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Abstract
Objective

To identify rheumatoid arthritis (RA) associated susceptibility genes and pathways through integrating
genome-wide association study (GWAS) and gene expression pro�le data.

Methods

A transcriptome-wide association study (TWAS) was conducted by the FUSION software for RA
considering EBV-transformed lymphocytes (EL), transformed �broblasts (TF), peripheral blood (NBL) and
whole blood (YBL). GWAS summary data was driven from a large-scale GWAS, involving 5,539
autoantibody-positive RA patients and 20,169 controls. The TWAS-identi�ed genes were further validated
using the mRNA expression pro�les and made a functional exploration.

Results

TWAS identi�ed 692 genes with PTWAS values < 0.05 for RA. CRIPAK (PEL = 0.01293, PTF = 0.00038, PNBL =

0.02839, PYBL = 0.0978), MUT (PEL = 0.00377, PTF = 0.00076, PNBL = 0.00778, PYBL = 0.00096), FOXRED1
(PEL = 0.03834, PTF = 0.01120, PNBL = 0.01280, PYBL = 0.00583) and EBPL (PEL = 0.00806, PTF = 0.03761,
PNBL = 0.03540, PYBL = 0.04254) were collectively expressed in all the four tissues/cells. 18 genes,
including ANXA5, AP4B1, ATIC (PTWAS = 0.0113, down-regulated expression), C12orf65, CMAH, PDHB,
RUNX3 (PTWAS = 0.0346, down-regulated expression), SBF1, SH2B3, STK38, TMEM43, XPNPEP1,
KIAA1530, NUFIP2, PPP2R3C, RAB24, STX6, TLR5 (PTWAS = 0.04665, up-regulated expression), were
validated with integrative analysis of TWAS and mRNA expression pro�les. TWAS-identi�ed genes
functionally involved in endomembrane system organization, endoplasmic reticulum organization,
regulation of cytokine production, TNF signaling pathway, etc.

Conclusion

We identi�ed multiple candidate genes and pathways, providing novel clues for the genetic mechanism
of RA.

Introduction
Rheumatoid arthritis (RA) is a chronic, in�ammatory, autoimmune disease primarily affecting the joints,
even probably leading to accumulating joint damage and irreversible disability. Epidemiological studies in
RA show that it affects up to 0.5%-1% of the general adult population worldwide. Approximately two
thirds of cases are characterized by rheumatoid factor or autoantibodies that target various molecules
including modi�ed self-epitopes [1]. Some strong genetic components are known to be involved in the
development of RA. Twins and family studies offered a strong suggestion that the risk of RA increased in
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individuals with an RA family history by shared genetic factors [2–4]. The recognition of key genetic
components and mechanism will led to the better understanding of the pathogenesis of RA.

Genome-wide association study (GWAS) represents a powerful approach of understanding of the genetic
basis of many complex traits in common human diseases. Specially, it was proved extremely well-suited
to the identi�cation of common single nucleotide polymorphisms (SNPs) -based variants with modest to
large effects on phenotype. GWAS with �ne mapping, candidate gene approaches and a meta-analysis of
GWAS has identi�ed ~ 100 loci across the genome harbouring RA susceptibility variants [5]. However, the
speci�c biological mechanisms and functional consequences of many genetic variants identi�ed by
GWAS remain largely unknown, in particular their role on disease severity; that is to say, GWAS approach
is likely to miss expression-trait associations of small effect.

Gene expression is an intermediate phenotype between genetic variant and traits underlying disease
susceptibility. Many genetic variants devote their effects on complex traits by modulating gene
expression [6]. Unfortunately, large-scale expression-trait associations are hampered by specimen
availability and cost, as well as intrinsic factor, small effects. Consequently, transcriptome-wide
association study (TWAS) was developed to address these problems, which integrates gene expression
with large-scale GWAS [7]. It uses a small set of individuals with both genotype and gene expression data
as a reference panel to identify signi�cant expression-trait associations. Through extensive simulations
of available GWAS data, TWAS identi�ed candidate genes associated with, schizophrenia [8], calci�c
aortic valve stenosis [9], nonobstructive azoospermia [10], in�ammatory biologic age [11] and other
complex traits [12, 13]. Meanwhile, the genetic susceptibility variants associated with RA commonly map
to enhancer regions [14], which can regulate one or more genes at distant locations in a cell-type-speci�c
manner. Thus, the improved understanding of gene regulation relationship de�ning which genes are
important in which cell types is vital for the predisposition to RA.

