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Abstract
Background: The syndrome of kidney-yang deficiency is one of the main syndromes in traditional Chinese
medicine. Modern evidences prove that the hypothalamus - pituitary - adrenal axis (HPA axis) function
disorder is the main material basis of kidney-yang deficiency syndrome. The upper regulating center, such
as hippocampus and amygdala can affected HPA axis. Although moxibustion have a therapeutic effect
for kidney-yang deficiency syndromes, the underlying mechanism remains unclear. This study investigated
the effect of suspended moxibustion on amygdala and HPA axis and elucidated the possible molecular
mechanism of moxibustion in improving kidney-yang deficiency syndrome.

Methods: 60 male Sprague-Dawley rats were randomly divided into the normal group ( n=12) and the
model-building group (n=48). Rats in the model-building group were given intramuscular injection of
hydrocortisone to establish the model of kidney-yang deficiency. The 48 rats successfully modeled were
then randomly divided into model group (model, n=12) , carbenoxolone intraperitoneal injection group
(CBX, n=12), moxibustion group (moxi, n=12) and moxibustion plus carbenoxolone intraperitoneal
injection group (moxi+CBX, n=12). In the moxibustion group, Shenshu (BL23) and Guanyuan (CV4) points
were treated with moxibustion for 14 days. After treatment, the level of corticostesone (CORT),
adrenocorticotropic hormone (ACTH) and corticotropin-releasing hormone (CRH) in serum, the expressions
of mineralocorticoid receptor (MR), glucocorticoid receptor (GR), 11 beta-hydroxysteroid dehydrogenase
type 1 (11β-HSD1), corticotropin releasing factor (CRF) and ACTH in rats’ amygdala  and (or)
hypothalamus, pituitary were detected. Data were analyzed by one-way analysis of variance.

Results: Compared with the normal group, the level of CRH, ACTH and CORT in serum, and the mRNA and
protein expressions of MR, GR and 11β-HSD1in amygdala, the mRNA and protein expressions of 11β-
HSD1 in hypothalamus and CRF mRNA expression in amygdala and hypothalamus, and ACTH mRNA
expression in pituitary of rats in the model group were all significantly decreased (P < 0.05 or 0.01). After
treatment with moxibustion, except for 11β-HSD1 mRNA expression, the observation index mentioned
above were increased to different degrees compared with those in the model group (P < 0.05 or 0.01).

Conclusion: Suspended moxibustion can effectively improve the serum levels of ACTH, CRH and CORT,
and can up-regulate the mRNA and protein expression of MR, GR , 11β-HSD1, CRF and ACTH in amygdala
and hypothalamus of kidney-yang deficiency rats, which may be one of the molecular mechanisms of
moxibustion in improving kidney-yang deficiency syndrome. 

Background
Hypothalamic-pituitary-adrenocortical axis (HPA axis), an important part of the neuroendocrine system, is
involved in the control of stress reaction and the regulation of many physical activities, such as digestion,
immune system, mood and emotion, sexual behavior, energy storage and consumption [1]. The HPA axis
is not only affected by the negative feedback of hormones secreted by each organ, but also affected by
the upper regulating center, such as hippocampus and amygdala. Amygdala is a part of the limbic system,
which is composed of the amygdala central nucleus, medial nucleus and cortical nucleus. Stimulation of
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these three nuclei in rats can induce corticosterone secretion, while damage to the amygdala can reduce
the secretion of ACTH and corticosterone caused by fracture, and also reduce the secretion of ACTH after
adrenalectomy [2]. Study has shown that the activation of CRH peptide in the central amygdala can
positively respond to cortisol, leading to anxiety, fear and stimulate the stress system [3]. In addition, the
amygdala also contains high concentrations of CRF, CRH, CRH receptors, CRH binding proteins and
corticosteroid receptors [4]. This suggests that the amygdala may have the ability to synthesize and
secrete CRH, which may directly activate the HPA axis and be regulated by the feedback of CRH and
corticosteroid. Further studies suggest that CRH systems from hypothalamus and amygdala jointly
constitute the neural circuits of stress responsiveness and anxiety generation in chronic stress [4].

