factor

Inertia value

Extreme Value

Genetically numbering

79

.73

1-1.6

999

MVO Exploring Factor

Extreme Value

TD

Genetically numbering

79

0–3

0-.4

999

SCA Exploring Factor

Elite Value

Genetically numbering

79

2

999

GSA Exploring Factor

Extreme Value

Alpha Value

Genetically numbering

79

0–3

18

999

GA Exploring Factor

Extreme Value

Genetically numbering

79

0–3

999

EPO Exploring Factor

Temp

Constant value used

Cross value

Genetically numbering

79

0-999

-1.6-1.6

0–3

999

6.2. Experimental installation.
Table 1 lists the parameters of the proposed SUA as well as other metaheuristic techniques named GWO, SCA, GSA, GA, PSO, MFO, MVO, and HS. All these
characteristics are de�ned as per literature provided. It utilized the similar assigning approach in order to differentiate SUA with the metaheuristic methods
described previously. The tests and methods are implemented in the version 8.3.0.532 of Matlab R2014a, as well as are implemented in the environment of
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Microsoft Windows 8.1, 64 bits on a 2.40 GHz and 4GB Core i-5 CPU. The mean and standard deviation of optimal outcome achieved until �nal iteration SUA
be calculated as presentation tables. To produce as well as present results, SUA method uses 30 individual runs for each benchmark function with 1000 times
of iteration each run.

6.3. Comparison of performance

6.3.1. Function Calculation F1 to F7 (exploitation)
F1 − F7 functions are uni-modal and enable the utilization of the metaheuristic based algorithms to be assessed. Table 2 and Fig. 2 indicate that SUA is very
cut-throat in relation to next techniques mentioned. SUA has been the most powerful algorithm for F1 to F7 functions, in particular as well as �nds the best
solution to assess other metaheuristic methods. The SUA algorithm can best be used.

 
Table 2

Uni-modal benchmark results
Fun TSA SUA GWO PSO MVO SCA GSA GA EPO

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

F1 7.70 7.01 0.01 0.01 4.58 7.36 4.96 1.39 2.90 1.11 1.7 1.16 6.1 2.01 2.01 8.0 7.99 3.5

F2 8.46 5.90 0.01 0.01 1.17 1.28 7.27 1.82 3.97 1.41 8.5 1.70 8.99 6.66 4.9 6.1 .99 3.2

F3 1.16 6.69 0.01 0.01 1.01 4.07 1.41 7.12 4.27 9.01 4.0 4.01 1.25 8.01 7.3 9.0 6.01 5.01

F4 1.30 1.14 7.73 8.94 2.00 2.40 5.58 1.70 8.78 1.11 8.21 1.02 10.0 10.0 5.99 9.1 1.1 2.11

F5 5.11 4,67 8.54 5.50 2.75 1.82 3.37 3.86 1.16 1.41 2.11 4.12 3.5 5.99 3.98 9.2 3.1 7.12

F6 7.07 1.11 2.44 1.76 6.53 3.36 9.21 1.76 3.12 9.01 10.1 .99 3.99 3.10 10.1 8.1 2.01 5.11

F7 3.71 5.06 3.26 2.40 7.76 3.81 6.90 2.84 2.05 3.11 5.99 8.01 3.01 6.59 3.12 5.6 2.11 4.21

.

6.3.2. Function calculation F8 to F21 (exploration)
Multimodal formulas contain numerous regional optima that rapidly grow. Testing tasks may assess the optimization algorithm exploration. The �ndings for
F8 – F21 are SUA in Tables 3 and 4 which may suggest that SUA has excellent exploration capabilities. The Figs. 3 and 4 indicated that in seven testing
issues (i.e. F9, F11, F15, F16, F17, F18, F21). SUA is effective and competitive in other experiment di�culties as well. Indeed, in most of these test situations
the SUA method is the most e�cient approach. These �ndings indicate that the exploratory SUA algorithm is worthwhile.