In this study, we conducted cell/tissue related TWAS for RA based on GWAS dataset and gene expression
from EBV-transformed lymphocytes (EL), transformed �broblasts (TF), peripheral blood (NBL) and whole
blood (YBL). We subsequently revaluated the expression of the TWAS-identi�ed genes and made a
functional exploration. This is the �rst time that TWAS is applied to a large-scale GWAS data to detect
susceptibility genes associated with RA.

Methods

GWAS summary data of RA
A recent large-scale genome-wide association study meta-analysis of RA was used here [15]. Brie�y, the
genome-wide summary data was collected from six GWAS collections, 5539 cases and 20169 controls in
total, per-collection: Brigham Rheumatoid Arthritis Sequential Study (483 cases, 1449 controls), Canada
(589 cases, 1472 controls), Epidemiological Investigation of Rheumatoid Arthritis (1173 cases, 1089
controls), North American Rheumatoid Arthritis Consortium I (867 cases, 1041 controls) and III (902
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cases, 4510 controls), and Wellcome Trust Case Control Consortium (1525 cases, 10608 controls); typed
at 2,556,272 SNPs. Genotyping was conducted using commercial platforms, such as Affymetrix 6.0 array
and Illumina 550 K array. RA cases either met the 1987 American College of Rheumatology criteria for
diagnosis of rheumatoid arthritis or were diagnosed by board-certi�ed rheumatologists, with the
limitation of anti-cyclic citrullinated peptide (anti-CCP) positive or rheumatoid factor (RF) positive.
Detailed information of cohorts, genotyping, imputation, meta-analysis and quality control approaches
can be found in the published studies [15–20].

TWAS
FUSION software was applied to the RA GWAS summary data for cell/tissue related TWAS analysis,
including EL, TF, NBL and YBL. TWAS analysis used pre-computed gene expression weights together with
disease GWAS summary statistics to calculate the association of every gene to disease. The genetic
values of expression were computed one probe set at a time using SNP genotyping data located 500 kb
on either sides of the gene boundary. For this study, the gene expression weights of EL, TF, NBL and YBL
were driven from the FUSION website (http://gusevlab.org/projects/fusion/).

Validating TWAS results by genome-wide mRNA expression pro�les of RA

The expression data of RA were downloaded from Gene Expression Omnibus (GEO) DataStets
(https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS3794) and corresponding reference [21]. In
the study, a complete genome-wide transcript pro�ling of peripheral blood mononuclear cells (PBMCs)
from 18 RA patients and 15 age and sex-matched controls were collected by the Illumina Human-6v2
Expression BeadChips. Differential analysis per gene was performed with one-way analysis of variance
(ANOVA) and P values were adjusted to control the False Discovery Rate (FDR, 5%).

Functional Exploration
The signi�cant genes identi�ed by TWAS were further made a functional exploration that included Gene
Ontology (GO), pathway analysis and PPI network construction using an online analysis tool of Gene
Annotation & Analysis Resource, Metascape (http://metascape.org). GO analysis was based on Fisher’s
exact test and calculation of P values. Pathway analysis was performed for differentially expressed
genes based on database. The construction of PPI network and associated module analysis was based
on GO enrichment analysis using the plugin Molecular Complex Detection (MCODE). MCODE algorithm
was then applied to this network to identify neighborhoods where proteins are densely connected.

