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Abstract 

In the current era of the Internet of Things (IoT), various devices can provide more 

services by connecting to the Internet. However, the explosive growth of connected 

devices will cause the cloud core overload and significant network delays. To overcome 

these problems, the  Mobile Edge Computing (MEC) network is proposed to provide 

most of the computing and storage near the radio access network to reduce the traffic of 

the core cloud network and provide lower latency for the terminal. 

Mobile edge computing can work with third parties to develop multiple services, such 

as mobile big data analysis and context-aware services. However, when there is a large 

amount of popular data accessed in a short period, the system must generate many replicas, 

which will not only reduce access efficiency but also cause additional traffic overhead. To 

improve the above problems, an Adaptive Replica Configuration Mechanism (ARCM) is 

proposed in this paper to predict the popularity of the file and make a replica to the 

low-blocking node. This method spreads the subsequent access workload by copying the 

popular file in advance to improve the overall performance of the system. 

 

Keywords: mobile edge computing; replica configuration; popularity; prediction. 



 

 

1. Introduction 

In general, the cloud platforms can provide multiple service models, such as 

infrastructure as a service (IaaS) [26], platform as a service (PaaS) [9], and software as a 

service (SaaS) [18]. In the IaaS model, the computing resources and structures are 

provided to companies which are including servers, storage, the infrastructure of network 

topologies and virtual machines. Based on the IaaS model, users can scale on demand to 

provide more flexible and innovative services to balance the dynamic workloads. In the 

PaaS model, the vendors offer a development environment to application developers 

including operating systems, database, web server and programming-language execution 

environment. In the last kind of service, called SaaS, allows users to use the applications 

over the Internet on demand by its authority. However, in recent years, a large number of 

IoT applications have increased the load of the cloud core network and caused a long delay 

time, making it impossible for users to obtain better service quality. 

  To solve these problems, the MEC (Mobile Edge Computing) network is proposed in 

recent years to provide information technology (IT) and cloud services by the Radio 

Access Network (RAN) [16, 19]. Besides, the advantage of MEC network is close to 

mobile clients to provide ultra-low latency, large bandwidth, real-time computing, and 

flexible services by authorizing third-party applications [1, 5, 17], such as location tracking, 

mobile big data analysis, video optimized transmission, and context awareness. 

Traditionally, the access method in the cloud environment is to upload data of local 

device to the server for further calculation. When the access workload of the server is 

getting higher, the system must duplicate more replicas to disperse the works. In the 

meantime, the duplication process may lead to insufficient storage, and the availability and 

access performance of the file will decline. Also, it usually requires higher costs to 

maintain hardware equipment [22, 30]. Therefore, proposing an effective replicating 

strategy is an important issue in the cloud environment. This kind of issue is relatively 

important in the MEC network. Basically, the MEC environment can provide localized 

content for users in the nearby service area, such as video streaming [3], AR / VR [28] and 

other services. While providing these kinds of services, the popular files may be requested 

frequently and repeatedly. Although the MEC network structure can reduce the response 

time of the service by deploying the server near to the end-users, it may also increase the 

time for accessing the data while there has no sufficient available data or congestion of 

service nodes. The mention problems will instead eliminate the original advantages of the 

MEC network. 

In this paper, an effective data replication strategy has been proposed. The main 

purpose of the protocol is to improve the problem of insufficient availability while the high 

popularity replicas are under content localization. Furthermore, the congestion problem 



 

 

while the terminal devices requesting node services frequently will be improved, too. Here, 

the main idea of the proposed method is to predict the popularity of each data. When the 

popularity of the data is in high demand, it will be duplicated for access in advance. This 

mechanism can make the system responds to the request while the system is under 

environmental changes. Besides, the generated replicas will be allocated to the services 

nodes which are in low blocking status and having the most queuing space to provide 

services. The proposed protocol can enhance the availability, access efficiency and load 

balancing under the MEC environment. 

    The rest of this article is organized as follows. Section 2 describes the related works 

of replicating systems. Section 3 shows the details of our proposed protocol. Section 4 

describes the experimental design. The experiments and analysis of our proposed protocol 

are illustrated in Section 5. Finally, the conclusion is presented in Section 6. 

 

2. Related Works 

In this section, the concepts of the mobile edge computing network will be introduced 

first. After that, some famous file replication strategies will be discussed. The comparisons 

of the advantages and the disadvantages of these strategies will be described in this section, 

too. 

2.1 Mobile Edge Computing Network 

The emergence of cloud computing has led computing technology into a new era. The 

main reason for it becoming more popular is because the operating modes can not only 

reduce the overhead costs of cloud providers but also can improve the scalability of the 

system. However, cloud data centers are usually far away from the terminal equipment and 

users. It is less conducive to the applications which require low latency while accessing. 

So far, some interesting research topics have been proposed in the MEC network [4, 6]. 

For example, the Internet of Things [20], Internet of Vehicles [12], and AR [7] are these 

kinds of applications. In other words, when the mention applications are applied under the 

cloud computing environment, it may lead to long transmission delays, Internet congestion 

or degradation of QoS, etc. To solve the above problems, the MEC network structure 

which is more closer to the mobile users has been proposed [13, 29, 31]. 

The concept of the MEC network is deploying the computing center near to end-users 

for data processing. This method can prevent a large amount of raw data being transmitted 

to the cloud data center. This deployment can help to reduce the load of the cloud data 

center and the response time for end-users while requesting services. Besides, the 

computing center under the MEC network is near to mobile users. Under such a structure, 

the system can provide context-aware services for local users by collecting RAN messages 



 

 

in the area [2] more efficiently. Unfortunately, localization of content may cause the 

popular data been requested at the same time. This circumstance will cause virtual 

machine nodes to become congestion. The access efficiency of the system will decrease 

also. Hence, proposing an efficient data replication strategy to improve the mention 

problems is also an important issue under the MEC network. Subsequently, the related 

works of data replication strategies proposed in the past will be introduced in the next 

sub-section. 