 
Table 3

Multimodal benchmark results
Fun TSA SUA GWO PSO MVO SCA GSA GA EPO

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

F8 -4.6 7.3 -4.9 2.6 3.1 6.01 4.96 1.39 2.90 1.11 1.7 1.16 6.1 2.01 2.01 8.0 7.99 3.5

F9 2.2 1.3 7.3 3.5 3.4 2.1 7.27 1.82 3.97 1.41 8.5 1.70 8.99 6.66 4.9 6.1 .99 3.2

F10 3.1 4.00 1.4 8.99 4.10 3.99 1.41 7.12 4.27 9.01 4.0 4.01 -4.6 7.3 -4.9 2.6 3.1 5.01

F11 8.3 2.41 6.00 2.99 7.0 .99 5.58 1.70 8.78 1.11 8.21 1.02 2.2 1.3 7.3 3.5 3.4 2.11

F12 2.5 2.71 7.12 2.01 7.12 4.01 3.37 3.86 1.16 1.41 2.11 4.12 3.1 4.00 1.4 8.99 4.10 7.12

F13 2.50 3.3 4.99 8.54 7.55 1.89 9.21 1.76 3.12 9.01 10.1 .99 8.3 2.41 6.00 2.99 7.0 5.11

F14 -4.6 7.3 -4.9 2.6 3.1 6.01 6.90 2.84 2.05 3.11 5.99 8.01 2.5 2.71 7.12 2.01 7.12 4.21
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Table 4
Outcomes related to multimodal (benchmark) function of a given dimension

Fun TSA SUA GWO PSO MVO SCA GSA GA EPO

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

F15 6.01 4.96 1.39 2.90 1.11 1.7 1.16 6.1 2.90 1.11 1.7 1.16 6.1 2.01 2.01 8.0 7.99 3.5

F16 2.1 7.27 1.82 3.97 1.41 8.5 1.70 8.99 3.97 1.41 8.5 1.70 8.99 6.66 4.9 6.1 .99 3.2

F17 3.99 1.41 7.12 4.27 9.01 4.0 4.01 -4.6 4.27 9.01 4.0 4.01 -4.6 7.3 -4.9 2.6 3.1 5.01

F18 .99 5.58 1.70 8.78 1.11 8.21 1.02 2.2 8.78 1.11 8.21 1.02 2.2 1.3 7.3 3.5 3.4 2.11

F19 4.01 3.37 3.86 1.16 1.41 2.11 4.12 3.1 1.16 1.41 2.11 4.12 3.1 4.00 1.4 8.99 4.10 7.12

F20 1.89 9.21 1.76 3.12 9.01 10.1 .99 8.3 3.12 9.01 10.1 .99 8.3 2.41 6.00 2.99 7.0 5.11

F21 6.01 6.90 2.84 2.05 3.11 5.99 8.01 2.5 2.05 3.11 5.99 8.01 2.5 2.71 7.12 2.01 7.12 4.21

6.3.3. Function calculation F22 to F30
Optimization for benchmark functions related to composite is a highly cut- throat job as the balance among exploration as well as operation that may prevent
the local issue of optima. Due to the huge amount of local optimum, local prohibition of a method may detect in these test formulas.

Table 5 and Fig. 5 indicates SUA method that is best and in other instances highly competitive optimizer for F26, F28 and F30 functions. The �ndings for F1-
F30 functions indicate that the SUA technique is the most e�cient compared to other optimization approaches.
 

