
An Adaptive Replica Con�guration Mechanism
Based on Predictive File Popularity and Queue
Balance in Mobile Edge Computing Environment
Mao-Lun Chiang

Chaoyang University of Technology
Hui-Ching Hsieh ( luckyeva.hsieh@gmail.com)

Hsing Wu University https://orcid.org/0000-0002-2666-3115
Ting-Yi Chang

National Changhua University of Education
Wei-Ling Lin

Chaoyang University of Technology
Hong-Wei Chen

National Changhua University of Education

Research Article

Keywords: mobile edge computing, replica con�guration, popularity, prediction.

Posted Date: November 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-851015/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-851015/v1
mailto:luckyeva.hsieh@gmail.com
https://orcid.org/0000-0002-2666-3115
https://doi.org/10.21203/rs.3.rs-851015/v1
https://creativecommons.org/licenses/by/4.0/

An Adaptive Replica Configuration Mechanism Based on Predictive File

Popularity and Queue Balance in Mobile Edge Computing Environment

Mao-Lun Chiang
 1
 , Hui-Ching Hsieh

2*
 , Ting-Yi Chang

3
, Wei-Ling Lin

4
 and Hong-Wei Chen

3

1
Department of Bachelor Degree Program of

Artificial Intelligence, National Taichung University

of Science and Technology, Taiwan, R.O.C.

skyjustfly@gmail.com

2*
Department of New Media Communication

Hsing Wu University

New Taipei City, Taiwan R.O.C.

luckyeva.hsieh@gmail.com (*Corresponding author)

3
Department of Industrial Education and Technology

National Changhua University of Education

Changhua City, Taiwan ROC

tychang@cc.ncue.edu.tw

4
Department of Information Management

Chaoyang University of Technology

Taichung City, Taiwan ROC

will.wlink@gmail.com

Abstract

In the current era of the Internet of Things (IoT), various devices can provide more

services by connecting to the Internet. However, the explosive growth of connected

devices will cause the cloud core overload and significant network delays. To overcome

these problems, the Mobile Edge Computing (MEC) network is proposed to provide

most of the computing and storage near the radio access network to reduce the traffic of

the core cloud network and provide lower latency for the terminal.

Mobile edge computing can work with third parties to develop multiple services, such

as mobile big data analysis and context-aware services. However, when there is a large

amount of popular data accessed in a short period, the system must generate many replicas,

which will not only reduce access efficiency but also cause additional traffic overhead. To

improve the above problems, an Adaptive Replica Configuration Mechanism (ARCM) is

proposed in this paper to predict the popularity of the file and make a replica to the

low-blocking node. This method spreads the subsequent access workload by copying the

popular file in advance to improve the overall performance of the system.

Keywords: mobile edge computing; replica configuration; popularity; prediction.

1. Introduction

In general, the cloud platforms can provide multiple service models, such as

infrastructure as a service (IaaS) [26], platform as a service (PaaS) [9], and software as a

service (SaaS) [18]. In the IaaS model, the computing resources and structures are

provided to companies which are including servers, storage, the infrastructure of network

topologies and virtual machines. Based on the IaaS model, users can scale on demand to

provide more flexible and innovative services to balance the dynamic workloads. In the

PaaS model, the vendors offer a development environment to application developers

including operating systems, database, web server and programming-language execution

environment. In the last kind of service, called SaaS, allows users to use the applications

over the Internet on demand by its authority. However, in recent years, a large number of

IoT applications have increased the load of the cloud core network and caused a long delay

time, making it impossible for users to obtain better service quality.

 To solve these problems, the MEC (Mobile Edge Computing) network is proposed in

recent years to provide information technology (IT) and cloud services by the Radio

Access Network (RAN) [16, 19]. Besides, the advantage of MEC network is close to

mobile clients to provide ultra-low latency, large bandwidth, real-time computing, and

flexible services by authorizing third-party applications [1, 5, 17], such as location tracking,

mobile big data analysis, video optimized transmission, and context awareness.

Traditionally, the access method in the cloud environment is to upload data of local

device to the server for further calculation. When the access workload of the server is

getting higher, the system must duplicate more replicas to disperse the works. In the

meantime, the duplication process may lead to insufficient storage, and the availability and

access performance of the file will decline. Also, it usually requires higher costs to

maintain hardware equipment [22, 30]. Therefore, proposing an effective replicating

strategy is an important issue in the cloud environment. This kind of issue is relatively

important in the MEC network. Basically, the MEC environment can provide localized

content for users in the nearby service area, such as video streaming [3], AR / VR [28] and

other services. While providing these kinds of services, the popular files may be requested

frequently and repeatedly. Although the MEC network structure can reduce the response

time of the service by deploying the server near to the end-users, it may also increase the

time for accessing the data while there has no sufficient available data or congestion of

service nodes. The mention problems will instead eliminate the original advantages of the

MEC network.

In this paper, an effective data replication strategy has been proposed. The main

purpose of the protocol is to improve the problem of insufficient availability while the high

popularity replicas are under content localization. Furthermore, the congestion problem

while the terminal devices requesting node services frequently will be improved, too. Here,

the main idea of the proposed method is to predict the popularity of each data. When the

popularity of the data is in high demand, it will be duplicated for access in advance. This

mechanism can make the system responds to the request while the system is under

environmental changes. Besides, the generated replicas will be allocated to the services

nodes which are in low blocking status and having the most queuing space to provide

services. The proposed protocol can enhance the availability, access efficiency and load

balancing under the MEC environment.

 The rest of this article is organized as follows. Section 2 describes the related works

of replicating systems. Section 3 shows the details of our proposed protocol. Section 4

describes the experimental design. The experiments and analysis of our proposed protocol

are illustrated in Section 5. Finally, the conclusion is presented in Section 6.

2. Related Works

In this section, the concepts of the mobile edge computing network will be introduced

first. After that, some famous file replication strategies will be discussed. The comparisons

of the advantages and the disadvantages of these strategies will be described in this section,

too.

2.1 Mobile Edge Computing Network

The emergence of cloud computing has led computing technology into a new era. The

main reason for it becoming more popular is because the operating modes can not only

reduce the overhead costs of cloud providers but also can improve the scalability of the

system. However, cloud data centers are usually far away from the terminal equipment and

users. It is less conducive to the applications which require low latency while accessing.

So far, some interesting research topics have been proposed in the MEC network [4, 6].

For example, the Internet of Things [20], Internet of Vehicles [12], and AR [7] are these

kinds of applications. In other words, when the mention applications are applied under the

cloud computing environment, it may lead to long transmission delays, Internet congestion

or degradation of QoS, etc. To solve the above problems, the MEC network structure

which is more closer to the mobile users has been proposed [13, 29, 31].

The concept of the MEC network is deploying the computing center near to end-users

for data processing. This method can prevent a large amount of raw data being transmitted

to the cloud data center. This deployment can help to reduce the load of the cloud data

center and the response time for end-users while requesting services. Besides, the

computing center under the MEC network is near to mobile users. Under such a structure,

the system can provide context-aware services for local users by collecting RAN messages

in the area [2] more efficiently. Unfortunately, localization of content may cause the

popular data been requested at the same time. This circumstance will cause virtual

machine nodes to become congestion. The access efficiency of the system will decrease

also. Hence, proposing an efficient data replication strategy to improve the mention

problems is also an important issue under the MEC network. Subsequently, the related

works of data replication strategies proposed in the past will be introduced in the next

sub-section.