2.2 Data Replication Strategies 

In the past, scholars have proposed some data replication algorithm to improve the 

load balance or access efficiency for the system under different network architectures [11, 

14-15, 21, 23-25, 32-33]. For example, to enhance the capability of the cloud storage 

systems, Qingson et al. proposed an efficient dynamic replication management scheme 

which is called CDRM [21]. The main idea of CDRM is to distribute the replicas to the 

nodes which have low blocking probability. Under such a mechanism, tasks can be 

processed more quickly, and service efficiency and load balancing can be improved. 

However, CDRM always selects the nodes with the lowest blocking probability as the 

service nodes, and this will cause the selected service nodes to be accessed all the time. 

Under such a circumstance, the workload of each services nodes will be unbalanced and 

the overall access efficiency will be decreased. 

In the past, scholars have proposed a dynamic data replication algorithm DDRA [11] 

to improve the mentioned problem under the cloud computing network. The main idea of 

the DDRA algorithm is to provide more suitable service nodes for users depends on the 

blocking probability of the nodes and the queue space within the reference nodes. This 

mechanism can prevent tasks to be distributed into the congesting node and can also 

achieve load balancing for the system. However, DDRA will decide whether to increase a 

new duplication based on the ratio of file popularity to the number of replicas, and the 

threshold of the popularity is the average of all previous file accesses. Under such a 

circumstance, when there is a huge gap in the number of access times between the files, 

the files which are currently be popular, will be judged as not popular due to the original 

number of access times is smaller than the average threshold. Consequently, no new 

replica will be added by the system, and the workload of the nodes will keep increasing 

and the access efficiency will decrease. On the other hand, files with a large number of 

original access times will still cause unnecessary resource waste by adding new replicas 

because the current number of accesses still exceeds the threshold. 

Wang proposed an adaptive file replication mechanism called PARM [15] in the cloud 

environment. Its main idea is to predict the popularity of the files for fast adjustment by 

applying the characteristics of atomic decay to the access times of files. However, since 



 

 

PRAM does not set a stop-loss point for replica generation, this will cause popular files to 

be duplicated constantly, and the workload of the system will keep increasing. 

To improve the problem of setting the threshold of popularity, scholars have proposed 

an adaptive file replication strategy called ADRM [22]. The main method is to duplicate 

the popular files by predicting the popularity of the archive. By applying the ADRM 

strategy, the number of replicas can be controlled with an appropriate ratio by setting the 

ratio of the number of the replica to avoid excessive resource consumption caused by 

excessive addition of replicas. Unfortunately, the ADRM strategy does not take the replica 

configuration into account, this will result in replicas not being deployed on nodes to 

handle the access workload. 

In this paper, an adaptive replica configuration mechanism ARCM has been proposed 

to find out the files which have high popularity in advance. This can help to duplicate the 

file to disperse the workload generated by subsequent popular files beforehand. After that, 

when a file has been analyzed as a popular file and the ratio of the number of the replica is 

sufficient, the system will then move the archive from the high-blocking node to the 

low-blocking node to avoid excessive replica generation. Finally, the service node is 

selected to achieve load balancing by allocating replicas to the node which is low-blocking 

and has more space. The differences between the algorithms are shown in Table 1. 

Table 1. The comparisons between ARCM, ADRM, DDRA, PARM, and CDRM. 

 
Popularity 

Prediction 

Replica 

Deployment 

Replica move 

between 

nodes 

Load 

Balancing 
Environment 

ARCM O O O O MEC/Cloud 

ADRM[22] O  X X X MEC/Cloud 

DDRA[11] X O O O Cloud 

PARM[15] O X X X Cloud 

CDRM[21] X O O △ Cloud 

 

3. The Proposed Adaptive Replica Configuration Mechanism 

In this paper, an Adaptive Replica Configuration Mechanism (ARCM) has been 

proposed to optimize the replica configuration in the MEC environment, and the system 

architecture is shown in Figure 1. Here, the MEC servers are responsible for responding to 

the users' requests, and the users will request and access the data from the MEC servers. 

Furthermore, each MEC server will in charge of allocating the file to the virtual machines 



 

 

(VM) and collecting the historical access records. The role of the VMs is to manage the 

file for users to access. When the MEC server collects all the system information 

(including the access frequency of the file, the probability of the block node… ) from VMs, 
the system will then execute the ARCM algorithm to allocate the file. The detailed 

procedure of the ARCM algorithm will be introduced as follows. 

 

 

Figure 1. The System Architecture 

 

In the ARCM mechanism, there are two key emphases in work: data Replication and 

service node selection. The goal of data replication is to calculate the popularity of the file 

to decide whether to replicate the file or not. This can help to improve the access efficiency 

for replica storage architecture. For the goal of service node selection, the system will 

select a proper node to place the replicas. This can help to increase the load balance of the 

overall system. The detail of the procedure will be described next. 

3.1 Data Replication Strategy 

To improve the access efficiency for replica storage architecture, the first key 

emphases in the work of ARCM is to adjust the number of replicas adaptively. Here 

system must get the time interval since last access for each file and then calculate the 

average time interval among all files, and predict the number of file access to evaluate 

whether the file will become popular or not in the future. Finally, the corresponding update 

operations are given according to the popularity of the replica and the ratio of the number 



 

 

of replicas, The operations include: adding more replicas, moving replicas, or deleting 

replicas. The details are described below. 