Table 5: Composite benchmarking results
Fun TSA SUA GWO PSO MVO SCA GSA GA EPO

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

Mean St

Di

F22 3.1 4.96 1.39 2.90 1.11 1.7 1.16 6.1 2.90 1.11 1.7 1.16 6.1 2.01 2.01 8.0 7.99 3.5

F23 3.4 7.27 1.82 3.97 1.41 8.5 1.70 8.99 3.97 1.41 8.5 1.70 8.99 6.66 4.9 6.1 .99 3.2

F24 3.1 1.41 7.12 4.27 9.01 4.0 4.01 -4.6 4.27 9.01 4.0 4.01 -4.6 7.3 -4.9 2.6 3.1 5.01

F25 8.3 5.58 1.70 8.78 1.11 8.21 1.02 2.2 8.78 1.11 8.21 1.02 2.2 1.3 7.3 3.5 3.4 2.11

F26 2.5 3.37 3.86 1.16 1.41 2.11 4.12 3.1 1.16 1.41 2.11 4.12 3.1 4.00 1.4 8.99 4.10 7.12

F27 2.50 9.21 1.76 3.12 9.01 10.1 .99 8.3 3.12 9.01 10.1 .99 8.3 2.41 6.00 2.99 7.0 5.11

F28 -4.6 6.90 2.84 2.05 3.11 5.99 8.01 2.5 2.05 3.11 5.99 8.01 2.5 2.71 7.12 2.01 7.12 4.21

F29 1.89 9.21 1.76 3.12 9.01 10.1 .99 8.3 3.12 9.01 10.1 .99 8.3 2.41 6.00 3.11 5.99 8.01

F30 6.01 6.90 2.84 2.05 3.11 5.99 8.01 2.5 2.05 3.11 5.99 8.01 2.5 2.71 7.12 9.01 10.1 .99

6.4 Convergence analysis: The suggested SUA approach's convergence curves are given in Fig. 6. SUA is found to be quite competitive when compared to
benchmark functions. The SUA approach includes three different convergence tendencies. SUA approach's convergence e�ciency in a given search space is
higher at the beginning of the iteration phase. When the last iteration is reached, it may be seen that SUA displays three distinct convergence tendencies while
optimizing the test functions. The convergence behaviour can be seen from the early stage of iterations may be seen in the �nal iteration process. SUA
approach establishes a balance between exploration and exploitation, according to the results. These �ndings demonstrate that the SUA method stabilized an
exploration as well as exploitation balance in order to reach optimum. These section �ndings have various aspects of the developed SUA method as well as
the succeed rate of SUA method seems to be max to solve optimized issues. Due to the di�culty of these test routines, this is the case. SUA explore full
domain instead to rest in iterations but gives the complete solution. The sample points are distributed around the genuine optimal solution, ensuring that it
can be exploited. As a result, SUA is capable of both �nding and utilizing.

6. 6. Research into scalability: Using the proposed TSA, the in�uence of capability of iterations on different factors. The test functions extent is ranges from
30, 48, 78, and 99. The presentation of the TSA method on capable test functions is also SUA and it gives best results. If the capability of exploring factors is
incremented or decremented the TSA won’t suffer. The results of SUA, increase the dimensionality of the search space has the least impact on TSA
performance.

a. Statistical analysis: The Analysis of Variance (ANOVA) test was used with respect to normal statistical analysis such as mean and standard deviation. The
ANOVA test is used to see if the suggested approach's results are statistically signi�cant different from those of competitors' approaches. With a 95%
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con�dence interval, the sample size for an ANOVA test is 30. A p value is used to establish whether or not an approach is statistically signi�cant. If the related
approach's p value is less than 0.05, the approach is statistically signi�cant. As a result, the suggested TSA differs statistically from competing approaches.
ANOVA tests were performed in addition to the basic mean and standard to compare the above described approaches. ANOVA testing was carried out. The
ANOVA test was carried out to depart from the results of the proposed methods and determines whether the results of other competing methods differ
statistically substantially. We have taken 30 ANOVA samples. ANOVA testing used 94.5% of the faith. Results reveal that, the suggested technique is
statistically signi�cant compared to other competitive approaches. TSA technique use different tasks to perform different techniques which gives a high
approach to engineering.

7. Sua Related To Engineering
SUA was tested for constrained as well as one uncontrolled design problem named welded beam. The issue has distinct restrictions and we must use the
restricted management technique to optimize these problems. There are several kinds of formula to address restriction problems [8]:

The static penalty does not relay latest generated value and stays �xed throughout whole cycle of calculation.

Dynamic penalty is calculation of the comparable penalty components in the present generation

The coe�cients related to penalty of rinsing are modi�ed only one time throughout several iteration courses. Only active restrictions, which are not
entangled in regional optima, are evaluated at iterations.