2.2 Data Replication Strategies

In the past, scholars have proposed some data replication algorithm to improve the

load balance or access efficiency for the system under different network architectures [11,

14-15, 21, 23-25, 32-33]. For example, to enhance the capability of the cloud storage

systems, Qingson et al. proposed an efficient dynamic replication management scheme

which is called CDRM [21]. The main idea of CDRM is to distribute the replicas to the

nodes which have low blocking probability. Under such a mechanism, tasks can be

processed more quickly, and service efficiency and load balancing can be improved.

However, CDRM always selects the nodes with the lowest blocking probability as the

service nodes, and this will cause the selected service nodes to be accessed all the time.

Under such a circumstance, the workload of each services nodes will be unbalanced and

the overall access efficiency will be decreased.

In the past, scholars have proposed a dynamic data replication algorithm DDRA [11]

to improve the mentioned problem under the cloud computing network. The main idea of

the DDRA algorithm is to provide more suitable service nodes for users depends on the

blocking probability of the nodes and the queue space within the reference nodes. This

mechanism can prevent tasks to be distributed into the congesting node and can also

achieve load balancing for the system. However, DDRA will decide whether to increase a

new duplication based on the ratio of file popularity to the number of replicas, and the

threshold of the popularity is the average of all previous file accesses. Under such a

circumstance, when there is a huge gap in the number of access times between the files,

the files which are currently be popular, will be judged as not popular due to the original

number of access times is smaller than the average threshold. Consequently, no new

replica will be added by the system, and the workload of the nodes will keep increasing

and the access efficiency will decrease. On the other hand, files with a large number of

original access times will still cause unnecessary resource waste by adding new replicas

because the current number of accesses still exceeds the threshold.

Wang proposed an adaptive file replication mechanism called PARM [15] in the cloud

environment. Its main idea is to predict the popularity of the files for fast adjustment by

applying the characteristics of atomic decay to the access times of files. However, since

PRAM does not set a stop-loss point for replica generation, this will cause popular files to

be duplicated constantly, and the workload of the system will keep increasing.

To improve the problem of setting the threshold of popularity, scholars have proposed

an adaptive file replication strategy called ADRM [22]. The main method is to duplicate

the popular files by predicting the popularity of the archive. By applying the ADRM

strategy, the number of replicas can be controlled with an appropriate ratio by setting the

ratio of the number of the replica to avoid excessive resource consumption caused by

excessive addition of replicas. Unfortunately, the ADRM strategy does not take the replica

configuration into account, this will result in replicas not being deployed on nodes to

handle the access workload.

In this paper, an adaptive replica configuration mechanism ARCM has been proposed

to find out the files which have high popularity in advance. This can help to duplicate the

file to disperse the workload generated by subsequent popular files beforehand. After that,

when a file has been analyzed as a popular file and the ratio of the number of the replica is

sufficient, the system will then move the archive from the high-blocking node to the

low-blocking node to avoid excessive replica generation. Finally, the service node is

selected to achieve load balancing by allocating replicas to the node which is low-blocking

and has more space. The differences between the algorithms are shown in Table 1.

Table 1. The comparisons between ARCM, ADRM, DDRA, PARM, and CDRM.

Popularity

Prediction

Replica

Deployment

Replica move

between

nodes

Load

Balancing
Environment

ARCM O O O O MEC/Cloud

ADRM[22] O X X X MEC/Cloud

DDRA[11] X O O O Cloud

PARM[15] O X X X Cloud

CDRM[21] X O O △ Cloud

3. The Proposed Adaptive Replica Configuration Mechanism

In this paper, an Adaptive Replica Configuration Mechanism (ARCM) has been

proposed to optimize the replica configuration in the MEC environment, and the system

architecture is shown in Figure 1. Here, the MEC servers are responsible for responding to

the users' requests, and the users will request and access the data from the MEC servers.

Furthermore, each MEC server will in charge of allocating the file to the virtual machines

(VM) and collecting the historical access records. The role of the VMs is to manage the

file for users to access. When the MEC server collects all the system information

(including the access frequency of the file, the probability of the block node…) from VMs,
the system will then execute the ARCM algorithm to allocate the file. The detailed

procedure of the ARCM algorithm will be introduced as follows.

Figure 1. The System Architecture

In the ARCM mechanism, there are two key emphases in work: data Replication and

service node selection. The goal of data replication is to calculate the popularity of the file

to decide whether to replicate the file or not. This can help to improve the access efficiency

for replica storage architecture. For the goal of service node selection, the system will

select a proper node to place the replicas. This can help to increase the load balance of the

overall system. The detail of the procedure will be described next.

3.1 Data Replication Strategy

To improve the access efficiency for replica storage architecture, the first key

emphases in the work of ARCM is to adjust the number of replicas adaptively. Here

system must get the time interval since last access for each file and then calculate the

average time interval among all files, and predict the number of file access to evaluate

whether the file will become popular or not in the future. Finally, the corresponding update

operations are given according to the popularity of the replica and the ratio of the number

of replicas, The operations include: adding more replicas, moving replicas, or deleting

replicas. The details are described below.

3.1.1 Calculate Average Time Difference

To adjust the number of replicas adaptively, the first thing is to decide whether the file

is popular or not. To do so, the system must calculate the time interval since last access for

each file and then calculate the average time interval among all files, and the related

procedure can be shown as formula (1) [15]. Here, 𝐴𝑣𝑒𝑡𝑖𝑚𝑒 represents the average time

interval of all files, 𝑇𝑖 represents the i-th access time and n represents the total number of

accesses. When the newest average time interval is less than the last time interval, it means

that the file has a popular trend. In contrast, it means that the data is not popular. 𝑨𝒗𝒆𝒕𝒊𝒎𝒆 = ∑ (𝑻𝒊−𝑻𝒊−𝟏)𝒏𝒊=𝟏 𝒏 (1)

3.1.2 Predict the Number of File Access

 In the ARCM mechanism, the concept of atomic decay [8] will be applied to predict

the number of file accesses. The goal of this prediction is also to evaluate whether the file

is popular or not. The procedure can be described as formula (2) [15], where 𝑃𝑟𝑒𝑎𝑐𝑐𝑒𝑠𝑠 is

the number of files accesses predicted, and 𝑃𝐴𝑖 represents the i-th stage visits. Then, the

file access times predicted in this stage are compared with the predicted access times in the

previous stage. If there are more predicted access times in this stage, it means that the file

has a popular trend. Conversely, it means that the file is not popular. 𝑷𝒓𝒆𝒂𝒄𝒄𝒆𝒔𝒔 = ∑ (𝑷𝑨𝒊 ∗ 𝟐𝟏−𝒊)𝒏𝒊=𝟏 (2)

3.1.3 Replica Update Strategy

When the results of the average time interval and the number of predicted file

accesses are in a popular trend, the system will further apply the Ratio of the number of

Replica (RR) as the threshold for deciding whether to add more replicas or not. This is

because maintaining the number of replicas based on RR value will help the system to get

better access efficiency [11]]. Here, the system will apply the formula (3) to calculate the

current requested ratio of the number of replicas 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟 and then compare with the

RR value [11]. In formula (3), 𝑛𝑟𝑖 indicates the number of current requested replicas of

file and 𝑡𝑛𝑟𝑖 is the total number of replicas. When the current requested ratio of the

number of replicas is smaller than the RR threshold, the system will add more replicas. In

contrast, if the current requested ratio of the number of replicas is greater than or equal to

the RR threshold, it means that the number of replicas is sufficient. Under such a

circumstance, the system will move the replicas from the node which has the highest

blocking probability to the node with the lowest blocking probability.

Furthermore, when the result of the average time interval is in a popular trend and the

number of predicted file accesses is not in a popular trend, the system will also move the

replicas from the node which has the highest blocking probability to the node with the

lowest blocking probability.