3.1.1 Calculate Average Time Difference 

To adjust the number of replicas adaptively, the first thing is to decide whether the file 

is popular or not. To do so, the system must calculate the time interval since last access for 

each file and then calculate the average time interval among all files, and the related 

procedure can be shown as formula (1) [15]. Here, 𝐴𝑣𝑒𝑡𝑖𝑚𝑒 represents the average time 

interval of all files, 𝑇𝑖 represents the i-th access time and n represents the total number of 

accesses. When the newest average time interval is less than the last time interval, it means 

that the file has a popular trend. In contrast, it means that the data is not popular. 𝑨𝒗𝒆𝒕𝒊𝒎𝒆 = ∑ (𝑻𝒊−𝑻𝒊−𝟏)𝒏𝒊=𝟏 𝒏   (1) 

 

3.1.2 Predict the Number of File Access 

 In the ARCM mechanism, the concept of atomic decay [8] will be applied to predict 

the number of file accesses. The goal of this prediction is also to evaluate whether the file 

is popular or not. The procedure can be described as formula (2) [15], where 𝑃𝑟𝑒𝑎𝑐𝑐𝑒𝑠𝑠 is 

the number of files accesses predicted, and 𝑃𝐴𝑖 represents the i-th stage visits. Then, the 

file access times predicted in this stage are compared with the predicted access times in the 

previous stage. If there are more predicted access times in this stage, it means that the file 

has a popular trend. Conversely, it means that the file is not popular. 𝑷𝒓𝒆𝒂𝒄𝒄𝒆𝒔𝒔 = ∑ (𝑷𝑨𝒊 ∗ 𝟐𝟏−𝒊)𝒏𝒊=𝟏   (2) 

 

3.1.3 Replica Update Strategy 

When the results of the average time interval and the number of predicted file 

accesses are in a popular trend, the system will further apply the Ratio of the number of 

Replica (RR) as the threshold for deciding whether to add more replicas or not. This is 

because maintaining the number of replicas based on RR value will help the system to get 

better access efficiency [11]]. Here, the system will apply the formula (3) to calculate the 

current requested ratio of the number of replicas 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟 and then compare with the 

RR value [11]. In formula (3), 𝑛𝑟𝑖 indicates the number of current requested replicas of 

file and 𝑡𝑛𝑟𝑖 is the total number of replicas. When the current requested ratio of the 

number of replicas is smaller than the RR threshold, the system will add more replicas. In 

contrast, if the current requested ratio of the number of replicas is greater than or equal to 

the RR threshold, it means that the number of replicas is sufficient. Under such a 



 

 

circumstance, the system will move the replicas from the node which has the highest 

blocking probability to the node with the lowest blocking probability.  

Furthermore, when the result of the average time interval is in a popular trend and the 

number of predicted file accesses is not in a popular trend, the system will also move the 

replicas from the node which has the highest blocking probability to the node with the 

lowest blocking probability. 

For the last situation, when the results of the average time interval and the number of 

predicted file accesses are both not in a popular trend, the system will delete the replicas 

from the node which has the highest blocking probability. Noticeably, while removing the 

replicas, the system must ensure that the number of replicas is kept at least 3 copies to 

maintain basic usability. The overall flowchart is shown in Figure 2. 𝑹𝒆𝒒𝒖𝒆𝒔𝒕𝒏𝒓 = 𝒏𝒓𝒊𝒕𝒏𝒓𝒊 ∗ 𝟏𝟎𝟎%  (3) 

 

Figure 2. Data Replication Strategy 

3.2 Service Node Selection Strategy 

In the previous sub-section, the concepts of deciding whether the file is popular or not, 

and the conditions about add, move or delete files are introduced. Next, another key 

emphasis in the work of ARCM that is filtering the proper service nodes to place the 



 

 

replicas will be given. This procedure can help to ensure the quality of service and the load 

balancing of the overall system. Here, the procedure can be divided into two phases and 

the details are shown as follows. 

3.2.1 Anti-Blocking Phase 

To avoid replicas being allocated to the nodes which are in congested, users must 

spend more time to access the file, and the new task must wait until the service node is 

available. This procedure will increase the overall latency of the MEC environment. To 

improve these dilemmas, the blocking probability of each node is obtained by calculating 

the node’s arrival rate and the request delay time [21]. Through this phase, the system can 

filter out the nodes which are in congested, and the nodes that are more suitable for 

services will be selected. 

To calculate the arrival rate, formula (4) has been provided in ARCM. Here, 𝑝𝑗 

represents the popularity of the file being accessed, 𝑟𝑗 represents the number of replicas, 

and λ is the real arrival ratio in all requests. Through this formula, the system can calculate 

the arrival rate of each node 𝜆𝑖. 𝜆𝑖 = 𝑝𝑗𝑟𝑗 𝜆  (4) 

After getting the arrival rate, the system can bring the result into formula (5) to get the 

Block Probability (BP). In formula (5), 𝜏𝑖 represents the delay time which refers to the 

time for the terminal device to read the replica, and 𝑐𝑖 represents the number of memory 

blocks divided by the node. To make the system more realistic, the system will apply the 

M/M/1 [21] rule to simulate the arrival rate for each task. When the memory blocks are 

full of tasks, new tasks must wait in the queue, and this situation is called blocked. 𝑩𝑷𝒊 = (𝝀𝒊𝝉𝒊)𝒄𝒊𝒄𝒊! [∑ (𝝀𝒊𝝉𝒊)𝒌𝒌!𝒄𝒊𝒌=𝟎 ]−𝟏  (5) 

 

After calculating the blocking probability of each node through formula (5), the 

system will set up AvgBP value as the low blocking probability and this value will be the 

threshold for deciding whether the node is congested or not. To sum up, the system can 

select the nodes which are under low-blocking for services. This can help to decrease the 

latency while users are requesting for services and to improve the performance of the 

overall system. 

