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Abstract: Precise spatiotemporal datasets of artificial impervious surfaces (AISs) are essential for 9 

evaluating urbanization processes and associated soil organic carbon (SOC) dynamics. However, spatially 10 

explicit studies on SOC stocks based on high-quality AIS data remain deficient, which affects the accuracy 11 

of urban SOC budgets. In this study, we used 30-m Landsat images and a subpixel-based model to 12 

accurately evaluate and quantify the annual AIS of Kaifeng, an ancient city in China that experienced 13 

intensive urbanization from 2000 to 2020. Soil organic carbon (SOC) dynamics were further estimated and 14 

spatially exhibited based on the SOC densities (SOCD) of different land covers observed in the field. Our 15 

results demonstrate that Kaifeng experienced drastic AIS expansion from 2000–2020, both in total area (an 16 

increase of ~154.35%) and density (described by mean AIS abundance, 0.56 vs. 0.72). Spatially, AIS mainly 17 

sprawled to the west, and infilling was observed in the old town. Moreover, the expansion of AIS in Kaifeng 18 

has resulted in a total of 0.08 Tg of SOC loss over the past 20 years, and the study area has acted as a clear 19 

carbon source. The greatest SOC losses occurred during 2010 — 2015,  mainly in the west — with >30% 20 

(~0.024 Tg) of the total loss occurring between 2010 and 2015. This study provides new insights into urban 21 

growth through the mapping of growth patterns in terms of both outward sprawl and infill. We also provide 22 

a novel means of presenting the spatial patterns of urbanization-induced SOC dynamics using subpixel AIS 23 

maps. 24 
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1. Introduction 27 

Urbanization has become the main theme of global land change and is the foremost factor affecting the 28 

carbon cycle at multiple scales (Hutyra et al., 2014; Zhu et al., 2019). The most direct evidence of 29 

urbanization is the conversion of agriculture and/or natural lands into artificial environments and the sealing 30 

soils with artificial impervious surfaces (AISs). Generally, AIS is composed of materials that prevent the 31 

natural infiltration of water into soils and include building roofs, cement squares, and road surfaces (Zhu et 32 

al., 2019). The total global area of AIS reached 797,076 km2 in 2018 — 1.5 times that in 1990 (Gong et al., 33 

2020). The installation of AIS includes the removal of vegetation and organic-rich topsoil and the sealing of 34 

soils with impermeable materials, all of which can substantially, and both directly and indirectly, influence 35 

soil organic carbon (SOC) stocks (Lu et al., 2020; Piotrowska-Dlugosz and Charzynski, 2015; Zhao et al., 36 

2012). 37 

Although it is well known that SOC dynamics are closely related to spatial and temporal changes in AIS, 38 

spatially explicit studies on how AIS expansion affects SOC stocks remain rare and insufficient (Yan et al., 39 

2015; Yan et al., 2016). Furthermore, estimates of the quantities and distributions of urban SOC budgets are 40 

still uncertain. For instance, at the same 30-m resolution, the SOC stock under AIS (SOCAIS) of Urumqi, 41 

China in 2010 was 3.56 Tg, based on the work of Gong et al. (2020), who used pixel-based data; meanwhile, 42 

it was only 0.94 Tg according to Zhang et al. (2015), who used subpixel-based data from the same year. The 43 

reason for the pronounced disparity between these results is that urban land cover is highly heterogeneous, 44 

such that 30-m pixels may contain more than two different land-cover types, such as AIS and vegetated areas 45 

(Lu and Weng, 2004, 2006; Zhang et al., 2015), thus constituting mixed pixels. Different solutions to the 46 

mixed pixel issue can result in large differences among the assessment results. Considering the large 47 

proportion of AIS in urban areas (>50%) and the finer-scale resolution of subpixel datasets, AIS approaches 48 

that employ such data may be more accurate and appropriate for city-scale studies (Li et al., 2020; Wang and 49 

Li, 2019).  50 

The temporal resolution of several public AIS datasets (5–10-year intervals) was found to be insufficient 51 

when attempting to reveal gradual changes in AIS and associated SOC dynamics  (Schott et al., 2016; Zhu et 52 

al., 2020). Urban lands are highly dynamic and can undergo subtle changes over a relatively short period, and 53 

gradual changes in AIS expansion have been difficult to capture over longer observation periods (5–10 years 54 

apart) (Fu et al., 2019; Li et al., 2018). Meanwhile, small changes in AIS (i.e., excavation of foundations for 55 

tall buildings) could significantly disturb SOC stocks (Hu et al., 2018), making precise AIS datasets with 56 

dense frequencies essential for achieving a detailed understanding of changes in urbanization and for 57 
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clarifying the effects of urbanization on local SOC pools. The limited availability of information on SOCAIS is 58 

a persistent knowledge gap in our understanding of the ecological effects of urbanization (Hutyra et al., 2014; 59 