For the last situation, when the results of the average time interval and the number of

predicted file accesses are both not in a popular trend, the system will delete the replicas

from the node which has the highest blocking probability. Noticeably, while removing the

replicas, the system must ensure that the number of replicas is kept at least 3 copies to

maintain basic usability. The overall flowchart is shown in Figure 2. 𝑹𝒆𝒒𝒖𝒆𝒔𝒕𝒏𝒓 = 𝒏𝒓𝒊𝒕𝒏𝒓𝒊 ∗ 𝟏𝟎𝟎% (3)

Figure 2. Data Replication Strategy

3.2 Service Node Selection Strategy

In the previous sub-section, the concepts of deciding whether the file is popular or not,

and the conditions about add, move or delete files are introduced. Next, another key

emphasis in the work of ARCM that is filtering the proper service nodes to place the

replicas will be given. This procedure can help to ensure the quality of service and the load

balancing of the overall system. Here, the procedure can be divided into two phases and

the details are shown as follows.

3.2.1 Anti-Blocking Phase

To avoid replicas being allocated to the nodes which are in congested, users must

spend more time to access the file, and the new task must wait until the service node is

available. This procedure will increase the overall latency of the MEC environment. To

improve these dilemmas, the blocking probability of each node is obtained by calculating

the node’s arrival rate and the request delay time [21]. Through this phase, the system can

filter out the nodes which are in congested, and the nodes that are more suitable for

services will be selected.

To calculate the arrival rate, formula (4) has been provided in ARCM. Here, 𝑝𝑗

represents the popularity of the file being accessed, 𝑟𝑗 represents the number of replicas,

and λ is the real arrival ratio in all requests. Through this formula, the system can calculate

the arrival rate of each node 𝜆𝑖. 𝜆𝑖 = 𝑝𝑗𝑟𝑗 𝜆 (4)

After getting the arrival rate, the system can bring the result into formula (5) to get the

Block Probability (BP). In formula (5), 𝜏𝑖 represents the delay time which refers to the

time for the terminal device to read the replica, and 𝑐𝑖 represents the number of memory

blocks divided by the node. To make the system more realistic, the system will apply the

M/M/1 [21] rule to simulate the arrival rate for each task. When the memory blocks are

full of tasks, new tasks must wait in the queue, and this situation is called blocked. 𝑩𝑷𝒊 = (𝝀𝒊𝝉𝒊)𝒄𝒊𝒄𝒊! [∑ (𝝀𝒊𝝉𝒊)𝒌𝒌!𝒄𝒊𝒌=𝟎]−𝟏 (5)

After calculating the blocking probability of each node through formula (5), the

system will set up AvgBP value as the low blocking probability and this value will be the

threshold for deciding whether the node is congested or not. To sum up, the system can

select the nodes which are under low-blocking for services. This can help to decrease the

latency while users are requesting for services and to improve the performance of the

overall system.

3.2.2 Reference Queue Balance Phase

After selecting the node whose block probability is lower than the average value, the

system will find out the node which has most queue space as the preferentially serving

node from the nodes with a lower average blocking probability. Here, the method in this

phase will apply the concepts of Reference Queue (RQ) proposed by Chiang et al.[11]. By

preferentially assigning replicas to the nodes with most queue space, tasks will evenly be

distributed and be processed quickly. This will help to improve access efficiency and

achieve better load balancing. Figure 3 shows the entire flow of the service node selection

strategy.

Figure 3. Service Node Selection Strategy

4. Example

Basically, by applying the ARCM protocol, the system can get a more efficient file

replication strategy to maintain the availability of replicas, and the replica access

efficiency can be improved under the MEC environment. To help to understand the

proposed ARCM protocol, an example has been given in this section.

Once the terminal devices are connected to the MEC environment for requesting the

file access services, the system will search for the related data according to the request and

then set up the initial number of replicas base on the type of the file. At this time, the

system must manage the record about the files which are accessed by nodes, and each

record will be compared to the data accessed in the past. Then, the system will

dynamically adjust the number of replicas by analyzing the popularity of the file and

calculating the replica ratios. Finally, the system will generate a new replica and move it to

the appropriate service node. The assumptions for the example are shown in Table 2:

Table 2. The assumptions for the example.

Assumptions Values

Time period 5 minutes

Data node number 𝑁1 ~ 𝑁8

Access file ID A ~ D

When the terminal device is connected to the MEC environment to request access for

the service, the system will analyze the type of the file and allocate numbers of replica

according to the file classifications. If the files have a higher usage rate and require a

longer time for storage, the system will allocate more number of replicas for the files. In

contrast, for the files that have a lower usage rate and do not require too much time for

storage, the system will allocate fewer replicas for them. The related allocations are shown

in Table 3. Besides, when the file size is greater than 64MB, it will be stored in Block

Level [27]. In contrast, it will be stored in File Level when the file size is less than 64MB

[10]. By applying this mechanism, the system will access the files from different blocks to

avoid the access delay caused by accessing the big file from a single node.

Next, when the terminal device accesses the files, the system will record the file ID,

storage node, start timestamp, end timestamp, and the file size of each file according to the

system storage format under the MEC environment. The format is shown in Table 4. When

a time interval has passed, the system will generate a log analysis based on the number of

accesses and the time interval between each accesses, and the related example is shown in

Table 5.

Table 3. The allocations results of the file.

File ID File Type File classification Number of Replicas

A Trending information Short-term storage 3

B Weather information Short-term storage 3

C Natural disaster Information Long-term storage 5

D Traffic information Short-term storage 3

Table 4. An example of the file storage format.

File ID Node ID Start Timestamp Stop Timestamp Size

A N2 20180903192013 20180903265115 250MB

Table 5. Details of access records.

File ID Node ID Number of Accesses Spacing Time

A N2 5 7

A N7 9 15

A N5 7 13

B N4 6 5

B N6 4 4

B N7 15 17

C N8 9 8

C N3 10 10

C N5 6 5

C N1 11 12

C N2 14 14

D N4 13 4

D N5 7 13

D N6 8 8

In the initial status, because the system has no historical data, the file will not be

added, moved or deleted at this time, and the status of the record can be shown in Table 6.

At the end of the second period of time, the system will compare the current access data

(shown in Table 7) to the historical data. In terms of predicting the number of accesses, it

will apply the atomic decay method [15], and the result is shown in Table 8. The

comparison of the average access time interval is shown in Table 9.

Table 6. Access records for the first period of time.

File ID Number of Accesses Average Spacing Time Come From

A 21 12.43 N2:5; N7:9; N5:7

B 25 12.04 N4:6; N6:4; N7:15

C 50 10.6
N8:9; N3:10; N5:6;

N1:11; N2:14

D 28 7.39 N4:13; N5:7; N6:8

Table 7. Access records for the second period of time.

File ID Number of Accesses Average Spacing Time Come From

A 6 12.26 N2:3; N7:3

B 18 11.47 N4:5; N6:3; N7:10

C 29 10.13 N8:7; N3:8; N5:6; N1:8

D 11 8.58 N4:5; N6:6

Table 8. Prediction of the number of accesses by the atomic decay method.

File ID
History Now Prediction

Number of Accesses Number of Accesses Number of Accesses

A 21 6 21*2−1+6*20=16.5

B 25 18 25*2−1+18*20=30.5

C 50 29 51*2−1+29*20=54

D 28 11 28*2−1+11*20=25

Table 9. Comparison of the average access time interval.