3.2.2 Reference Queue Balance Phase 

After selecting the node whose block probability is lower than the average value, the 

system will find out the node which has most queue space as the preferentially serving 

node from the nodes with a lower average blocking probability. Here, the method in this 



 

 

phase will apply the concepts of Reference Queue (RQ) proposed by Chiang et al.[11]. By 

preferentially assigning replicas to the nodes with most queue space, tasks will evenly be 

distributed and be processed quickly. This will help to improve access efficiency and 

achieve better load balancing. Figure 3 shows the entire flow of the service node selection 

strategy. 

 

 

Figure 3. Service Node Selection Strategy  

 

4. Example 

Basically, by applying the ARCM protocol, the system can get a more efficient file 

replication strategy to maintain the availability of replicas, and the replica access 

efficiency can be improved under the MEC environment. To help to understand the 

proposed ARCM protocol, an example has been given in this section.  

Once the terminal devices are connected to the MEC environment for requesting the 



 

 

file access services, the system will search for the related data according to the request and 

then set up the initial number of replicas base on the type of the file. At this time, the 

system must manage the record about the files which are accessed by nodes, and each 

record will be compared to the data accessed in the past. Then, the system will 

dynamically adjust the number of replicas by analyzing the popularity of the file and 

calculating the replica ratios. Finally, the system will generate a new replica and move it to 

the appropriate service node. The assumptions for the example are shown in Table 2: 

Table 2. The assumptions for the example. 

Assumptions Values 

Time period 5 minutes 

Data node number  𝑁1 ~ 𝑁8 

Access file ID A ~ D 

 

When the terminal device is connected to the MEC environment to request access for 

the service, the system will analyze the type of the file and allocate numbers of replica 

according to the file classifications. If the files have a higher usage rate and require a 

longer time for storage, the system will allocate more number of replicas for the files. In 

contrast, for the files that have a lower usage rate and do not require too much time for 

storage, the system will allocate fewer replicas for them. The related allocations are shown 

in Table 3. Besides, when the file size is greater than 64MB, it will be stored in Block 

Level [27]. In contrast, it will be stored in File Level when the file size is less than 64MB 

[10]. By applying this mechanism, the system will access the files from different blocks to 

avoid the access delay caused by accessing the big file from a single node.  

Next, when the terminal device accesses the files, the system will record the file ID, 

storage node, start timestamp, end timestamp, and the file size of each file according to the 

system storage format under the MEC environment. The format is shown in Table 4. When 

a time interval has passed, the system will generate a log analysis based on the number of 

accesses and the time interval between each accesses, and the related example is shown in 

Table 5.  

Table 3. The allocations results of the file. 

File ID File Type File classification Number of Replicas 

A Trending information Short-term storage 3 

B Weather information Short-term storage 3 

C Natural disaster Information Long-term storage 5 

D Traffic information Short-term storage 3 

 

Table 4. An example of the file storage format. 

File ID Node ID Start Timestamp Stop Timestamp Size 



 

 

A N2 20180903192013 20180903265115 250MB 

 

Table 5. Details of access records. 

File ID Node ID Number of Accesses Spacing Time 

A N2 5 7 

A N7 9 15 

A N5 7 13 

B N4 6 5 

B N6 4 4 

B N7 15 17 

C N8 9 8 

C N3 10 10 

C N5 6 5 

C N1 11 12 

C N2 14 14 

D N4 13 4 

D N5 7 13 

D N6 8 8 

In the initial status, because the system has no historical data, the file will not be 

added, moved or deleted at this time, and the status of the record can be shown in Table 6. 

At the end of the second period of time, the system will compare the current access data 

(shown in Table 7) to the historical data. In terms of predicting the number of accesses, it 

will apply the atomic decay method [15], and the result is shown in Table 8. The 

comparison of the average access time interval is shown in Table 9. 

Table 6. Access records for the first period of time. 

File ID Number of Accesses Average Spacing Time Come From 

A 21 12.43 N2:5; N7:9; N5:7 

B 25 12.04 N4:6; N6:4; N7:15 

C 50 10.6 
N8:9; N3:10; N5:6; 

N1:11; N2:14 

D 28 7.39 N4:13; N5:7; N6:8 

 

Table 7. Access records for the second period of time. 

File ID Number of Accesses Average Spacing Time Come From 

A 6 12.26 N2:3; N7:3 

B 18 11.47 N4:5; N6:3; N7:10 

C 29 10.13 N8:7; N3:8; N5:6; N1:8 



 

 

D 11 8.58 N4:5; N6:6 

 

Table 8. Prediction of the number of accesses by the atomic decay method. 

File ID 
History Now Prediction 

Number of Accesses Number of Accesses Number of Accesses 

A 21 6 21*2−1+6*20=16.5 

B 25 18 25*2−1+18*20=30.5 

C 50 29 51*2−1+29*20=54 

D 28 11 28*2−1+11*20=25 

 

Table 9. Comparison of the average access time interval. 

File ID 
History Now 

Average Spacing Time Average Spacing Time 

A 12.43 12.26 

B 12.04 11.47 

C 10.6 10.13 

D 7.39 8.58 

 

After comparison, the system can analyze whether the file is in a popular trend or not. 

For the number of accessing the files, the ARCM algorithm applies the atomic decay 

method to make predictions and then compares the predicted value to the previous access 

record to analyze whether the file has a popular trend in access times. The results are 

shown in Table 9. In the results, we can see that the file classification of B and C are in a 

popular trend. Subsequently, the historical average access time interval will be used as the 

threshold value, and analyze whether the file is a popular trend or not based on the access 

time interval. The comparison result is shown in Table 11. Finally, to avoid adding too 

many replicas to the popular files, the system must maintain the number of replicas at a 

certain ratio by setting the replica ratio to avoid excessive waste of resources under the 

ARCM algorithm. This can help to achieve better access efficiency. Based on the 

experimental results proposed by Chaing et al, the system will also set the RR threshold 

value at 30% [11]. Subsequently, the system will calculate the current replica ratio of each 

file and compare it to the RR threshold value to analyze whether the number of currently 

requested file replicas is sufficient or not. The results are shown in Table 12. Finally, based 

on the results of Table 10 to Table 11, the system will decide to add, move or delete the 

replicas, and the related results are shown in Table 13. 