Results

TWAS analysis results of RA
Using the GWAS summary data, TWAS identi�ed 8403 genes in total, and 1440, 4224, 2410, 4628 genes
for EL, TF, NBL, YBL, respectively. In the genes list, there were 692 signi�cant genes with TWAS P values < 
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0.05 in total (Fig. 1), including 82 genes for EL, 257 genes for TF, 182 genes for NBL and 317 genes for
YBL. Different tissues or cells have their own gene expression pro�le. In order to �nd out the most
representative genes, we carried out overlap analysis of genes in different tissues/cells. The Venn
diagram (Fig. 2) showed that the number of genes expressed in one or more tissues/cells. For example,
there were 82 TWAS-identi�ed signi�cant genes associated with RA in EL; there were 32 signi�cant genes
in both EL and TF; there were 5 signi�cant genes in EL, TF and YBL; there were 4 signi�cant genes in EL,
TF, YBL and NBL. The four novel TWAS-signi�cant RA susceptibility genes identi�ed in all four
tissues/cells were CRIPAK, MUT, FOXRED1 and EBPL, which were located on Chromosome 4, 6, 11 and
13, respectively. Table 1 presented the more and detailed information of the four genes, including
heritability of genes (HSQ), rsID of the most signi�cant GWAS SNP in locus (BEST.GWAS.ID), number of
SNPs in the locus (NSNP) and TWAS P value (PTWAS).

Table 1
The TWAS-signi�cant RA susceptibility genes in all four tissues/cells.

Tissue/Cell Gene CHR HSQ BEST.GWAS.ID NSNP PTWAS

EL CRIPAK 4 0.488 rs3755963 326 0.01293

EL MUT 6 0.475 rs6458697 353 0.00377

EL FOXRED1 11 0.604 rs602735 634 0.03834

EL EBPL 13 0.410 rs1198329 391 0.00806

TF CRIPAK 4 0.353 rs3755963 326 0.00038

TF MUT 6 0.513 rs6458697 353 0.00076

TF FOXRED1 11 0.390 rs602735 634 0.01120

TF EBPL 13 0.287 rs1198329 391 0.03761

NBL CRIPAK 4 0.134 rs3755963 333 0.02839

NBL MUT 6 0.033 rs6458697 357 0.00778

NBL FOXRED1 11 0.029 rs602735 650 0.01280

NBL EBPL 13 0.073 rs1198329 401 0.03540

YBL CRIPAK 4 0.345 rs3755963 301 0.00978

YBL MUT 6 0.084 rs6458697 357 0.00096

YBL FOXRED1 11 0.222 rs602735 641 0.00583

YBL EBPL 13 0.521 rs1198329 400 0.04254
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Functional Exploration Of The Twas-identi�ed Genes
Associated With Ra
Pathway and process enrichment analysis was carried out with the following ontology sources: KEGG
Pathway, GO Biological Processes, GO Molecular Functions, Reactome Gene Sets, Canonical Pathways
and CORUM. The total 654 TWAS-identi�ed genes in the four tissues/cells were successfully submitted to
Metascape performing GO enrichment analysis. TWAS-identi�ed genes were annotated with an
enrichment of biological processes and KEGG pathways involved in endomembrane system organization,
endoplasmic reticulum organization, regulation of cytokine production, TNF signaling pathway and so on
(Fig. 3A). The signi�cant terms were then hierarchically clustered, selected a subset of representative
terms and converted them into a network layout (Fig. 3B).

A protein-protein interaction (PPI) network of the TWAS-identi�ed genes was constructed, and module
analysis was conducted using the plugin Molecular Complex Detection (MCODE). The PPI network was
constructed based on 1122 GO terms (Fig. 4A). The top three GO terms were regulation of TP53 activity
through phosphorylation, retrograde transport at the trans-golgi-network, regulation of TP53 activity. The
signifcant modules from the PPI network formed 9 MCODE clusters with a class of genes (Fig. 4B), for
example,MCODE1, MCODE3, and MCODE5 were characterized by MAPK (mitogen activated kinase-like
protein) family genes, ZNF (zinc �nger protein) family genes, and NDUF (NADH ubiquinone
oxidoreductase subunit) family genes, respectively.