File ID
History Now

Average Spacing Time Average Spacing Time

A 12.43 12.26

B 12.04 11.47

C 10.6 10.13

D 7.39 8.58

After comparison, the system can analyze whether the file is in a popular trend or not.

For the number of accessing the files, the ARCM algorithm applies the atomic decay

method to make predictions and then compares the predicted value to the previous access

record to analyze whether the file has a popular trend in access times. The results are

shown in Table 9. In the results, we can see that the file classification of B and C are in a

popular trend. Subsequently, the historical average access time interval will be used as the

threshold value, and analyze whether the file is a popular trend or not based on the access

time interval. The comparison result is shown in Table 11. Finally, to avoid adding too

many replicas to the popular files, the system must maintain the number of replicas at a

certain ratio by setting the replica ratio to avoid excessive waste of resources under the

ARCM algorithm. This can help to achieve better access efficiency. Based on the

experimental results proposed by Chaing et al, the system will also set the RR threshold

value at 30% [11]. Subsequently, the system will calculate the current replica ratio of each

file and compare it to the RR threshold value to analyze whether the number of currently

requested file replicas is sufficient or not. The results are shown in Table 12. Finally, based

on the results of Table 10 to Table 11, the system will decide to add, move or delete the

replicas, and the related results are shown in Table 13.

Table 10. The predicting results.

File ID Atomic decline prediction Threshold Popular Trend

A 16.5 21 X

B 30.5 25 O

C 54 50 O

D 25 28 X

Table 11. The analysis results based on the average access time interval.

File ID History Now Popular Trend

A 12.43 12.26 O

B 12.04 11.47 O

C 10.6 10.13 O

D 7.39 8.58 X

Table 12. The result of setting the replicas ratio.

File ID Number of Replicas Ratio of Replicas RR=30%

A 3
314*100%=21% 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟<RR

B 3
314*100%=21% 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟<RR

C 5
514*100%=36% 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟>RR

D 3
314*100%=21% 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟<RR

Table 13. The execution results.

File ID
Average

Spacing Time

Prediction of the

Number

of File Accesses

RR=30% Result

A X O move

B O O 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟<RR add

C O O 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑛𝑟>RR move

D X X delete

So far, the system has finished the process of the data replication strategy. Next, the

system will continue to filter the proper service nodes to place the replicas.

Here, the system will calculate the blocking probability of each node through formula

(5), where the arrival rate λ is set to 0.2 which refers to the experimental results proposed

by Qinsong et al. [21]. For the delay time 𝜏𝑖, in order to help the system to compare the

access performance more clearly, the setting environment will be consistent with the

assumption of 1 second upon the request, read, and return of the files respectively.

Therefore, the delay time of the homogeneous node is set to 3 seconds. Finally, the related

arrival rate and blocking probability of each node are shown in Table 14 and Table 15, and

the threshold value of low blocking probability AvgBP is 0.00026438.

Table 14. The arrival rate for each node.

Node ID 𝜆𝑖
Node 1 File C: ((11/50)/5)*0.2 = 0.0088 𝜆1 = 0.0088

Node 2
File A: ((5/21)/3)*0.2 = 0.0159

File C: ((14/50)/5)*0.2 = 0.0112
𝜆2 = 0.0271

Node 3 File C: ((10/50)/5)*0.2 = 0.008 𝜆3 = 0.008

Node 4
File B: ((6/25)/3)*0.2 = 0.016

File D: ((13/28)/3)*0.2 = 0.031
𝜆4 = 0.047

Node 5

File A: ((7/21/3)*0.2 = 0.0222

File C: ((6/50)/5)*0.2 = 0.0048

File D: ((7/28/3)*0.2 = 0.0167

𝜆5 = 0.0437

Node 6
File B: ((4/25)/3)*0.2 = 0.0107

File D: ((8/28)/3)*0.2 = 0.019
𝜆6 = 0.0297

Node 7
File A: ((9/21)/3)*0.2 = 0.0286

File B: ((15/25)/3)*0.2 = 0.04
𝜆7 = 0.0686

Node 8 File C: ((9/50)/5)*0.2 = 0.0072 𝜆8 = 0.0072

Table 15. The blocking probability for each node.

Node ID 𝐵𝑃𝑖
Node 1

(0.0088∗3)33! [∑ (0.0088∗3)kk!3k=0]−1 = 0.000003

Node 2
(0.0271∗3)33! [∑ (0.0271∗3)kk!3k=0]−1 = 0.0000826

Node 3
(0.008∗3)33! [∑ (0.008∗3)kk!3k=0]−1 = 0.0000022

Node 4
(0.047∗3)33! [∑ (0.047∗3)kk!3k=0]−1 = 0.0004058

Node 5
(0.0437∗3)33! [∑ (0.0437∗3)kk!3k=0]−1 = 0.0003294

Node 6
(0.0297∗3)33! [∑ (0.0297∗3)kk!3k=0]−1 = 0.0001078

Node 7
(0.0686∗3)33! [∑ (0.0686∗3)kk!3k=0]−1 = 0.0011826

Node 8
(0.0072∗3)33! [∑ (0.0072∗3)kk!3k=0]−1 = 0.0000016

AvgBP
(0.000003+0.0000826+0.0000022+0.0004058+0.0003294+0.0001078+

0.0011826+0.0000016)/8 = 0.00026438

After calculating the average AvgBP value, the system can get the set of low blocking

nodes whose BP values are smaller than the average from the system nodes. Subsequently,

in addition to avoiding end users from choosing the congested nodes for services, the

system must also consider whether tasks are evenly distributed. At this time, the system

will also compare the queue space status of each node. Here, the node with low blocking

probability and has the largest queue space will be the best service node. The results are

shown in Table 16.

Assume that File A is currently predicted to be popular and has reached the condition

for adding new replicas, the system will find out the set of low-probability blocked nodes

whose blocking probability are lower than AvgBP (Node 1, Node 2, Node 3, Node 6, Node

8) and have the most queue space (Node 1, Node 3, Node 8) to place the replicas for File A.

When more than two nodes meet the above conditions at the same time, the node with the

smallest blocking probability will be selected as the serving node. In the overall example, a

new replica for File A will be added to Node 8 for further services under the MEC

environment.

Table 16. The blocking probability and queue space of each node.

Node ID 𝐵𝑃𝑖 𝑅𝑄𝑖
Node 1 𝐵𝑃1 = 0.000003 Free space of RQ = 4

Node 2 𝐵𝑃2 = 0.0000826 Free space of RQ = 3

Node 3 𝐵𝑃3 = 0.0000022 Free space of RQ = 4

Node 4 𝐵𝑃4 = 0.0004058 Free space of RQ = 3

Node 5 𝐵𝑃5 = 0.0003294 Free space of RQ = 2

Node 6 𝐵𝑃6 = 0.0001078 Free space of RQ = 3

Node 7 𝐵𝑃7 = 0.0011826 Free space of RQ = 3

Node 8 𝐵𝑃8 = 0.0000016 Free space of RQ = 4

In this paper, the adaptive replica configuration mechanism which is called ARCM

has been proposed to improve the access efficiency load balancing under the MEC

environment. The main idea is to calculate the popularity of the file to decide whether to

replicate the file or not and then the system will select a proper node to place the replicas.

The related experiment and analyses will be given in the next section.

5. Experiments and Analysis

In this section, the environment for experiments, results and related analysis will be

given to prove the performance of the ARCM mechanism.