Vasenev et al., 2018). Organic carbon sequestration is a vital ecosystem service performed by urban soils 60 

(Setälä et al., 2016). However, various land use activities in urban areas have resulted in significant 61 

differences among different land covers (Pouyat et al., 2002), for which SOCAIS is not yet fully understood 62 

(Dorendorf et al., 2015; Pouyat et al., 2006). 63 

The expansion of AIS results in the occupation of former croplands and forests and the sealing of large 64 

areas of soil (Bren d’Amour et al., 2017; Scalenghe and Marsan, 2009). Since the SOC hidden beneath urban 65 

AIS greatly impacts the C budgets of urban ecosystems, many researchers have attempted to quantify their 66 

characteristics to develop an initial understanding of SOCAIS (Table S1) (Vasenev and Kuzyakov, 2018). 67 

Nevertheless, the SOC density under AIS (SOCDAIS) varies remarkably among different cities. For example, 68 

the SOCDAIS at a depth of 0–100 cm in Lahti, Finland was only 1.2 kg C m-2 (Lu et al., 2020), while it was 9.6 69 

kg C m-2 in New York City, USA (Cambou et al., 2018), though a comparative analysis indicated that there 70 

was no significant difference between New York City and Paris, France at depths of 0–30 cm (Table S1) 71 

(Cambou et al., 2018). Whether or not there are significant differences among the SOCDAIS values of different 72 

cities has not been fully verified. Therefore, it is not appropriate to assume that SOCDAIS is equal to a fixed 73 

value when evaluating urbanization-induced SOC dynamics (Churkina et al., 2010; Pouyat et al., 2006). 74 

Additionally, urban SOC characteristics are also influenced by other factors, such as original land use/cover 75 

types, land-use history, urban functions, the intensity of development, and urban management (Puskás and 76 

Farsang, 2009; Vasenev and Kuzyakov, 2018). To fully understand the stock and dynamics of SOC in a 77 

specific city, SOCDAIS must be quantified based strictly on locally defined bulk densities and SOC contents. 78 

In this study, we employed a subpixel approach to map the annual AIS of Kaifeng, China from 2000 to 79 

2020 based on Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational 80 

Land Imager (OLI) (TM/ETM+/OLI) images to demonstrate the gradual changes in AIS expansion in a 81 

spatially explicit manner, reveal its impacts on SOC, and locate the C sink/source during urbanization. The 82 

SOC dynamics were further calculated according to the field investigated SOCD data from different land 83 

covers, which were obtained from the literature. Our objectives were to (1) accurately quantify the temporal 84 

and spatial expansion of AIS at a finer scale; (2) reveal the spatial magnitude and dynamics of SOC in an 85 

urban area; and (3) develop a method for estimating and spatially presenting AIS expansion-induced SOC 86 

dynamics at the city scale; common to each of these aims was the goal of reducing uncertainty when 87 

estimating the impacts of AIS expansion on local/city SOC. 88 
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2. Materials and Methods 89 

2.1 Study Area 90 

The city of Kaifeng (34°11′–35°01′N, 113°52′–115°15′E) is located in the east-central province of 91 

Henan, China. With a built-up area of 151 km2 and a population of 4.57 million by the end of 2019, Kaifeng 92 

is one of the core development areas in the “Central Plains Urban Agglomeration Development Plan” issued 93 

by the National Development and Reform Commission (Wang and Liu, 2018) (Fig. 1). Kaifeng is also one of 94 

the most famous historical and cultural cities, known as the "ancient capital of the eight dynasties" with a 95 

history dating back more than 4,100 years (Storozum et al., 2020). Kaifeng is characterized by a typical warm 96 

temperate continental monsoon climate with four distinct seasons. The mean annual temperature is 14.4°C 97 

and the total precipitation amount of is 668.3 mm. The landscapes of Kaifeng consist of forests, croplands, 98 

and wetlands; the main plant types are willows, locusts, and Paulownia, which can also be found in the 99 

metropolitan area. The main soil types are fluvio-aquatic and alluvium. Due to flooding of the Yellow River, 100 

several ancient capitals and cities are buried below the modern city of Kaifeng, at depths of 3–12 m; this 101 

creates a peculiar landscape of city accumulation and further influences soil development. Soils in Kaifeng 102 

have been exposed to high-intensity human activities for millennia because of the long history of habitation in 103 