Discussion
TWAS is a creative and valuable analysis method that can integrate genetic variation with gene
expression to identify genes whose cis-regulated expression is associated with complex traits. It captures
heterogeneous signals better than individual SNPs or cis-eQTLs and focuses prediction on the genetic
component of expression that avoids confounding from environmental differences caused by the trait
that may in�uence expression. What’s more, TWAS avoids tissue acquisition challenges that may pose
the greatest hurdle for producing larger datasets. Thus, TWAS has been widely applied to yield
mechanistic disease insights, yet the �rst time for RA in this study.

RA is a systemic disease and a variety of immunological events occur not only joints but also outside the
joint at mucosal surfaces and primary lymphoid tissues, especially synovium. Thus, various types of
tissues and cells will be attacked by the disease, including synovium, cartilage, bone, �broblasts,
adipocytes, macrophage, immune cells and so on. In this work, we conducted cell/tissue related TWAS
for RA. TWAS identi�ed total 674 genes with transcriptome-wide-signi�cant associations with RA in four
tissues/cells. CRIPAK, MUT, FOXRED1 and EBPL, which were collectively expressed in all the four
tissues/cells, were novel genes associating with RA. Consistent with the result of TWAS, eighteen genes,
ANXA5, AP4B1, ATIC, C12orf65, CMAH, PDHB, RUNX3, SBF1, SH2B3, STK38, TMEM43, XPNPEP1,
KIAA1530, NUFIP2, PPP2R3C, RAB24, STX6, TLR5, have been reported differently expressed in peripheral
blood mononuclear cells of RA patients.
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Cysteine rich PAK1 inhibitor (CRIPAK) is an endogenous inhibitor of p21-activated protein kinase 1
(PAK1), which interacts with Pak1 through the N-terminal regulatory and inhibited enhancement of
estrogen receptor transactivation. The decrease in gene expression of CRIPAK could act to promote
accumulation of phosphorylated myosin light chain and its stimulation of actomyosin ATPase activity in
laser-captured serotonin neurons from macaques treated with ovarian hormones [22]. There are few
reports about the role and mechanism of CRIPAK in diseases, especially no reports in RA. However, PAK1
has been extensively studied. PAK1, a potential mediator of Rac1/Cdc42 signaling pathway, is involved in
regulating the migration, invasion, proliferation, and in�ammation of �broblast-like synoviocytes from
rheumatoid arthritis patients [23, 24]. These studies indirectly support the potential role of CRIPAK in
rheumatoid arthritis.

Methylmalonyl-CoA mutase (MUT) encodes the mitochondrial enzyme methylmalonyl Coenzyme A
mutase. In humans, the gene encoded enzyme catalyzes the isomerization of methylmalonyl-CoA to
succinyl-CoA, while this enzyme may have different functions in other species. FAD dependent
oxidoreductase domain containing 1 (FOXRED1) encoded protein that is localized to the mitochondria
and whose function is involved in assembly, stability and/or correct functioning of complex I [25, 26].
Numerous processes involved in mitochondrial function are related to RA. For example, oxidative stress
impairs energy metabolism in primary cells and synovial tissue of RA patients [27]; the interaction of
abnormal cellular metabolism, mitochondrial dysfunction, hypoxia and the proin�ammatory signaling
pathways in synovial cells is contributed to synovial invasiveness of RA [28]; rare/low-frequency variants
of the mitochondria respiratory chain-related proteins were aggregated RA patients [29]; etc. Meanwhile,
The top three GO terms in MCODE 5 of PPI network were complex I biogenesis, NADH dehydrogenase
complex assembly and mitochondrial respiratory chain complex I assembly. Therefor, we predict the two
genes may play roles in the pathology of RA via affecting mitochondrial function.