 

Table 10. The predicting results. 

File ID Atomic decline prediction Threshold Popular Trend 



 

 

A 16.5 21 X 

B 30.5 25 O 

C 54 50 O 

D 25 28 X 

 

 

Table 11. The analysis results based on the average access time interval. 

File ID History Now Popular Trend 

A 12.43 12.26 O 

B 12.04 11.47 O 

C 10.6 10.13 O 

D 7.39 8.58 X 

 

Table 12. The result of setting the replicas ratio. 

File ID Number of Replicas Ratio of Replicas RR=30% 

A 3 
314*100%=21% 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟<RR 

B 3 
314*100%=21% 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟<RR 

C 5 
514*100%=36% 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟>RR 

D 3 
314*100%=21% 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟<RR 

 

Table 13. The execution results. 

File ID 
Average 

Spacing Time 

Prediction of the 

Number 

of File Accesses 

RR=30% Result 

A X O  move 

B O O 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟<RR add 

C O O 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟>RR move 

D X X  delete 

 

So far, the system has finished the process of the data replication strategy. Next, the 

system will continue to filter the proper service nodes to place the replicas. 

Here, the system will calculate the blocking probability of each node through formula 

(5), where the arrival rate λ is set to 0.2 which refers to the experimental results proposed 

by Qinsong et al. [21]. For the delay time 𝜏𝑖, in order to help the system to compare the 



 

 

access performance more clearly, the setting environment will be consistent with the 

assumption of 1 second upon the request, read, and return of the files respectively. 

Therefore, the delay time of the homogeneous node is set to 3 seconds. Finally, the related 

arrival rate and blocking probability of each node are shown in Table 14 and Table 15, and 

the threshold value of low blocking probability AvgBP is 0.00026438. 

 

Table 14. The arrival rate for each node. 

Node ID  𝜆𝑖 
Node 1 File C: ((11/50)/5)*0.2 = 0.0088 𝜆1 = 0.0088 

Node 2 
File A: ((5/21)/3)*0.2 = 0.0159 

File C: ((14/50)/5)*0.2 = 0.0112 
𝜆2 = 0.0271 

Node 3 File C: ((10/50)/5)*0.2 = 0.008 𝜆3 = 0.008 

Node 4 
File B: ((6/25)/3)*0.2 = 0.016 

File D: ((13/28)/3)*0.2 = 0.031 
𝜆4 = 0.047 

Node 5 

File A: ((7/21/3)*0.2 = 0.0222 

File C: ((6/50)/5)*0.2 = 0.0048 

File D: ((7/28/3)*0.2 = 0.0167 

𝜆5 = 0.0437 

Node 6 
File B: ((4/25)/3)*0.2 = 0.0107 

File D: ((8/28)/3)*0.2 = 0.019 
𝜆6 = 0.0297 

Node 7 
File A: ((9/21)/3)*0.2 = 0.0286 

File B: ((15/25)/3)*0.2 = 0.04 
𝜆7 = 0.0686 

Node 8 File C: ((9/50)/5)*0.2 = 0.0072 𝜆8 = 0.0072 

 

Table 15. The blocking probability for each node. 

Node ID 𝐵𝑃𝑖 
Node 1 

(0.0088∗3)33! [∑ (0.0088∗3)kk!3k=0 ]−1 = 0.000003 

Node 2 
(0.0271∗3)33! [∑ (0.0271∗3)kk!3k=0 ]−1 = 0.0000826 

Node 3 
(0.008∗3)33! [∑ (0.008∗3)kk!3k=0 ]−1 = 0.0000022 

Node 4 
(0.047∗3)33! [∑ (0.047∗3)kk!3k=0 ]−1 = 0.0004058 

Node 5 
(0.0437∗3)33! [∑ (0.0437∗3)kk!3k=0 ]−1 = 0.0003294 

Node 6 
(0.0297∗3)33! [∑ (0.0297∗3)kk!3k=0 ]−1 = 0.0001078 



 

 

Node 7 
(0.0686∗3)33! [∑ (0.0686∗3)kk!3k=0 ]−1 = 0.0011826 

Node 8 
(0.0072∗3)33! [∑ (0.0072∗3)kk!3k=0 ]−1 = 0.0000016 

AvgBP 
(0.000003+0.0000826+0.0000022+0.0004058+0.0003294+0.0001078+ 

0.0011826+0.0000016)/8 = 0.00026438 

After calculating the average AvgBP value, the system can get the set of low blocking 

nodes whose BP values are smaller than the average from the system nodes. Subsequently, 

in addition to avoiding end users from choosing the congested nodes for services, the 

system must also consider whether tasks are evenly distributed. At this time, the system 

will also compare the queue space status of each node. Here, the node with low blocking 

probability and has the largest queue space will be the best service node. The results are 

shown in Table 16. 

Assume that File A is currently predicted to be popular and has reached the condition 

for adding new replicas, the system will find out the set of low-probability blocked nodes 

whose blocking probability are lower than AvgBP (Node 1, Node 2, Node 3, Node 6, Node 

8) and have the most queue space (Node 1, Node 3, Node 8) to place the replicas for File A. 

When more than two nodes meet the above conditions at the same time, the node with the 

smallest blocking probability will be selected as the serving node. In the overall example, a 

new replica for File A will be added to Node 8 for further services under the MEC 

environment. 

Table 16. The blocking probability and queue space of each node. 