this area; such history provides a typical and representative area in which to study the impacts on SOC stocks 104 

stemming from human activities. However, changes in AIS and their impacts on SOC stocks have rarely been 105 

examined. 106 

2.2 Methods 107 

This study involved three steps: (1) mapping annual AIS from Landsat TM/ETM+/OLI images and 108 

characterizing spatiotemporal changes in the AIS in Kaifeng from 2000–2020; (2) collecting and reanalyzing 109 

the SOCD of different land-cover types; and (3) estimating and displaying the impacts of AIS on SOC stocks 110 

in a spatially explicit manner (Fig. 2). 111 

2.2.1 Mapping AIS 112 

Annual Landsat TM, ETM+, and OLI data from 2000–2020 were collected to map the AIS of Kaifeng. A 113 

total of 20 Landsat images were used in this study, the details for which can be found in Table S2. All 114 

collected data had high geometric accuracy and were transformed into Universal Transverse Mercator (zone 115 

50ºN). Radiometric calibration was applied to transform the digital number into reflectance values. Quick 116 

atmospheric corrections were then conducted to eliminate the influence of atmospheric absorption and 117 
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scattering. To facilitate the selection of endmembers, the minimum noise fraction (MNF) method was used to 118 

determine the intrinsic noise of each image, and to ensure that the primary information was concentrated in 119 

the first three or four bands. 120 

Endmember collection is a key step in the subpixel approach employed here. An endmember, which is 121 

distinguished from the mixed pixels, represents pixels that contain only the spectral information of one land 122 

cover type. Ideally, endmembers of a certain land cover are distributed at the top of the triangle generated by 123 

the different MNF bands. With the support of high-resolution datasets (collected from Google Earth v. 7.3.3, 124 

Google LLC, USA), the endmembers from four groups, which represented the four land-cover types of high-125 

albedo objects, low-albedo objects, green vegetation, and bare soil, were collected from the two-dimensional 126 

scatter plots generated by the first three bands (Fig. S1). 127 

A linear spectral mixture analysis (LSMA) model was employed to generate urban fractional land-cover 128 

maps. This is one of the main subpixel-based methods and is commonly used for extracting AIS from 129 

medium-resolution remote sensing data (Wang and Li, 2019). The LSMA model assumes that the spectrum of 130 

a single-pixel captured by a sensor is a linear combination of all components within that pixel (Equation 1, 131 

Fig. S2). 132 

𝑅𝑖 = ∑ 𝑓𝑘𝑅𝑖𝑘 + 𝜀𝑘𝑛𝑘=1 , (1) 

where i is the number of bands used, k is the number of endmembers, such that k = 1, 2, …, n, Ri is the 133 

reflectance of band i, which may contain more than one endmember, fk is the abundance of endmember k 134 

within a pixel, which represents the proportion of AIS within a single pixel and indicates the AIS density, Rik 135 

is the spectral reflectance of endmember k in a single pixel on band i, and 𝜀𝑘 is the error for band i. A fully 136 

constrained least-squares solution was then applied to unmix the remote sensing data into four fractional 137 

maps. The spatial AIS data were generated by taking the sum of fractional maps of the high-albedo and low-138 

albedo objects, according to the methods of Lu and Weng (Lu and Weng, 2004). Finally, we eliminated non-139 

impervious regions based on the administrative boundaries of Kaifeng and global artificial impervious area 140 

(GAIA) data (Gong et al., 2020). 141 

Due to the limitation that high-resolution images from 2000 were unavailable on Google Earth, we 142 

selected 2002 as the starting year. Reference images with 0.5-m resolutions were downloaded from Google 143 

Earth. As in a previous study (Gong et al., 2020), we randomly created 30 sampling plots with 4×4 pixels 144 

(i.e., 120 m × 120 m) for each of the representative years, which were taken to be 2002, 2005, 2010, 2015, 145 

and 2020, based on the aggregated AIS data (Fig. S3). For each year, these samples were geographically 146 

linked to the corresponding high-resolution images and the reference AIS was digitized. The percentage of 147 
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AIS in each plot then was calculated (i.e., AIS/14400 m2, e.g., Fig. S3f). We used the root mean square error 148 

(RMSE, Equation 2) and Pearson’s correlation coefficient (R, Equation 3) to evaluate the accuracy of the data. 149 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑟𝑒𝑓.,𝑖 − 𝑥𝑐𝑙𝑎𝑠𝑠,𝑖)2𝑛𝑖=1 𝑛   (2) 