Glucocorticoid (GC) is the terminal product of the HPA axis, which plays a key role in the amygdala-HPA
axis and stress response [5]. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) participate
in the regulation of the HPA axis through the combination with GC [6]. The negative feedback regulating
effect of GC on target tissue (including HPA axis) depends on the content of GR and MR in the upper
regulating center and the concentration of GC in target tissue cells. Besides the influence of the
concentration of GC in the plasma, the concentration of GC in the target tissue is mainly adjusted by the
preglucocorticosteroid metabolase 11 beta-hydroxysteroid dehydrogenase (11β-HSD) [7, 8]. 11β-HSD is a
microzyme complex, a metabolic rate-limiting enzyme of glucocorticoid, which catalyzes the REDOX
reaction between the ketone group (inactive) and the hydroxyl group (active) at the position 11 of
glucocorticoid [9]. 11β-HSD1 is more expressed in hippocampus, amygdala, neocortical and cerebellum in
adult rats, which is helpful to maintain the level of corticosterone in inner part and plays an important role
in promoting the growth and maturation of tissues [10]. Carbenoxolone (CBX), a derivative of glycyrrhizae,
is a non-selective inhibitor of 11β-HSD, which can inhibit both 11β-HSD1 and 11β-HSD2 [11]. The
inhibition of 11β-HSD1 by CBX was similar to that of 11β-HSD1 knockout mice [12].

Kidney-yang deficiency syndrome, one of the main syndromes in traditional Chinese medicine, is a type of
deficiency-cold syndrome caused by deficiency and decline of kidney-yang. Modern studies have
confirmed that the low function of HPA axis is the main material basis of kidney-Yang deficiency
syndrome [13]. Literature research and clinical observation [14–17] showed that moxibustion therapy in
traditional Chinese medicine has a good effect on kidney-Yang deficiency syndrome. Our previous studies
have also shown that moxibustion on shenshu and guanyuan with moxa sticks can effectively improve
the dysfunction of HPA axis [18]. Can moxibustion with moxa stick affect the expression of MR, GR, 11β-
HSD1, CRH and ACTH in the amygdala-HPA axis to treat kidney-yang deficiency syndrome? Therefore, its
therapeutic mechanism is worthy of further study.

Methods

Experimental animals
Sixty healthy, clean, male, Sprague Dawley (SD) rats aged 8 weeks (weighing 200 ± 20 g) were purchased
from the Experimental Animal Center of Jiangxi University of Traditional Chinese Medicine, of Jiangxi
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Province, China (certificate no. JZLLSC (jiangxi) 2018-0033). The rats were fed with standard fodder and
with food and water freely available in a controlled environment with a constant temperature of 20 ~ 25℃
and a 12/12-hr light/dark cycle. All procedures were conducted in accordance with guidelines reviewed
and approved by the Institutional Animal Care and Use Committee of Jiangxi University of Traditional
Chinese Medicine, China.

Modeling
Sixty rats were randomly divided into the normal group (norm, n = 12) and the model-building group (n = 
48). Referring to literature [19] and making improvements, each rat in the model-building group was given
intramuscular injection of hydrocortisone(Huazhong pharmaceutical co., LTD., national drug approval no.
H420201507) at a dose of 0.03 mg/g·bw in left and right hind limbs of the rat alternately, and the
modeling was carried out continuously for 14 days. Each rat in the normal group was given an
intramuscular injection of 0.9% normal saline at a dose of 0.03 mg/g·bw for 14 days. During this period,
natural light and free eating and drinking will be adopted. Criteria for model success [20[: decreases in
body weight, withered clothing hair, hunched back, aversion cold, tendency to cluster, slowed reaction,
weakness, decreased activity, scrotal shrinkage, and significantly increased urine output.

Grouping and treatment
The 48 rats successfully modeled were then randomly subdivided into model group (model, n = 12),
carbenoxolone intraperitoneal injection group (CBX, n = 12), moxibustion group (moxi, n = 12) and
moxibustion + carbenoxolone intraperitoneal injection group (moxi + CBX, n = 12).

In the moxibustion treatment group, guanyuan (CV4) and shenshu(BL25) (double laterals) were selected,
and acupoints locating according to the experimental acupuncture [21]. Moxibustion treatment began on
the 1st day after modeling finished. Before the treatment, the hair on the acupoints was cut off to expose
the skin in advance. guanyuan (CV4) and shenshu (BL25) points were heated by suspended moxibustion
using a moxa-stick produced from mugwort (custom-made for use with animals, length 12 cm, diameter
0.6 cm, made in the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang,
China) at a height of approximately 3 cm over a hairless area of the skin for 20 min, once a day for 14
days.

Rats in the CBX group were given intraperitoneal injection of carbenoxolone at a dose of 10 mg /( kg·d)
(11) once a day for 14 days. Fixation was performed as in the moxibustion group for a total of 14 times.

Rats in the moxi + CBX group were received moxibustion as in the moxibustion group. After moxibustion
treatment, the rats were given intraperitoneal injection of carbenoxolone as in the CBX group.