The penalty related to adaptive is based on input from the previous search and changes only if the viable/infallible option in the population is deemed
better.

Co-evolutionary punishment divided in two numbers to determine which constraint is breached and the associated infringement amounts.

Penalty related to death handles a solution that breaches restriction as well as gives a 0 �tness value. During optimization, the infeasible solutions may
be discarded. However, the approach does not use knowledge about inviolable solutions to address the issues in dominated, unfeasible areas. Because of
its simplicity and cheap calculative cost, in this part, the SUA method has the death penalty function to manage restrictions.

7.1. Design of the welded beam
The primary aim of this issue is to reduce price of manufacture of sold beam illustrated in Fig. 7 Optimized limitations include shear as well as bending stress,
hitch spring balance in bar and end un re�ecting of beam as SUAwn in �g..

The four optimized values for this problem are:

• Sulfur thickness (h) • Clamped bar length (l) • Bar height (t) • Bar thickness (b)

The optimization techniques used to deal with this issue in particular. The best solution comparison achieved with these methods is given Table 6. The
calculated �ndings are compared in Table 7. The outcomes explain that SUA performs best in mean, standard deviation, and needs low analysis for identify
most optimum diagram.

 
Table 6

Outcomes of diagram of a welded beam
Approach Best Value Best price

h T l B

SUA .21 3.4 9.0 .21 1.72

PSO .20 3.5 9.1 .20 1.72

MFO .15 3.2 9.0 .15 1.8

MVO .20 3.4 10.0 .20 1.88

SCA .20 4.01 10.1 .20 2.1

GSA .15 4.1 9.9 .15 1.78

GA .20 3.2 9.2 .20 1.89

HS .20 3.3 9.5 .22 1.83
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Table 7
Statistical outcome of different techniques for welded beam

issue
Approach Optimal Average Poor St. Dev Median

SUA 1.77 1.77 1.6 .002 1.72

PSO 1.6 1.6 1.66 .001 1.72

MFO 1.55 1.66 1.64 .32 1.6

MVO 1.56 1.64 3.12 .012 1.54

SCA 1.32 1.56 1.32 .004 1.1

GSA 1.6 1.53 1.6 .25 1.52

GA 1.67 1.6 1.55 .03 1.12

HS 1.56 1.62 1.56 .135 1.35

8. Conclusion
In this article, we have suggested to solve a static weapon-target assignment issue using a novel version of the conventional Ant Colony System method,
called SUA. In an implementation that incorporates the problem-speci�c initialization of pheromone and heuristic information and particular selection method.
Simulations of military defensive operations now concentrate on the allocation of resources in complicated situations. In large scale issues, we evaluated SUA
and compared its performance with 2 greedy heuristics and an ACS method. Even modest gains may make the difference in important simulations that justify
the use of time intensive methods with a restricted time requirement. This article introduced a novel Swarm Optimizer method dubbed the Swarm Urochordate
Algorithm (SUA). Basic ideas motivating the technique are appreciated by social and the camping nature of detected hyena. It suggested in this article that the
SUA algorithm SUA be used to solve 30 test formulas to evaluate exploration, exploitation, regional optimum prevention and convergence nature. Six
challenges of real world diagram are also used for evaluate further the effectiveness of the SUA algorithm. The �ndings SUA offers highly competitive
outcomes in relation to other well-known heuristics. The statistical �ndings, based on comparisons among the developed SUA as well as optimized
techniques, indicate that method being presented may handle different kinds of limits as well as provide best outcomes than existing optimizers. The
suggested approach utilized to solve issues of real-life optimization may take less effort to discover the best answers. Several guidelines for future work may
be suggested. Problems of optimization may be resolved in various areas. In addition, this method may be considered as a future contribution in order to
tackle multi-objective as well as many-object if issues.
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Figures

Figure 1

Diagram of the SUA suggested

Figure 2

Iterations from F1 - F7
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Figure 3

Iterations from F8 - F14

Figure 4

Iterations from F15-F21
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Figure 5

Iterations from F22-F30

Figure 6

Fluctuations in benchmark operations
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Figure 7

Schematic illustration of the issue of welded beam