 150 

R=
∑ (xref.,i-xref.̅̅ ̅̅ ̅)n
i=1 (xclass,i-xclass̅̅ ̅̅ ̅̅ ̅)√∑ (xref.,i-xref.̅̅ ̅̅ ̅)2n

i=1 √∑ (xclass,i-xclass̅̅ ̅̅ ̅̅ ̅)2n
i=1

, (3) 

where 𝑥𝑟𝑒𝑓.,𝑖 is the visually interpreted AIS abundance in plot i, 𝑥𝑟𝑒𝑓.,𝑖 is the corresponding estimated AIS 151 

value in plot I, 𝑥𝑟𝑒𝑓.̅̅ ̅̅ ̅̅  𝑥𝑐𝑙𝑎𝑠𝑠̅̅ ̅̅ ̅̅ ̅ is the average value of visually interpreted AIS abundance and the corresponding 152 

estimated AIS, and n is the number of sampling plots (n = 30). 153 

In this study, we focused only on urban expansion, while excluding the renewal process. Thus, AIS 154 

expansion was assessed based on the assumption that urban growth was irreversible. For the same pixel, if the 155 

value in the later periods was lower than the former, then the value of the former was given to the latter. The 156 

net gain in AIS was then used to reveal the expansion of AIS, which can be defined by Equation 4 as follows: 157 

∆AIS=AISb-AISa, (4) 

where 𝐴𝐼𝑆𝑎 and 𝐴𝐼𝑆𝑏 are the AIS areas at the beginning and end of the study period, respectively. The 158 

intensity of AIS expansion was then quantified as follows (Equation 5): 159 

Ki=(√AISb AISa⁄n
-1)×100% (5) 

where 𝐾𝑖 represents the annual growth rate of the AIS area, 𝐴𝐼𝑆𝑎 and 𝐴𝐼𝑆𝑏 are the same as in Equation (4), 160 

and n represents the time period. The rate of change in AIS was estimated by the slope, K (Equation 6). 161 

Where AIS represents the total AIS area in a certain year and i is the number of years. Finally, we randomly 162 

extracted the values of 5000 points from the annual AIS map to analyze and thereby evaluate the changes in 163 

the urban form of Kaifeng from 2000 to 2020. 164 

K=
n×∑ (AISi×i)-∑ AISi ∑ in

i=1
n
i=1

n
i=1

n×∑ i2n
i=1 -(∑ in

i=1 )2  (6) 

2.2.2 Assessing SOCAIS dynamics and locating carbon sources/sinks 165 
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We used field SOCD data collected from different land covers across Kaifeng to quantify SOC stocks in 166 

each year and to evaluate SOC dynamics (Fig. 1). The measured SOCDAIS and SOCD of open soils 167 

(SOCDOPEN) were obtained from a literature review (Sun et al., 2010). A total of 32 soil sites (Table S3) were 168 

collected in 2009. Under the hypothesis that soil sealed by AIS is stable, the spatiotemporal pattern of SOCAIS 169 

from 2000 to 2020 (at 5-year intervals) was visualized and quantified based on spatially explicit AIS data. It 170 

must be noted that no change trajectory could be generated from the fractional AIS images; therefore, this 171 

study is mainly focused on SOC dynamics due to the expanded AIS occupying other land covers. Here, the 172 

measured SOCDOPEN was simplified as follows (Equations 7 and 8): 173 

SOCDOPEN=
n1SOCD1+n2SOCD2+⋯+niSOCDk

n1+n2+⋯+ni
 (7) 

where �̅� represents the weighted mean SOCDOPEN, 𝑥𝑘 represents the SOCD of land-cover type k, f is the 174 

number of sites taken by this land cover, n is the sum of the sample points taken in the open soils, and 175 

SOCDAIS is the mean value estimated based on the soil sampling points located along roads and at buildings 176 

(Table S3): 177 

SOCDAIS=
∑ (x1+x2+⋯+xn)n
i=1 n⁄  (8) 

where �̅� represents the mean SOCDAIS and 𝑥𝑛 denotes the observed SOCDAIS. 178 

The SOC dynamics induced by AIS expansion were calculated similarly to the theory underlying LMSA, 179 

wherein the total SOC stock of a certain pixel was composed of SOCDAIS and SOCDOPEN (i.e., urban green 180 

space, bare lands, and croplands). The total SOC of this pixel could then be expressed as follows: 181 

SOCD=SOCDAIS×AIS+SOCDOPEN (9) 

Based on Equation 9, the SOC dynamics could be further calculated according to Equation 10: 182 
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∆SOC=(SOCDAIS×AAISa+SOCDOPEN×AOPENa)-(SOCDAIS×AAISb+SOCDOPEN×AOPENb) (10) 

where ∆SOC is the change in SOC dynamics between two years, 𝐴𝐼𝑆𝑎 and 𝐴𝐼𝑆𝑏 are the same as in Equation 183 