Node ID 𝐵𝑃𝑖 𝑅𝑄𝑖 
Node 1 𝐵𝑃1 = 0.000003 Free space of RQ = 4 

Node 2 𝐵𝑃2 = 0.0000826 Free space of RQ = 3 

Node 3 𝐵𝑃3 = 0.0000022 Free space of RQ = 4 

Node 4 𝐵𝑃4 = 0.0004058 Free space of RQ = 3 

Node 5 𝐵𝑃5 = 0.0003294 Free space of RQ = 2 

Node 6 𝐵𝑃6 = 0.0001078 Free space of RQ = 3 

Node 7 𝐵𝑃7 = 0.0011826 Free space of RQ = 3 

Node 8 𝐵𝑃8 = 0.0000016 Free space of RQ = 4 

 

In this paper, the adaptive replica configuration mechanism which is called ARCM 

has been proposed to improve the access efficiency load balancing under the MEC 

environment. The main idea is to calculate the popularity of the file to decide whether to 

replicate the file or not and then the system will select a proper node to place the replicas. 

The related experiment and analyses will be given in the next section. 



 

 

5. Experiments and Analysis 

In this section, the environment for experiments, results and related analysis will be 

given to prove the performance of the ARCM mechanism.  

5.1 Environment for Experiments  

In this paper, the dynamic configuration algorithm experiments are simulated by Dev 

C++ under Windows environment. Furthermore, the CDRM, DDRA, PARM, ADRM, and 

Random algorithms are invoked to compare the performance in the Cloudsim for 

simulation. The experiments simulate the number of nodes from loosely environments (20 

nodes) to densely environments (100 nodes) in the small MEC environment. Also, in the 

experiments, we simulate assigning different workloads (low workload, medium workload, 

and high workload) for nodes. Besides, in the experiments, the number of nodes is set to 

20, 40, 60, and 100 respectively. In the low workload environment, 1000 tasks are assigned 

per cycle. In the medium workload environment, 5000 tasks are assigned per cycle, and 

10,000 tasks are assigned per cycle in the high workload environment. To observe the task 

allocation status of each algorithm, the node capacity is set to be homogeneous, and each 

node has 5 task queue spaces. The remaining parameter settings are shown in Table 17 to 

Table 19. Finally, the proposed ARCM algorithm will compare to other algorithms through 

node utilization, Mean Average Deviation (MAD), the number of replicas, throughput, and 

completion time. 

 

Table 17. The parameters for the experiment. 

Item Value 

Number of Nodes 20、40、60、100 

Task Queue 5 

Workload 

1000 Low Workload 

5000 Medium Workload 

10000 High Workload 

File Type A~E 

Short-Term Storage 3 replicas 

Long-Term Storage 5 replicas 

Update Frequency 5 minutes 

Ratio of Replicas 30%  

 

Table 18. Cloudsim Parameter Settings. 

Item Value 



 

 

VM 20~100 

PEs 1 

MIPS 1000(MAX) 

RAM 512MB 

Size 10000MB 

BW 1000 

 

Table 19. Experiment tools. 

Tools Usage 

Dev C++ Dynamic replica configuration algorithm 

Cloudsim Build the service environment and experiment simulation 

Microsoft Office Excel 2016 Record experiment results 

 

5.2 Performance Analysis 

In the sub-section, we will analyze the performance of each algorithm based on the 

different environments including loosely, ordinary and densely environments. Furthermore, 

we will also observe and analyze the performance and usage status of each algorithm 

under different workloads. The results are shown as follows. 

 

5.2.1 Loosely Environment {Node=20; Workload=1000~10000} 

 Figure 4, Figure 5 and Figure 6 show the simulation results of low to high workload 

in the loosely environment when the number of nodes is set to 20. Here, the Random 

algorithm does not dynamically configure the number of replicas as the environment 

changes. Therefore, the node which owned the replica originally will have a higher node 

utilization rate. On the contrary, the node that does not been assigned with the replica will 

stay idle. For the CDRM algorithm, it also has a high utilization rate on certain nodes. The 

main reason is that nodes with better access efficiency are more likely to be assigned more 

tasks. Besides, for the PARM and ADRM algorithm, the simulation will distribute the 

replica randomly to understand the difference with other algorithms even when the PARM 

and ADRM algorithms are lack of replica configuration scheme. Finally, for the DDRA 

and ARCM algorithm, both of them consider the blocking probability and the number of 

queued nodes while assigning the tasks, hence these two algorithms are more balanced 

than CDRM in terms of node utilization. 



 

 

 

Figure 4. Node Utilization for 1000 workloads, Node = 20 

 

Figure 5. Node Utilization for 5000 workloads, Node = 20 

 

Figure 6. Node Utilization for 10000 workloads, Node = 20 

To help to understand the status of the loading of the system clearly, we calculate 

MAD value through formula (6). In the formula, n represents the total number of nodes, 

and 𝑢𝑖 represents the utilization rate of the nodes. When the MAD value is getting higher, 

it means that task distribution is uneven in the overall system. In contrast, the lower the 

MAD value, the better load balancing the system can achieve. From Figure 7 to Figure 9, it 
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can be seen that the ARCM algorithm has the best load balancing. This is because that the 

ARCM algorithm considers the blocking probability and queuing space of each node while 

replacing the replicas. This can help to allocate the workload more balancing. In other 

words, the ARCM algorithm can adjust the number of replicas dynamically by predicting 

the popularity of files. When the file is analyzed as popular, the system can quickly process 

the workload generated by the file which has increasing popularity by adding more 

replicas in advance. This is the reason why the ARCM algorithm can allocate system nodes 

more balanced.  ∑ |𝒖𝒊 − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆(𝒖𝒊)|𝒏𝒊=𝟏   (6) 

 

 

Figure 7. Mean Average Deviation for 1000 workloads, Node = 20 

 

Figure 8. Mean Average Deviation for 5000 workloads, Node = 20 

 

Figure 9. Mean Average Deviation for 10000 workloads, Node = 20 
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In Figure 10, we can see that the non-dynamic Random algorithm will not adjust the 

replicas as the environment changes under the low workload environment, and the number 

of replicas will remain at three. Besides, the default number of replicas in the CDRM 

algorithm is 1. Although the availability of replicas will be adjusted while executing the 

algorithm, the access efficiency will decrease due to the insufficient availability of replicas 

in the beginning. For the ARC and the ADRM algorithms, the average number of replicas 

been used are lower than the results of the DDRA algorithm. This is because that the 

replicas configuration settings of ARCM and ADRM are stricter than those of DDRA. 