5.1 Environment for Experiments

In this paper, the dynamic configuration algorithm experiments are simulated by Dev

C++ under Windows environment. Furthermore, the CDRM, DDRA, PARM, ADRM, and

Random algorithms are invoked to compare the performance in the Cloudsim for

simulation. The experiments simulate the number of nodes from loosely environments (20

nodes) to densely environments (100 nodes) in the small MEC environment. Also, in the

experiments, we simulate assigning different workloads (low workload, medium workload,

and high workload) for nodes. Besides, in the experiments, the number of nodes is set to

20, 40, 60, and 100 respectively. In the low workload environment, 1000 tasks are assigned

per cycle. In the medium workload environment, 5000 tasks are assigned per cycle, and

10,000 tasks are assigned per cycle in the high workload environment. To observe the task

allocation status of each algorithm, the node capacity is set to be homogeneous, and each

node has 5 task queue spaces. The remaining parameter settings are shown in Table 17 to

Table 19. Finally, the proposed ARCM algorithm will compare to other algorithms through

node utilization, Mean Average Deviation (MAD), the number of replicas, throughput, and

completion time.

Table 17. The parameters for the experiment.

Item Value

Number of Nodes 20、40、60、100

Task Queue 5

Workload

1000 Low Workload

5000 Medium Workload

10000 High Workload

File Type A~E

Short-Term Storage 3 replicas

Long-Term Storage 5 replicas

Update Frequency 5 minutes

Ratio of Replicas 30%

Table 18. Cloudsim Parameter Settings.

Item Value

VM 20~100

PEs 1

MIPS 1000(MAX)

RAM 512MB

Size 10000MB

BW 1000

Table 19. Experiment tools.

Tools Usage

Dev C++ Dynamic replica configuration algorithm

Cloudsim Build the service environment and experiment simulation

Microsoft Office Excel 2016 Record experiment results

5.2 Performance Analysis

In the sub-section, we will analyze the performance of each algorithm based on the

different environments including loosely, ordinary and densely environments. Furthermore,

we will also observe and analyze the performance and usage status of each algorithm

under different workloads. The results are shown as follows.

5.2.1 Loosely Environment {Node=20; Workload=1000~10000}

 Figure 4, Figure 5 and Figure 6 show the simulation results of low to high workload

in the loosely environment when the number of nodes is set to 20. Here, the Random

algorithm does not dynamically configure the number of replicas as the environment

changes. Therefore, the node which owned the replica originally will have a higher node

utilization rate. On the contrary, the node that does not been assigned with the replica will

stay idle. For the CDRM algorithm, it also has a high utilization rate on certain nodes. The

main reason is that nodes with better access efficiency are more likely to be assigned more

tasks. Besides, for the PARM and ADRM algorithm, the simulation will distribute the

replica randomly to understand the difference with other algorithms even when the PARM

and ADRM algorithms are lack of replica configuration scheme. Finally, for the DDRA

and ARCM algorithm, both of them consider the blocking probability and the number of

queued nodes while assigning the tasks, hence these two algorithms are more balanced

than CDRM in terms of node utilization.

Figure 4. Node Utilization for 1000 workloads, Node = 20

Figure 5. Node Utilization for 5000 workloads, Node = 20

Figure 6. Node Utilization for 10000 workloads, Node = 20

To help to understand the status of the loading of the system clearly, we calculate

MAD value through formula (6). In the formula, n represents the total number of nodes,

and 𝑢𝑖 represents the utilization rate of the nodes. When the MAD value is getting higher,

it means that task distribution is uneven in the overall system. In contrast, the lower the

MAD value, the better load balancing the system can achieve. From Figure 7 to Figure 9, it

-90
-70
-50
-30
-10
10
30
50
70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 1k

Random CDRM DDRA ARCM PARM ADRM

-90
-70
-50
-30
-10
10
30
50
70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 5k

Random CDRM DDRA ARCM PARM ADRM

-90
-70
-50
-30
-10
10
30
50
70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 10k

Random CDRM DDRA ARCM PARM ADRM

can be seen that the ARCM algorithm has the best load balancing. This is because that the

ARCM algorithm considers the blocking probability and queuing space of each node while

replacing the replicas. This can help to allocate the workload more balancing. In other

words, the ARCM algorithm can adjust the number of replicas dynamically by predicting

the popularity of files. When the file is analyzed as popular, the system can quickly process

the workload generated by the file which has increasing popularity by adding more

replicas in advance. This is the reason why the ARCM algorithm can allocate system nodes

more balanced. ∑ |𝒖𝒊 − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆(𝒖𝒊)|𝒏𝒊=𝟏 (6)

Figure 7. Mean Average Deviation for 1000 workloads, Node = 20

Figure 8. Mean Average Deviation for 5000 workloads, Node = 20

Figure 9. Mean Average Deviation for 10000 workloads, Node = 20

0
100
200
300
400
500

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 1k

0

100

200

300

400

500

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 5k

0

100

200

300

400

500

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 10k

In Figure 10, we can see that the non-dynamic Random algorithm will not adjust the

replicas as the environment changes under the low workload environment, and the number

of replicas will remain at three. Besides, the default number of replicas in the CDRM

algorithm is 1. Although the availability of replicas will be adjusted while executing the

algorithm, the access efficiency will decrease due to the insufficient availability of replicas

in the beginning. For the ARC and the ADRM algorithms, the average number of replicas

been used are lower than the results of the DDRA algorithm. This is because that the

replicas configuration settings of ARCM and ADRM are stricter than those of DDRA.

Hence, the number of replicas is relatively stable. Furthermore, the ADRM algorithm ha

better results in terms of the number of replicas than the DDRA algorithm, however, the

performance of the node utilization rate is poor to the DDRA algorithm due to the incorrect

replica configuration method. Finally, the PARM algorithm does not set up a stop-loss

point for generating replicas, and this results in unlimited additions of popular replicas.

Figure 10. Number of Replicas for 1000 workloads, Node = 20

When the workload increases to 5,000, we can observe that the ARCM and DDRA

algorithms become comparable. This is because that the DDRA algorithm only applies a

single factor to determine the popularity. This factor is when the number of file access

exceeds the average value, then the file will be judged as a popular file. Under such a

circumstance, the system will add new replicas for this popular file. In contrast, the

replicas will be deleted. Hence, the DDRA algorithm will easily lead the number of

replicas to keep changing in the system. By comparison, the ARCM algorithm can more

accurately predict environmental changes than DDRA. The related results can be seen in

Figure 11

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 1k

Random(3) CDRM DDRA

ARCM PARM ADRM

Figure 11. Number of Replicas for 5000 workloads, Node = 20

In Figure 12, it can be seen that the number of replicas used by the ARCM algorithm

is less than that of DDRA at the beginning when the workload increases to 10,000. As time

goes by, the number of replicas used by these two algorithms are almost the same. This is

because the number of users’ requests and the workload are getting higher. Thus, the

differences in the popularity of each file will become more obvious. Therefore, the results

of the popularity of the two algorithms are more likely to have the same situation.

Figure 12. Number of Replicas for 10000 workloads, Node = 20

Figure 13 and Figure 14 show the simulation results of throughput and mean job time

of node 20 from a low workload to a high workload environment. The results show that the

ARCM algorithm has the best results in terms of throughput and completion time. As the

MAD results shown in Figure 7 to Figure 9, it is known that the ARCM algorithm has

better performance in terms of load balancing and can distribute the workload more evenly.

Furthermore, the ARCM algorithm can help to improve the problem of delaying the

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 5k

Random(3) CDRM DDRA

ARCM PARM ADRM

0
1
2
3
4
5
6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 10k

Random(3) CDRM DDRA

ARCM PARM ADRM

overall working time by avoiding allocate the tasks on the specific nodes concentratedly.