Rats in the normal group and model group were fixed in the same way as the moxibustion group did, and
were given intraperitoneal injection of normal saline (10 mg /( kg·d) once a day for 14 days.
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Sampling
After 14 days of treatment, rats were anesthetized with an intraperitoneal injection of sodium
pentobarbital 3% (weight/volume) at a dose of 40 mg/kg. Arterial blood is extracted and centrifuged to
extract the supernatant, and stored in the − 20℃ refrigerator for later use. Tissues such as amygdala,
hypothalamus and pituitary were extracted and stored in the − 80℃ refrigerator for later use.

Enzyme linked immunosorbent assay (ELISA) assessment
The levels of CORT, ACTH and CRH were determined using an ELISA kit purchased from Shanghai bogu
biotechnology co., LTD (Shanghai, China). The ELISA-based method was conducted according to protocol
provided by manufacturer.

Reverse transcription real-time quantitative polymerase
chain reaction (RT-qPCR)
RT-qPCR was performed as described previously with minor modifications [22]. Total RNA was isolated
from amygdala, hypothalamus and pituitary of rats in each group using TRIZOL reagent (Invitrogen,
Carlsbad, CA, USA). The mRNA expression levels of MR, GR, 11β-HSD1,CRH and ACTH were measured
using an RT-qPCR system with SYBR Green (Thermo Fisher Scientific, Waltham, MA, USA). cDNA was
amplified by PCR using primers for each target gene. cDNA was synthesized from each RNA using a
random primer and RevertAid™ M-MuLV reverse transcriptase (Fermentas), according to the
manufacturer's instructions. PCR was performed in a final volume of 25 µL, containing 12.5 µL 2 × PCR
master mix, 2 µL cDNA, 1 µL forward primer, 1 µL reverse primer, and 8.5 µL sterilized DEPC water. RT-
qPCR conditions were as follows: 94 °C for 5 minutes, followed by 40 cycles of 95 °C for 15 seconds,
60 °C for 45 seconds and 72 °C for 30 seconds. The fluorescence signal was detected at 60 °C, and the
samples were finally extended at 72 °C for 7 minutes. The amplification efficiency was compared between
the target and reference control glyceraldehyde 3-phosphate dehydrogenase (GAPDH) using the delta-
delta Ct (∆∆Ct) method [23]. The primers employed are listed in Table 1.
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Table 1
Primer sequences for real-time quantitative polymerase chain reaction

Gene Full name Sequences (5–3′) Product size
(bp)

11β-
HSD1

 

MR

11 beta- hydroxysteroid
dehydrogenase type 1

 

mineralocorticoid receptor

Sense primer: AAA ATA CCT CCT CCC
CGT CC

antisense primer: AGG CAG CGA GAC
ACC ACC

Sense primer: AGA AGC TGG GGA
AGT TAA AAG G

antisense primer: TCG GAG CGA TGT
ATG TGG TC

219

 

 

102

GR glucocorticoid receptor Sense primer: CAT TAC CAC AGC TCA
CCC CTA C

antisense primer: GCA ATC ACT TGA
CGC CCA C

148

CRH

 

 

ACTH

 

 

GAPDH

corticotropin-releasing hormone

 

 

adrenocorticotrophic hormone

 

 

glyceraldehyde 3-phosphate
dehydrogenase

Sense primer: TGG CTC TGT CGC
CCT GTC

antisense primer: CAG CGG GAC TTC
TGT TGA GG

Sense primer: CTC CTG CTT CAG ACC
TCC ATA G

antisense primer: GGC TGT TCA TCT
CCG TTG C

Sense primer: GGA GTC TAC TGG
CGT CTT CAC

antisense primer: ATG AGC CCT TCC
ACG ATG C

186

 

 

161

 

 

237

 

Western blot assay
Western blot analysis was performed as described previously with minor modifications [24]. All amygdala
and hypothalamus tissues obtained in each group were homogenized in lysis buffer (JRDUN
Biotechnology, Shanghai, China). The sample was centrifuged at 12,000 r/min for 20 minutes at 4 °C, and
an aliquot of the supernatant was taken for protein concentration estimation using the BCA assay. Equal
amounts of proteins were separated by sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-
PAGE), and then the resolved proteins were transferred to polyvinylidene fluoride (PVDF) membranes
(Millipore, Bedford, MA, USA). The membranes were incubated with primary antibodies overnight at 4 °C.
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Monoclonal antibodies used for Western blotting included a rat monoclonal anti-MR antibody (1:1000;
Santa Cruz Biotechnology, Santa Cruz, CA, USA). The antibodies used in this study were rat monoclonal
antibodies, 1:1000 and were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA), except for
those specifically indicated. The other antibodies included anti-GR, anti-11β-HSD1 and anti-GAPDH. The
membranes were washed 5 minutes with Tris-buffered saline Tween 3 times and incubated with goat anti-
rabbit IgG-HRP (1:1000; Beyotime Biotechnology, Shanghai, China) and goat anti-mouse IgG-HRP PS1 (C-
20) (1:1000; Beyotime Biotechnology, Shanghai, China) antibodies at 37 °C for 1 hour. The
immunoreactive bands were visualized using an enhanced chemiluminescence reagent (Beyotime
Biotechnology, Shanghai, China). The grayscale values of bands were quantified using Image J software
(Fujifilm, Tokyo, Japan). The relative expression of protein was calculated based on the ratio of target
grayscale values to loading control grayscale values.