4, and 𝐴𝑂𝑃𝐸𝑁𝑎 and 𝐴𝑂𝑃𝐸𝑁𝑏 are the areas of the open soils at the beginning and end of the study period. 184 

Because our research was based on the assumption that SOCDAIS and SOCDOPEN remain constant, Equation 185 

10 could be simplified as follows: 186 

∆SOC=(SOCDAIS×(AAISa-AAISb)-SOCDOPEN×(AOPENa-AOPENb) (11) 

In this study, the reduced area of open soils was equal to the increase in AIS. Therefore, the SOC 187 

dynamics could be simplified once more as: 188 

∆SOCD=∆A×(SOCDAIS-SOCDOPEN) (12) 

where ∆𝐴 = |𝐴𝐴𝐼𝑆𝑎 − 𝐴𝐴𝐼𝑆𝑏| or ∆𝐴 = |𝐴𝑂𝑃𝐸𝑁𝑎 − 𝐴𝑂𝑃𝐸𝑁𝑏| in Equation 12. The SOC dynamics were then 189 

spatially illustrated based on pixel-based results utilizing spatial analysis methods. 190 

3. Results 191 

3.1 Assessment of AIS extraction accuracy 192 

Fig. 3 shows the relationship between the extracted AIS values from Landsat images and high-resolution 193 

data. All correlation coefficients (R) were greater than 0.836 (p < 0.01) each year. Another indicator, RMSE, 194 

between the two datasets was further calculated, and the results showed that RMSE <7.6%. The major 195 

estimated error was less than ±10%, indicating that the results met the requirements of the follow-up study. 196 

3.2 AIS Dynamics from 2000–2020 197 

Kaifeng experienced a drastic expansion of AIS from 2000 to 2020, and newly developed AIS with a 198 

high growth rate (>2.7%, p ≤ 0.05) was mainly found in the western part of the metropolitan area (Fig. 4a). 199 

With an annual growth rate of 4.23%, the total AIS area increased linearly by ~154.35% (p < 0.01) from 51.7 200 

km2 in 2000 to 131.5 km2 in 2020 (Fig. 4b). The mean AIS abundance in Kaifeng clearly increased 201 

throughout the study period, having increased from 0.56 in 2000 to 0.72 in 2020 (Fig. 4). However, a different 202 

tendency was observed for the total area. Specifically, the mean AIS abundance grew rapidly until 2010, 203 
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increasing from 0.56 in 2000 to 0.72 in 2010. After 2010, the rate of increase slowed and the AIS abundance 204 

remained stable, though a linear fit to the mean values shows a declining trend since 2010 (Fig. 4b). 205 

According to the abundance of AIS (Fig. S4), the years 2005, 2010, 2015, and 2020 can be taken as time 206 

nodes to summarize the spatiotemporal changes in Kaifeng. From 2000 to 2015, AIS expanded at an 207 

accelerated rate (Fig. 5a–d). Specifically, the net gain in the AIS area increased from 15.56 km2 in 2005 208 

(equal to 26.9% of AIS area in 2000) to 16.30 km2 in 2010 (equal to 22.2% of AIS area in 2005) (Fig. 5f, g). 209 

The most intensive expansion accrued between 2010 and 2015, during which the areas of AIS expanded by 210 

~27.62 km2 in 2015, which was more than twice the AIS in 2000 (Fig. 5h). The spatial patterns of AIS 211 

expansion could be drawn as infilled old towns (main body of metropolitan area in 2000 in the east of 212 

Kaifeng), with most sprawl occurring to the west from 2000–2015 (Fig. 5f–h). The intensity and extent of the 213 

increase in AIS decreased after 2015 (Fig. 5e, i). The newly developed AIS was 15.03 km2, which was less 214 

than the increase observed from 2000–2005 (Fig. 5f, i). Spatial expansion was predominantly characterized 215 

by an infilling growth pattern based on the extent of expansion during the preceding period, which occurred 216 

throughout the main urban area. Moreover, the newly developed AIS was scattered and spatially 217 

discontinuous in the northwest, north, and southwest of the built-up area (Fig. 5j). 218 

3.3 SOC Dynamics caused by the Extension of AIS 219 

A total of 0.51 Tg (1 Tg = 1012 g) of SOC was stored beneath the AIS in 2000, which had increased to 220 