Hence, the number of replicas is relatively stable. Furthermore, the ADRM algorithm ha 

better results in terms of the number of replicas than the DDRA algorithm, however, the 

performance of the node utilization rate is poor to the DDRA algorithm due to the incorrect 

replica configuration method. Finally, the PARM algorithm does not set up a stop-loss 

point for generating replicas, and this results in unlimited additions of popular replicas. 

 

Figure 10. Number of Replicas for 1000 workloads, Node = 20 

 

When the workload increases to 5,000, we can observe that the ARCM and DDRA 

algorithms become comparable. This is because that the DDRA algorithm only applies a 

single factor to determine the popularity. This factor is when the number of file access 

exceeds the average value, then the file will be judged as a popular file. Under such a 

circumstance, the system will add new replicas for this popular file. In contrast, the 

replicas will be deleted. Hence, the DDRA algorithm will easily lead the number of 

replicas to keep changing in the system. By comparison, the ARCM algorithm can more 

accurately predict environmental changes than DDRA. The related results can be seen in 
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Figure 11. Number of Replicas for 5000 workloads, Node = 20 

 

In Figure 12, it can be seen that the number of replicas used by the ARCM algorithm 

is less than that of DDRA at the beginning when the workload increases to 10,000. As time 

goes by, the number of replicas used by these two algorithms are almost the same. This is 

because the number of users’ requests and the workload are getting higher. Thus, the 

differences in the popularity of each file will become more obvious. Therefore, the results 

of the popularity of the two algorithms are more likely to have the same situation. 

 

Figure 12. Number of Replicas for 10000 workloads, Node = 20 
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overall working time by avoiding allocate the tasks on the specific nodes concentratedly. 

Finally, the experiment results show that the ARCM algorithm can improve the 

performance of throughput and the completion time for the loosely MEC environments. 

 

 

Figure 13. The throughput results of 20 nodes 

 
Figure 14. The mean job time results of 20 nodes 

 

5.2.2 Ordinary environment {Node=40, 60;Workload=1000~10000} 

In this sub-section, the performance and analysis results under the ordinary MEC 
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nodes is 40 or 60 respectively will be given, and the results can also be seen from Figure 

15to Figure 36. 

According to the results of Figure 15 to Figure 20 and Figure 26 to Figure 31, we can 

observe that since the non-dynamic Random algorithm only allocates a fixed number of 

replicas to nodes, and this Random algorithm also has the problem of uneven task 

allocation. The dynamic replica configuration CDRM algorithm provides faster services to 
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end-users by assigning tasks to the nodes with the lowest blocking probability. 

Unfortunately, this cause that the nodes with better computing capabilities will always 

receive more task requests than others, and the system cannot reach the goal of load 

balancing. For the PARM and the ADRM algorithm, both of them also cannot reach load 

balancing due to the lack of proper replica configuration methods. As for the ARCM 

algorithm, it can predict the future trend for the files by analyzing the historical data. When 

a file is predicted as a popular trend, the system will add more replicas to the nodes and 

can distribute the workload balancing. Hence, the ARCM algorithm can achieve a better 

load balance. 

Besides, the CDRM algorithm initially sets one replica for each file, which may easily 

lead to insufficient file availability in the early stage. For the ARCM algorithm, it has the 

procedure to classify the task at the beginning. If the files are in the type of short-term 

storage, the system will allocate three replicas, and if the files are in the type of long-term 

storage, five replicas will be allocated. Hence, in the low workload environments, the 

ARCM algorithm requires fewer replicas than the DDRA algorithm. In the middle 

workload environment, the performance of the ARCM and the DDRA algorithms are 

almost the same. Finally, in the high workload environment, the number of replicas of the 

ARCM and the DDRA algorithm is almost the same after the cycle of 60 minutes. The 

related results can be seen in Figure 21 to Figure 23 and Figure 32 to Figure 34. 

According to the results shown in Figure 24 to Figure 25 and Figure 35 to Figure 36, 

when the MAD is getting lower, the system has better load balancing since the working 

capacity of the nodes is set to be the same. Therefore, it can be observed from the 

simulation results that compared to the DDRA and the CDRM algorithms, the ARCM 

algorithm can evenly distribute the workload and can avoid allocating the tasks on the 

specific nodes concentratedly. Therefore, ARCM has better throughput and completion 

time results. 