Finally, the experiment results show that the ARCM algorithm can improve the

performance of throughput and the completion time for the loosely MEC environments.

Figure 13. The throughput results of 20 nodes

Figure 14. The mean job time results of 20 nodes

5.2.2 Ordinary environment {Node=40, 60;Workload=1000~10000}

In this sub-section, the performance and analysis results under the ordinary MEC

environment when the workload is increased from 1,000 to 10,000 and the number of

nodes is 40 or 60 respectively will be given, and the results can also be seen from Figure

15to Figure 36.

According to the results of Figure 15 to Figure 20 and Figure 26 to Figure 31, we can

observe that since the non-dynamic Random algorithm only allocates a fixed number of

replicas to nodes, and this Random algorithm also has the problem of uneven task

allocation. The dynamic replica configuration CDRM algorithm provides faster services to

0

5000

10000

1k 5k 10k

T
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
)

Number of Workloads

Random CDRM DDRA ARCM PARM ADRM

0

5000

10000

15000

20000

25000

30000

1k 5k 10k

M
ea

n
 J

o
b

 T
im

e

Number of Workloads

Random CDRM DDRA ARCM PARM ADRM

end-users by assigning tasks to the nodes with the lowest blocking probability.

Unfortunately, this cause that the nodes with better computing capabilities will always

receive more task requests than others, and the system cannot reach the goal of load

balancing. For the PARM and the ADRM algorithm, both of them also cannot reach load

balancing due to the lack of proper replica configuration methods. As for the ARCM

algorithm, it can predict the future trend for the files by analyzing the historical data. When

a file is predicted as a popular trend, the system will add more replicas to the nodes and

can distribute the workload balancing. Hence, the ARCM algorithm can achieve a better

load balance.

Besides, the CDRM algorithm initially sets one replica for each file, which may easily

lead to insufficient file availability in the early stage. For the ARCM algorithm, it has the

procedure to classify the task at the beginning. If the files are in the type of short-term

storage, the system will allocate three replicas, and if the files are in the type of long-term

storage, five replicas will be allocated. Hence, in the low workload environments, the

ARCM algorithm requires fewer replicas than the DDRA algorithm. In the middle

workload environment, the performance of the ARCM and the DDRA algorithms are

almost the same. Finally, in the high workload environment, the number of replicas of the

ARCM and the DDRA algorithm is almost the same after the cycle of 60 minutes. The

related results can be seen in Figure 21 to Figure 23 and Figure 32 to Figure 34.

According to the results shown in Figure 24 to Figure 25 and Figure 35 to Figure 36,

when the MAD is getting lower, the system has better load balancing since the working

capacity of the nodes is set to be the same. Therefore, it can be observed from the

simulation results that compared to the DDRA and the CDRM algorithms, the ARCM

algorithm can evenly distribute the workload and can avoid allocating the tasks on the

specific nodes concentratedly. Therefore, ARCM has better throughput and completion

time results.

Figure 15. Node Utilization for 1000 workloads, Node = 40

-90
-70
-50
-30
-10
10
30
50
70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 1k

Random CDRM DDRA ARCM PARM ADRM

Figure 16. Node Utilization for 5000 workloads, Node = 40

Figure 17. Node Utilization for 10000 workloads, Node = 40

Figure 18. Mean Average Deviation for 1000 workloads, Node = 40

-90
-70
-50
-30
-10
10
30
50
70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 5k

Random CDRM DDRA ARCM PARM ADRM

-90
-70
-50
-30
-10
10
30
50
70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 10k

Random CDRM DDRA ARCM PARM ADRM

0

200

400

600

800

1000

M
ea

n
 A

v
er

a
g
e

D
ev

a
ti

o
n

Workloads - 1k

Figure 19. Mean Average Deviation for 5000 workloads, Node = 40

Figure 20. Mean Average Deviation for 10000 workloads, Node = 40

Figure 21. Number of Replicas for 1000 workloads, Node = 40

0

200

400

600

800

1000

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 5k

0

200

400

600

800

1000

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 10k

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 1k

Random(3) CDRM DDRA

ARCM PARM ADRM

Figure 22. Number of Replicas for 5000 workloads, Node = 40

Figure 23. Number of Replicas for 10000 workloads, Node = 40

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 5k

Random(3) CDRM DDRA

ARCM PARM ADRM

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 10k

Random(3) CDRM DDRA

ARCM PARM ADRM

Figure 24. Throughput in 40 nodes

Figure 25. Mean Job Time in 40 nodes

Figure 26. Node Utilization for 1000 workloads, Node = 60

0

2000

4000

6000

8000

10000

1k 5k 10k

T
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
)

Number of Workloads

Random CDRM DDRA ARCM PARM ADRM

0

10000

20000

30000

40000

1k 5k 10k

M
ea

n
 J

o
b

 T
im

e

Number of Workloads

Random CDRM DDRA ARCM PARM ADRM

-90
-70
-50
-30
-10
10
30
50
70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 1k

Random CDRM DDRA ARCM PARM ADRM

Figure 27. Node Utilization for 5000 workloads, Node = 60

Figure 28. Node Utilization for 10000 workloads, Node = 60

Figure 29. Mean Average Deviation for 1000 workloads, Node = 60

-90
-70
-50
-30
-10
10
30
50
70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 5k

Random CDRM DDRA ARCM PARM ADRM

-90
-70
-50
-30
-10
10
30
50
70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 10k

Random CDRM DDRA ARCM PARM ADRM

0

200

400

600

800

1000

1200

1400

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 1k

Figure 30. Mean Average Deviation for 5000 workloads, Node = 60

Figure 31. Mean Average Deviation for 10000 workloads, Node = 60

Figure 32. Number of Replicas for 1000 workloads, Node = 60

0

200

400

600

800

1000

1200

1400

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 5k

0

200

400

600

800

1000

1200

1400

M
ea

n
 A

v
er

a
g

e

D
ev

ia
ti

o
n

Workloads - 10k

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 1k

Random(3) CDRM DDRA

ARCM PARM ADRM

Figure 33. Number of Replicas for 5000 workloads, Node = 60

Figure 34. Number of Replicas for 10000 workloads, Node = 60

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 5k

Random(3) CDRM DDRA

ARCM PARM ADRM

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 10k

Random(3) CDRM DDRA

ARCM PARM ADRM

Figure 35. Throughput in 60 nodes

Figure 36. Mean Job Time in 60 nodes

5.2.3 Densely environment{Node=100; Workload=1000~10000}

 Figure 37 to Figure 47 are the results of the algorithms under the densely MEC

environment. In this circumstance, with the number of the workload is getting higher, the

number of replicas for the CDRM algorithms tends to increase. Due to the number of

nodes is more than other algorithms, more replicas must be allocated to serve the requests.

The ARCM algorithm uses the atomic decline method to predict the popularity of the files,

and pre-configures popular replicas for the files to disperse the requested workloads.

Hence, it can achieve high throughput and low completion time. For the ARCM and the

DDRA algorithms, they control the number of replicas by setting the ratio of RR value to

avoid generating too many replicas to occupy system space. Thus, these two algorithms

can also achieve better results in terns of throughput and the completion time.

Based on the results shown in Figure 40 to Figure 42, we can observe that the

non-dynamic Random has a higher MAD value than other algorithms. This means that it

cannot improve the performance of the system configuration.