1.17 Tg by 2020 and had more than doubled since 2000 (Fig. 6a-f). It should be noted that the period from 221 

2010–2015 exhibited the largest growth in SOCAIS (~0.25 Tg), accounting for ~31% of that in 2010. Gains in 222 

SOCAIS were spatially consistent with the overall expansion of AIS, and were mainly concentrated in the 223 

western part of the metropolitan area Fig. 6i). However, the data indicated that SOCDAIS was lower than 224 

SOCDOPEN (Table S2). Gains in the SOCAIS stock also indicated SOC was lost during AIS expansion. As 225 

shown in Fig. 6, continuous SOC loss occurred with the expansion of AIS in Kaifeng since 2000. 226 

From 2000 to 2020, a total of 0.08 Tg of C was missing because of AIS expansion. Before 2010, the loss 227 

of SOC continued to increase and peaked in 2015 and then abated. Specifically, 0.02 Tg of SOC and 0.015 Tg 228 

of SOC were lost during the periods of 2000–2005 and 2005–2010, respectively (Fig. 6f). These two periods 229 

were dominated by slight losses in SOC that occurred throughout the study area, and small patches of strong 230 

SOC sources in the northwest (Fig. 6a, b). From 2010–2015, severe SOC loss occurred over a large area (Fig. 231 

6c, g). The total SOC loss during this period was 0.024 Tg (Fig. 6f) — approximately 31% of the total loss 232 

during the entire study period — and was mainly concentrated in northern and western Kaifeng (Fig. 6c). 233 
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After 2015, the SOC loss driven by AIS installation was only 0.008 Tg (Fig. 6Error! Reference source not 234 

found.f), which was the lowest loss among each period, and was mainly distributed in the northwest of the 235 

city (Fig. 6d). 236 

4. Discussion 237 

4.1 Changing characteristics of AIS in Kaifeng  238 

As the main type of land cover, it is crucial to understand the magnitude and spatial distribution of 239 

changes in AIS. The spatiotemporal patterns of AIS are closely related to urbanization-induced environmental 240 

problems, particularly when evaluating soil-related ecological problems, such as SOC losses in our study. 241 

Kaifeng has experienced dramatic growth since 2000 and has primarily sprawled to the west (Fig. 4). There 242 

are many reasons for this spatial change. First, Kaifeng was the old provincial capital of Henan, and the main 243 

part of the built-up area consisted of a high density of low-height buildings. This is also reflected in (Fig. 5a–244 

e), where Kaifeng is shown to have had a higher AIS density (histograms in figures) in the early years. 245 

Secondly, as these regions were difficult to renew for historical reasons, new lands were developed for urban 246 

expansion and the city could only expand to the east and west because of geographic restrictions. The Yellow 247 

River flows through the northern part of the city, and there are large areas of wetland resources, which the 248 

Chinese government has strictly prohibited from being used for urban development. To the south, the 249 

Lanzhou–Lianyungang Railway and military airfields cut off the possibility of southward expansion. Third, 250 

westward sprawling was the inevitable result (Fig. 5), not only because the current capital of Henan, 251 

Zhengzhou, lies to the west of Kaifeng, but also because of the implementation of the “Zhengzhou & Kaifeng 252 

Integration” in the 13th five-year plan in 2005 (Liu et al., 2011). With the completion of the core region of the 253 

Zhengdong New District, the “Zhengzhou & Kaifeng Integration” plan was substantially progressed in 2010, 254 

which further guided the extensive westward expansion of Kaifeng from 2010–2015 (Fig. 4, Fig. 5c–d). 255 

Additionally, it is notable that the land use intensity (taken as the AIS abundance in this study) in Kaifeng has 256 

remained high since 2010 (with mean values >0.69 in Fig. 4b), and the frequency of AIS abundances >0.9 has 257 

increased since 2010 (Fig. 5c-e) due to the unique land-related construction policies in Henan. 258 

4.2 Quantifying and locating SOC losses in Kaifeng 259 

Our study demonstrates that intensive urbanization (i.e., drastic AIS expansion) resulted in the loss of 260 

~0.67 Tg (1.61 kg m-2) of SOC in Kaifeng from 2000 to 2020, acted as a carbon source, and mainly occurred 261 

in the west (Fig. 6). The SOC loss was slightly higher than that found in Urumqi (1.23 kg m-2), a typical 262 

dryland city in NW China  (Yan et al., 2016). Kaifeng is located in a warm temperate continental monsoon 263 
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climate, so the background SOCD values were higher than those in Urumqi (i.e., 10.24 kg m-2 vs. 9.77 kg m-2 264 

of urban green space and 13.59 kg m-2 vs. 5.59 kg m-2 of bare land, respectively). Kaifeng may suffer more 265 