 

Figure 15. Node Utilization for 1000 workloads, Node = 40 
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Figure 16. Node Utilization for 5000 workloads, Node = 40 

 

Figure 17. Node Utilization for 10000 workloads, Node = 40 

 

Figure 18. Mean Average Deviation for 1000 workloads, Node = 40 

-90
-70
-50
-30
-10
10
30
50
70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

N
o
d

e 
U

ti
li

za
ti

o
n

 

Data Nodes 

Workloads - 5k 

Random CDRM DDRA ARCM PARM ADRM

-90
-70
-50
-30
-10
10
30
50
70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

N
o
d

e 
U

ti
li

za
ti

o
n

 

Data Nodes 

Workloads - 10k 

Random CDRM DDRA ARCM PARM ADRM

0

200

400

600

800

1000

M
ea

n
 A

v
er

a
g
e 

D
ev

a
ti

o
n

 

Workloads - 1k 



 

 

 

Figure 19. Mean Average Deviation for 5000 workloads, Node = 40 

 

Figure 20. Mean Average Deviation for 10000 workloads, Node = 40 

 

Figure 21. Number of Replicas for 1000 workloads, Node = 40 
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Figure 22. Number of Replicas for 5000 workloads, Node = 40 

 

Figure 23. Number of Replicas for 10000 workloads, Node = 40 
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Figure 24. Throughput in 40 nodes 

 

 

Figure 25. Mean Job Time in 40 nodes 

 

Figure 26. Node Utilization for 1000 workloads, Node = 60 
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Figure 27. Node Utilization for 5000 workloads, Node = 60 

 

Figure 28. Node Utilization for 10000 workloads, Node = 60 

 
Figure 29. Mean Average Deviation for 1000 workloads, Node = 60 
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Figure 30. Mean Average Deviation for 5000 workloads, Node = 60 

 
Figure 31. Mean Average Deviation for 10000 workloads, Node = 60 

 

Figure 32. Number of Replicas for 1000 workloads, Node = 60 

0

200

400

600

800

1000

1200

1400

M
ea

n
 A

v
er

a
g
e 

D
ev

ia
ti

o
n

 

Workloads - 5k 

0

200

400

600

800

1000

1200

1400

M
ea

n
 A

v
er

a
g

e 

D
ev

ia
ti

o
n

 

Workloads - 10k 

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f 
R

ep
li

ca
s 

Time(min) 

Workloads - 1k 

Random(3) CDRM DDRA

ARCM PARM ADRM



 

 

 

Figure 33. Number of Replicas for 5000 workloads, Node = 60 

 

Figure 34. Number of Replicas for 10000 workloads, Node = 60 
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Figure 35. Throughput in 60 nodes 

 

Figure 36. Mean Job Time in 60 nodes 
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The ARCM algorithm uses the atomic decline method to predict the popularity of the files, 
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Furthermore, Figure 43 to Figure 45 shows the results of the status of the number of 

replica among each algorithm. Here, the CDRM algorithm only allocates one number of 

0

5000

10000

1k 5k 10k

T
h

o
u

g
h

p
u

t 
(r

eq
u

es
ts

/s
) 

Number of Workloads 

Random CDRM DDRA ARCM PARM ADRM

0

10000

20000

30000

40000

1k 5k 10k

M
ea

n
 J

o
b

 T
im

e 

Number of Workloads 

Random CDRM DDRA ARCM PARM ADRM



 

 

replica for the files at the beginning, and this will cause the problem of the insufficient 

number of available replicas in the early stage for the system. Hence, this algorithm is not 

able to distribute the workload of the replicas effectively and timely. For the DDRA 

algorithm, it improves the problem of setting the number of initial replicas and referred to 

the remaining queue space to achieve load balancing when replicas were configured. Hene, 

the DDRA algorithm has better performance than the CDRM algorithm. Besides, the 

PARM algorithm does not set the limitation of the number of replicas, and this will easily 

cause to add the replicas excessive. The ADRM algorithm improves the problem of DDRA 

on generating the popular replicas, hence, the ADRM algorithm uses less number of 

replicas than the DDRA algorithm. However, the ADRM algorithm lacks a proper replica 

configuration method, hence, the performance of the node utilization, throughput, and the 

completion time is slightly worse than the DDRA algorithm. Finally, the proposed ARCM 

algorithm requires more number of replicas than the DDRA algorithm, but it still has better 

performance in terms of the node utilization, MAD, throughput, and the completion time 

than other algorithms. This is because the ARCM algorithm adds the concept of prediction, 

and predicts the future status for each file by analyzing the trend of historical data. This 

can help to respond to the changes in the system. Hence, the overall performance of the 

proposed ARCM algorithm can get better performance for the MEC environment. 

 

Figure 37. Node Utilization for 1000 workloads, Node = 100 

-90
-70
-50
-30
-10
10
30
50
70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

N
o
d

e 
U

ti
li

za
ti

o
n

 

Data Nodes 

Workloads - 1k 

Random CDRM DDRA ARCM PARM ADRM



 

 

 

Figure 38. Node Utilization for 5000 workloads, Node = 100 

 

Figure 39. Node Utilization for 10000 workloads, Node = 100 

 

Figure 40. Mean Average Deviation for 1000 workloads, Node = 100 
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Figure 41. Mean Average Deviation for 5000 workloads, Node = 100 

 

Figure 42. Mean Average Deviation for 10000 workloads, Node = 100 

 

Figure 43. Number of Replicas for 1000 workloads, Node = 100 
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Figure 44. Number of Replicas for 5000 workloads, Node = 100 

 

Figure 45. Number of Replicas for 10000 workloads, Node = 100 
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Figure 46. Throughput in 100 nodes 

 

Figure 47. Mean Job Time in 100 nodes 

6. Conclusions 

Mobile edge computing is an emerging field that handles most of the computing and 

storage by deploying the MEC servers near to the radio access networks. This network 

architecture can help to reduce the load of the cloud core and can provide users with 

low-latency, high-bandwidth, and more diverse application services. 

In this paper, an adaptive dynamic replication mechanism call the ARCM algorithm is 

proposed under the MEC environment to improve the performance of the configuration on 

popular file. Basically, the proposed ARCM mechanism applies the concepts of atomic 

decay and the access time interval to predict which file will be popular, and then refers to 

the replica ratio for replication. Finally, the system can add the new replica to the 

appropriate service nodes to effectively disperse the workload for the nodes. The 

experimental results show that the system throughput can be improved and has a better 

completion time under loosely or densely environments. Therefore, the ARCM algorithm 
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can improve the access efficiency, quality of service, and can maintain better load 

balancing in the overall MEC environment. 
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