Furthermore, Figure 43 to Figure 45 shows the results of the status of the number of

replica among each algorithm. Here, the CDRM algorithm only allocates one number of

0

5000

10000

1k 5k 10k

T
h

o
u

g
h

p
u

t
(r

eq
u

es
ts

/s
)

Number of Workloads

Random CDRM DDRA ARCM PARM ADRM

0

10000

20000

30000

40000

1k 5k 10k

M
ea

n
 J

o
b

 T
im

e

Number of Workloads

Random CDRM DDRA ARCM PARM ADRM

replica for the files at the beginning, and this will cause the problem of the insufficient

number of available replicas in the early stage for the system. Hence, this algorithm is not

able to distribute the workload of the replicas effectively and timely. For the DDRA

algorithm, it improves the problem of setting the number of initial replicas and referred to

the remaining queue space to achieve load balancing when replicas were configured. Hene,

the DDRA algorithm has better performance than the CDRM algorithm. Besides, the

PARM algorithm does not set the limitation of the number of replicas, and this will easily

cause to add the replicas excessive. The ADRM algorithm improves the problem of DDRA

on generating the popular replicas, hence, the ADRM algorithm uses less number of

replicas than the DDRA algorithm. However, the ADRM algorithm lacks a proper replica

configuration method, hence, the performance of the node utilization, throughput, and the

completion time is slightly worse than the DDRA algorithm. Finally, the proposed ARCM

algorithm requires more number of replicas than the DDRA algorithm, but it still has better

performance in terms of the node utilization, MAD, throughput, and the completion time

than other algorithms. This is because the ARCM algorithm adds the concept of prediction,

and predicts the future status for each file by analyzing the trend of historical data. This

can help to respond to the changes in the system. Hence, the overall performance of the

proposed ARCM algorithm can get better performance for the MEC environment.

Figure 37. Node Utilization for 1000 workloads, Node = 100

-90
-70
-50
-30
-10
10
30
50
70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 1k

Random CDRM DDRA ARCM PARM ADRM

Figure 38. Node Utilization for 5000 workloads, Node = 100

Figure 39. Node Utilization for 10000 workloads, Node = 100

Figure 40. Mean Average Deviation for 1000 workloads, Node = 100

-90
-70
-50
-30
-10
10
30
50
70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 5k

Random CDRM DDRA ADRM PARM ADRM

-90
-70
-50
-30
-10
10
30
50
70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

N
o
d

e
U

ti
li

za
ti

o
n

Data Nodes

Workloads - 10k

Random CDRM DDRA ADRM PARM ADRM

0

500

1000

1500

2000

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 1k

Figure 41. Mean Average Deviation for 5000 workloads, Node = 100

Figure 42. Mean Average Deviation for 10000 workloads, Node = 100

Figure 43. Number of Replicas for 1000 workloads, Node = 100

0

500

1000

1500

2000

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 5k

0

500

1000

1500

2000

M
ea

n
 A

v
er

a
g
e

D
ev

ia
ti

o
n

Workloads - 10k

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 1k

Random(3) CDRM DDRA

ARCM PARM ADRM

Figure 44. Number of Replicas for 5000 workloads, Node = 100

Figure 45. Number of Replicas for 10000 workloads, Node = 100

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
li

ca
s

Time(min)

Workloads - 5k

Random(3) CDRM DDRA

ARCM PARM ADRM

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

ep
lc

ia
s

Time(min)

Workloads - 10k

Random(3) CDRM DDRA

ARCM PARM ADRM

Figure 46. Throughput in 100 nodes

Figure 47. Mean Job Time in 100 nodes

6. Conclusions

Mobile edge computing is an emerging field that handles most of the computing and

storage by deploying the MEC servers near to the radio access networks. This network

architecture can help to reduce the load of the cloud core and can provide users with

low-latency, high-bandwidth, and more diverse application services.

In this paper, an adaptive dynamic replication mechanism call the ARCM algorithm is

proposed under the MEC environment to improve the performance of the configuration on

popular file. Basically, the proposed ARCM mechanism applies the concepts of atomic

decay and the access time interval to predict which file will be popular, and then refers to

the replica ratio for replication. Finally, the system can add the new replica to the

appropriate service nodes to effectively disperse the workload for the nodes. The

experimental results show that the system throughput can be improved and has a better

completion time under loosely or densely environments. Therefore, the ARCM algorithm

0

2000

4000

6000

8000

10000

1k 5k 10k

T
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
)

Number of Workloads

Random CDRM DDRA ARCM PARM ADRM

0

20000

40000

60000

1k 5k 10kM
ea

n
 J

o
b

 T
im

e

Number of Workloads

Random CDRM DDRA ARCM PARM ADRM

can improve the access efficiency, quality of service, and can maintain better load

balancing in the overall MEC environment.

 Conflict-of-interest statement:

Here is our paper entitled "An Adaptive Replica Configuration Mechanism Based on

Predictive File Popularity and Queue Balance in Mobile Edge Computing

Environment" that is submitted to you. To the best of our knowledge, the named

authors have no conflict of interest, financial or otherwise.

 Funding details:

The manuscript "An Adaptive Replica Configuration Mechanism Based on

Predictive File Popularity and Queue Balance in Mobile Edge Computing

Environment" has no funding received.

 Informed consent statement:

There is no informed consent statement in the research.

 Author contribution:

1) Mao-Lun Chiang: conceived of the presented idea, verified the analytical

methods.

2) Hui-Ching Hsieh: conceived of the presented idea, verified the analytical

methods, wrote the manuscript.

3) Ting-Yi Chang: verified the analytical methods, wrote the manuscript.

4) Wei-Ling Lin: carried out the experiment.

5) Hong-Wei Chen: carried out the experiment.

 Hereby, I consciously assure that for the manuscript, the following is fulfilled:

1) This material is the authors' own original work, which has not been previously

published elsewhere.

2) The paper is not currently being considered for publication elsewhere.

3) The paper reflects the authors' own research and analysis truthfully and

completely.

4) The paper properly credits the meaningful contributions of co-authors and

co-researchers.

5) The results are appropriately placed in the context of prior and existing research.

6) All sources used are properly disclosed (correct citation). Literally copying of text

must be indicated as such by using quotation marks and giving proper reference.

7) All authors have been personally and actively involved in substantial work

leading to the paper, and will take public responsibility for its content.

I agree with the above statements and declare that this submission follows the

policies of Solid State Ionics as outlined in the Guide for Authors and in the Ethical

Statement.

Reference

[1] A. Ahmed and E. Ahmed (2016) A Survey on Mobile Edge Computing. International

Conference on Intelligent Systems and Control (ISCO), pp. 1-8.

[2] A. Reznik, R. Arora, M. Cannon, L. Cominardi, W. Featherstone, R. Frazao, F. Giust,

S. Kekki, A. Li, D. Sabella, C. Turyagyenda and Z. Zheng (2017) Developing

Software for Multi-Access Edge Computing. ETSI White Paper, No. 20.

[3] A. Younis, T. X. Tran and D. Pompili (2019) On-Demand Video-Streaming Quality of

Experience Maximization in Mobile Edge Computing. IEEE International

Symposium on "A World of Wireless, Mobile and Multimedia Networks (WoWMoM),

pp. 1-9.

[4] Aral, A., Brandic, I., Uriarte, R.B. et al. (2019) Addressing Application Latency

Requirements through Edge Scheduling. J Grid Computing, vol.17, pp. 677-698.

[5] Artesyn Embedded Technologies (2017) Multi-Access Edge Computing Solving

Tomorrow’s Problems Today. Multi-Access Edge Computing White Paper.

[6] Baraki, H., Jahl, A., Jakob, S. et al. (2019) Optimizing Applications for Mobile Cloud

Computing Through MOCCAA. J Grid Computing, vol. 17, pp. 651-676.

[7] D. Schmalstieg and T. Höllerer (2017) Augmented reality: Principles and practice.