SOC loss than Urumqi when exposed to construction activities since soils in temperate ecosystems have 266 

higher SOCD than dryland ecosystems. More importantly, AIS expansion in Kaifeng mainly occupied green 267 

spaces, the SOCD of which was much higher than SOCDAIS (10.24 kg m-2 vs. 8.88 kg m-2) (Table S3), while 268 

in Urumqi, most displacement involved bare soils, which have similar SOCD and SOCDAIS values (5.36 kg 269 

m-2 vs. 5.59 kg m-2) (Yan et al., 2016). This indicates that SOC loss due to conversion into AIS in Kaifeng 270 

may be stronger than in Urumqi. 271 

In a review of the literature, we found that the SOCD of croplands was equal to that of AIS (Sun et al., 272 

2010) (Table S3). According to China's second soil census data, Kaifeng is mainly composed of fluvio-aquic 273 

soil, and the average 100 cm depth SOCD was ~5.17 m-2. This type of soil develops based on the river 274 

alluvium, which is loose (i.e., minimally compacted). According to Chinese construction standards (especially 275 

for roads), to achieve a certain degree of support, it was necessary to backfill a large amount of soil in 276 

Kaifeng. The soils used for backfilling may have had higher SOCD, which could have further increased the 277 

SOCDAIS after consolidation. This may partly explain why the SOCDAIS in Kaifeng was higher. Even though 278 

SOCDAIS was higher, soil organic matter decomposed after being sealed (Majidzadeh et al., 2018) while 279 

accumulating in croplands (Zhang et al., 2018). Excluding croplands, SOCDAIS was the lowest among the 280 

different land covers (Table S3). The truth of AIS installation is that sealing the soil with impermeable 281 

materials blocks the exchange of water and energy between soils and the atmosphere (Scalenghe and Marsan, 282 

2009). Therefore, AIS expansion both in the form of infilling and sprawl resulted in remarkable losses of SOC 283 

in Kaifeng from 2000 to 2020 (Fig. 6). 284 

4.3 How does SOCDAIS change in response to soil sealing? 285 

Sealed soils are usually assumed to be stable when evaluating the urban carbon cycle (Churkina et al., 286 

2010; Kuittinen et al., 2016; Zhu et al., 2012). However, it has been noted that SOCAIS loss occurs in the first 287 

53 years after sealing and tends to stabilize thereafter (Majidzadeh et al., 2018). In another study, it was 288 

reported that the top 20 cm of SOCAIS in Yixing showed a decreasing trend, and its variability could be 289 

characterized by y = 0.44 + 0.53e-0.25  (Wei et al., 2014). Additionally, the potential carbon sequestration 290 

capacity of non-impervious regions (i.e., urban greenspaces and croplands) has also been easily overlooked in 291 

similar studies (Edmondson et al., 2012; Lu et al., 2020; Yan et al., 2016). Previous studies conducted in 292 

Kaifeng have also shown that the 100-cm-deep soils of the greenfield increased by ~66% between 1994 and 293 

2006 (6.17 kg m-2 in 1996 vs. 9.96 kg C m-2 in 2006), with an average annual growth rate of 4.07%  (Ma et al., 294 
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1999; Sun et al., 2008) (Table S4). The 0–20-cm SOC of typical croplands in Henan has shown an increasing 295 

trend at a rate of 0.033 kg m-2/year (1.65 m-2 in 1981 vs. 2.65 m-2 in 2011) (Zhang et al., 2018). Therefore, the 296 

impact of AIS installation on local SOC is not confined to the removal of topsoil, yet the mechanisms by 297 

which SOC changes after sealing have not been clearly addressed. Furthermore, the removal of vegetation has 298 

resulted in direct losses to aboveground biomass, and further destroyed the potential carbon sequestration of 299 

the original vegetation/soil, leading to the “invisible loss” of SOC. As the SOC dynamics caused by AIS 300 

expansion are very complex, the aforementioned issues should be fully considered in future studies. 301 

4.4 Strengths and uncertainties 302 

In this study, the annual growth of AIS in Kaifeng was demonstrated at the subpixel level. Changes in 303 

urban form were further delineated based on the abundance of AIS within a pixel. Additionally, we evaluated 304 

and spatially presented the SOC dynamics based on precise AIS and field data. Here, we provide insights into 305 

the monitoring of AIS expansion in terms of both sprawl and infilling, and delineate the trends in changes in 306 

AIS based on analyses of the proportions of AIS within a pixel. The latest global annual AIS data from 1985–307 