EBPL is an emopamil-binding protein (EBP) like protein. EBP is a high-a�nity binding protein for [H-3]
emopamil and belongs to the family of so-called sigma receptors. Mutations disrupted EBP impair
cholesterol biosynthesis and cause X-chromosomal dominant chondrodysplasia punctate. The EBPL
mRNA was expressed ubiquitously and most abundant in liver, lung and kidney. However, EBPL has a yet-
to-be-discovered function [30].

In the common RA associated gene list identi�ed by TWAS, we should paid attention to ATIC, RUNX3 and
TLR5. 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC)
encodes a bifunctional protein, which catalyzes the last two steps of the de novo purine biosynthetic
pathway. ATIC plays crucial role in the mechanisms underlying methotrexate’s anti-in�ammatory and
antiproliferative effects. ATIC missense variant and gene polymorphism affects response to methotrexate
treatment in RA patients [31–33]. Runt related transcription factor 3 (RUNX3) encodes a member of the
runt domain-containing family of transcription factors and involves on T-cell development, T-cells
polarization and T cell selection [34, 35]. RA is characterized by the presence of activated T lymphocytes.
It is indicated that RUNX3 may play roles on the mechanisms of T cell activation in RA. Toll like receptor 5
(TLR5) encodes a member of TLR family that plays an essential role in pathogen recognition and innate
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immune responses activation. TLR5 agonist, �agellin, can promote monocyte in�ltration and osteoclast
maturation directly through myeloid TLR5 ligation and indirectly via TNF-alpha production from RA and
mouse cells [36]. Angiogenesis in RA is fostered directly by TLR5 ligation and indirectly through
interleukin-17 induction [37]. TLR5 is the bridge that interconnects formation of new blood vessels with
maturation of joint osteoclasts, thereby accelerating the bone destruction process in RA [38]. There have
other researches indicate that TLR5 is involved on RA in�ammation, bone destruction and angiogenesis;
thus, TLR5 is a critical element and target for RA mechanism.

With TWAS in this study, we found that the mRNA expression of some genes in human tissues/cells can
be affected by SNPs, further associating with RA susceptibility. For example, four genes (CRIPAK, MUT,
FOXRED1 and EBPL) in four distinct loci (rs3755963, rs6458697, rs602735 and rs1198329) were
associated with RA susceptibility. We carried out a TWAS strategy to pinpoint RA associated genes; both
genomics and transcriptomics were combined, and cis-heritable genes were explored and evaluated
e�ciently. The study provides a potential functional mechanism of how genetic variants on chromosome
may increase RA susceptibility.

Conclusions
In summary, TWAS study identi�es novel and common susceptibility genes for rheumatoid arthritis.
Beyond speci�c mechanistic �ndings for RA, this work outlines a systematic approach to identify
functional mediators of complex disease.
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Figures

Figure 1

Manhattan plot of TWAS-identi�ed genes and signi�cantly expressed genes associated with RA (colorful
points). Each point represents a single gene, with physical position (chromosome localization) plotted on
the x axis and -log10 (P value) of association between gene and RA plotted on the y axis. The signi�cant
genes in different tissues/cells are highlighted with different colors (red, EL; green, TF; blu, NBL; yellow,
YBL; grey, all).
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Figure 2

Venn diagram reveals the overlap of TWAS-signi�cant genes in different tissues/cells. Purple, EL; yellow,
TF; green, NBL; pink, YBL.
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Figure 3

Gene ontology (GO) term analysis of differentially expressed genes. (A), Heatmap of enriched GO terms
and (B). The network layout of representative GO terms under hierarchical clustering. In the network, each
circle node represents a term, where its size is proportional to the number of input genes fall into that
term, and its color represent its cluster identity (i.e., nodes of the same color belong to the same cluster).
Terms with a similarity score > 0.3 are linked by an edge (the thickness of the edge represents the
similarity score).
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Figure 4

PPI network and the signi�cant module. (A) PPI network of the TWAS-identi�ed genes. (B) Signi�cant
modules of the PPI network.