IEEE Virtual Reality (VR), pp. 425-426.

[8] E. Kaxiras (2003) Atomic and Electronic Structure of Solods. New York: Cambridge

University Press.

[9] G. Lawton (2008) Developing Software Online With Platform-as-a-Service

Technology. Computer, vol. 41, issue 6. (DOI: 10.1109/MC.2008.185)

[10] H. Yu, G. Xiqian, Y. Lan, H. Ren and Y. Chen (2012) The Research about File-Level

Trace Technology. International Conference on Computational and Information

Sciences (ICCIS), pp. 1131-1134.

[11] Hsieh, H., Chiang, M. (2019) The Incremental Load Balance Cloud Algorithm by

Using Dynamic Data Deployment. Journal of Grid Computing vol. 17, pp. 553-575.

https://doi.org/10.1007/s10723-019-09474-2

[12] J. Lim, H. Yu, K. Kim, M. Kim and S. Lee (2017) Preserving Location Privacy of

Connected Vehicles With Highly Accurate Location Updates. IEEE Communications

Letters, pp. 540-543.

[13] K. Ko, Y. Son, S. Kim and Y. Lee (2017) DisCO: A Distributed and Concurrent

Offloading Framework for Mobile Edge Cloud Computing. International Conference

on Ubiquitous and Future Networks (ICUFN), pp. 763-766.

[14] K. Shvachko, H. Kuang, S. Radia and R. Chansler (2010) The Hadoop Distributed

File System. IEEE Symposium on Mass Storage Systems and Technologies (MSST),

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Arif%20Ahmed.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ejaz%20Ahmed.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kwangman%20Ko.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yunsik%20Son.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Soongohn%20Kim.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yangsun%20Lee.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7985824
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7985824

pp. 1-10.

[15] K.Q. Yan, S.C. Wang, Y.H. Su, S.Z. Chen (2015) Popularity-based Rapid Consistency

Strategy on Data Replica in the Cloud Computing Environment. International

Conference on Innovation and Management (IAM 2015W), Singapore, February 3-6,

pp. 28.

[16] M. T. Beck and M. Maier (2014) Mobile Edge Computing: Challenges for Future

Virtual Network Embedding Algorithms. International Conference on Advanced

Engineering Computing and Applications in Sciences, pp. 3-8.

[17] M. T. Beck, M. Werner, S. Feld and T. Schimper (2014) Mobile Edge Computing: A

Taxonomy. International Conference on Advances in Future Internet, pp. 48-54.

[18] P. Buxmann, T. Hess and S. Lehmann (2008) Software as a Service.

Wirtschaftsinformatik, vol. 50, issue 6, pp. 500-503.

[19] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J.

Lu, C. Xiong and J. Yao (2013) 5G on the Horizon: Key Challenges for the

Radio-Access Network. IEEE Vehicular Technology Magazine, vol. 8, issue 3.

[20] P. Yadav and S. Vishwakarma (2018) Application of Internet of Things and Big Data

towards a Smart City. International Conference On Internet of Things: Smart

Innovation and Usages (IoT-SIU), pp. 1-5.

[21] Q. Wei, B. Veeravalli, B. Gong, L. Zeng and D. Feng (2010) CDRM: A

Cost-Effective Dynamic Replication Management Scheme for Cloud Storage Cluster.

IEEE International Conference on Cluster Computing (CLUSTER), pp. 188-196.

[22] Mao-Lung Chiang, Bo-Ren Huang, Hong-Wei Chen, Hui-Ching Hsieh, Ting-Yi

Chang (2019) Study of Adaptive Dynamic Replication Mechanism in Mobile Edge

Computing Environment. IEEE International Conferene on Applied System

Innovation, Japan, April 11-15.

[23] R. S. Chang, H. P. Chang and Y. T. Wang (2008) A Dynamic Weighted Data

Replication Strategy in Data Grids. Proceedings of the IEEE/ACS International

Conference on Computer Systems and Applications, pp. 414-421.

[24] Rafique, A., Van Landuyt, D. & Joosen, W. (2018) PERSIST: Policy-Based Data

Management Middleware for Multi-Tenant SaaS Leveraging Federated Cloud Storage.

J Grid Computing, vol. 16, pp. 165–194.

[25] Rahmani, A., Azari, L. & Daniel, H. (2017) A File Group Data Replication Algorithm

for Data Grids. J Grid Computing, vol. 15, pp. 379–393.

[26] S. Bhardwaj, L. Jain and S. Jain (2010) Cloud Computing: A Study of Infrastructure

as a Service (IaaS). International Journal of Engineering and Information Technology,

vol. 2, no. 1.

[27] S. Ghemawat, H. Gobioff and S. T. Leung (2003) The Google file system. Proceeding

of the nineteenth ACM symposium on Operating systems principles, pp. 29-43.

[28] S. Sukhmani, M. Sadeghi, M. Erol-Kantarci and A. E. Saddik (2019) Edge Caching

and Computing in 5G for Mobile AR/VR and Tactile Internet. IEEE MultiMedia, vol.

26, issue 1, pp. 21-30.

[29] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta and D. Sabella (2017) On

Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud

Architecture and Orchestration. IEEE Communications Surveys & Tutorials, vol. 19,

issue 3, pp. 1657-1681.

[30] T. Yeh and Y. Tu (2018) Enhancing Data Availability through Automatic Replication

in the Hadoop Cloud System. International Symposium on Parallel Architectures,

Algorithms and Programming (PAAP), pp. 86-93.

[31] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub and E. Benkhelifa

(2016) The Future of Mobile Cloud Computing: Integrating Cloudlets and Mobile

Edge Computing. International Conference on Telecommunications (ICT), pp. 1-5.

[32] Yi-Min Wang, Hsuan-Fu Yu (2010) Adjustable File Replication Strategy for

Hierarchical Data Grid. International Journal of Advanced Information Technologies

(IJAIT), vol. 4, no. 2, pp. 35-43. (DOI： 10.30111/IJAIT.201006.0005)

[33] Zhang, B., Wang, C., Zhou, B.B. et al. (2018) DCDedupe: Selective Deduplication

and Delta Compression with Effective Routing for Distributed Storage. J Grid

Computing vol. 16, pp. 195-209.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Tarik%20Taleb.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Konstantinos%20Samdanis.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Badr%20Mada.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hannu%20Flinck.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sunny%20Dutta.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dario%20Sabella.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yaser%20Jararweh.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ahmad%20Doulat.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Omar%20AlQudah.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ejaz%20Ahmed.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahmoud%20Al-Ayyoub.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Elhadj%20Benkhelifa.QT.&newsearch=true

	1. Introduction
	2. Related Works
	1
	2
	2.1 Mobile Edge Computing Network
	2.2 Data Replication Strategies
	3. The Proposed Adaptive Replica Configuration Mechanism
	1
	2
	3
	3.1 Data Replication Strategy
	3.1.1 Calculate Average Time Difference
	3.1.2 Predict the Number of File Access
	3.1.3 Replica Update Strategy
	3.2 Service Node Selection Strategy
	3.2.1 Anti-Blocking Phase
	3.2.2 Reference Queue Balance Phase
	4. Example
	5. Experiments and Analysis
	4
	5
	5.1 Environment for Experiments
	5.2 Performance Analysis
	5.2.1 Loosely Environment {Node=20; Workload=1000~10000}
	5.2.2 Ordinary environment {Node=40, 60;Workload=1000~10000}
	5.2.3 Densely environment{Node=100; Workload=1000~10000}
	6. Conclusions
	Reference