2018 could improve our understanding of the gradual changes in AIS within a given city (Gong et al., 2020). 308 

Nonetheless, compared to our study, this dataset can only be used to understand AIS sprawl, to the exclusion 309 

of infilling, as it involves pixel-based data (Fig. S5). Likewise, most existing global urban products are pixel-310 

based and have coarse temporal resolutions (He et al., 2019; Liu et al., 2018; Zhou et al., 2018). Meanwhile, 311 

urban environments are more dynamic than natural ecosystems (i.e., forests and grasslands), and can undergo 312 

many qualitative and subtle changes within a short period and at fine scales (Li et al., 2018). Therefore, high-313 

frequency AIS data that can capture transient and gradual changes in urban development, such as the subpixel 314 

data used here, provide a means of comprehensively understanding urbanization-induced ecological issues, as 315 

well as more reliable information for urban management. 316 

Here, we provide a framework to spatially illustrate SOC dynamics based on precise AIS data. Previous 317 

studies have mainly been focused on revealing the differences in SOC and/or soil nitrogen between AIS and 318 

pervious surfaces based on field data (Lu et al., 2020; Raciti et al., 2012), rather than on understanding SOC 319 

dynamics and AIS expansion in a spatially explicit way. We found that strong carbon sources exist in western 320 

Kaifeng, where drastic AIS expansion occurred; this information could help policymakers to: (1) take action 321 

to avoid generating strong carbon sources during continued western urbanization, and (2) enhance parks and 322 

improve greenspace coverage to compensate for SOC losses. Since rapid urbanization in the 21st century is 323 

responsible for many ecological issues, and to meet China’s promise to reach peak CO2 emissions before 324 
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2030 and achieve carbon neutrality before 2060 (Normile, 2020), detailed information on the magnitude of 325 

SOC dynamics and location of carbon sinks/sources is needed to effectively implement carbon management 326 

policies and practices. 327 

Some remaining uncertainties in this work should be addressed in the future. The first stems from the 328 

estimated SOCDAIS. Generally, many randomized soil sample plots are required to calculate a confident 329 

SOCD value. However, it is difficult to collect soil samples beneath AIS because of the constraints of urban 330 

management regimes, which is a common issue in most studies concerned with soil properties under AIS 331 

(Table S1). We recognize that it is unconvincing to use limited data to assess the dynamics induced by AIS 332 

expansion. However, the essence of AIS expansion is the conversion of soil with a higher SOCD into soil 333 

with a lower organic carbon density beneath the AIS, which results in a considerable amount of SOC loss  334 

(Wei et al., 2014; Yan et al., 2015). Although this may present a source of great uncertainty, our results are 335 

consistent with those of previous studies (Lu et al., 2020; Yan et al., 2016), which suggests that the findings 336 

are robust across various methodologies. Another uncertainty is based on the assumption that the SOCAIS is 337 

stable after being sealed. While we found three reports related to the dynamics of SOCDAIS in the literature 338 

(Dou et al., 2021; Majidzadeh et al., 2018; Wei et al., 2014), we could not confirm whether or not these 339 

findings were applicable in our study. In conclusion, SOC dynamics during the expansion of AIS are subtle 340 

and more observed SOCD is needed. Various factors (e.g., measured SOCD of different land cover types, soil 341 

disturbance suffered during construction, SOCAIS dynamics, and the end of the removed soils) need to be 342 

considered in the calculation of SOC dynamics due to urbanization. In the future, we will deepen our analyses 343 

to help resolve these issues and better understand how AIS impact SOC. 344 
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 469 

Fig. 1 Location of the study area and sampling sites. A WorldView-3 image (bands 5, 3, and 2) acquired on 470 

May 26, 2020 at a 0.5-m spatial resolution was used471 
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Fig. 2 Workflow of the study. Abbreviations: GAIA, global artificial impervious area; LMSA, linear spectral 473 

mixture analysis; MNF, minimum noise fraction; SOCDBL, SOCD of bare lands; SOCDC, SOCD of croplands; 474 

SOCDUG, SOCD of urban green spaces475 
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Fig. 3 Relationship between estimated fraction of AIS and reference data in Kaifeng from 2002–2020477 
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 478 

Fig. 4 Geographic distribution of changes in AIS (a) and temporal patterns of total AIS area and mean 479 

abundance (b) in Kaifeng from 2000–2020 480 



 

 24 

 481 

Fig. 5 Spatiotemporal patterns of AIS expansion in Kaifeng from 2000 to 2020 482 
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 483 

Fig. 6 Spatially explicit SOC dynamics influenced by the expansion of AIS in Kaifeng from 2000–2020 484 
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