in situ hybridization
in situ hybridization was performed as described previously with minor modifications [25]. Six paraffin
blocks were selected randomly and placed into a refrigerator at -20℃ for at least 30 minutes. Then, the
blocks were cut into 4-7-µm-thick serial sections. After being dewaxed and dehydrated, each section was
incubated in 50 µl hybridization buffer containing 10 µM oligonucleotide probe at 95℃ for 5 minutes and
37–40℃ for 12 hours, washed three times with 5×, 1 × and 0.2 × saline sodium citrate, and treated with
blocking buffer at 37℃ for 15 minutes. Then, the blocking buffer was blotted with paper. Each section
was then incubated in 30 µl biotinylated anti-digoxin antibody (1:50) at 37℃ for 1 hour, washed four
times with 0.5 M PBS, incubated in streptavidin-biotin-peroxidase complex at 37℃ for 30 minutes, and
rinsed four times in 0.5 M PBS. Subsequently, the sections were developed in 3, 3, diaminobenzidine,
counterstained with hematoxylin, dehydrated in alcohol, permeabilized in xylene, mounted with proof
quench mounting agent, and photographed with a fluorescence microscope [26]. The upper, middle, lower,
left and right visual fields were randomly selected for each section and the image-pro Plus 6.0 software
was used to detect the integrated optical density (IOD) of positive cells, the average value was used for
statistical analysis. The negative control was incubated in 0.01M PBS without primary antibody. The
primers employed are shown in Table 2.



Page 8/24

Table 2
Primer sequences for Hybridization in situ

Gene Full name Sequences (5–3′)

11β-
HSD1

CRF

MR

11 beta-
hydroxysteroid
dehydrogenase
type 1

corticotropin-
releasing factor

mineralocorticoid
receptor

CAGAUGCCAGGUUUGUGCUCAAGUAAAUCCAAAAUGGAUAGCCUUACUCA

 

CAAUACAAAUAACGCUGUUUUGUUACUACAAAGAAACACACUUUGUGCA

GGAUGGAGAGGAUAGCAAUCCCGGCAGUCGCCCUACUGACGGUGGG

GR glucocorticoid
receptor

UGCUUGUGGAGCCUUUCGAGAAAUCAAGGAGAAUCCUCUGCUGCUU

 

Statistical analyses
All data are presented as the mean ± SD. Data were analyzed by one-way analysis of variance followed by
a post hoc Student-Newman-Keuls (SNK) test using SPSS 19.0 software (SPSS, Chicago, IL, USA). A value
of P < 0.05 was considered statistically significant.

Results

The level of CORT, ACTH and CRH in serum by ELISA
Compared with the normal group, the level of CORT, ACTH and CRH in serum of rats in the model group
was significantly decreased (P < 0.01). After treatment, except for the CBX group, the serum level of CORT
and ACTH in the other two groups were significantly increased compared with those in the model group (P 
< 0.05 or 0.01). And the serum levels of CRH were significantly increased compared with that in the model
group (P < 0.05 or 0.01).

Compared with the CBX group, the serum level of CORT and CRH in the moxibustion group was
significantly higher (P < 0.01), and the serum level of ACTH in the moxibustion and moxi + CBX group were
significantly higher (P < 0.01or 0.05). Compared with the moxibustion group, the serum level of CORT,
ACTH and CRH in the moxi + CBX group was significantly lower (P < 0.01 or 0.05). As shown in Fig. 1.

The mRNA expression of MR, GR, 11β-HSD1, CRH and ACTH
by qRT-PCR
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Compared with the normal group, the mRNA expressions of MR and GR in the amygdala of rats in the
model group were both significantly decreased (P < 0.01). After treatment, except for the CBX and moxi + 
CBX group, the mRNA expressions of MR and GR in the amygdala of rats in the moxibustion group were
significantly higher than those in the model group (P > 0.01). Except for GR, the mRNA expressions of MR
and GR in the amygdala were not significantly different among CBX, moxibustion and moxi + CBX group
(P > 0.05). As shown in Fig. 2A.

Compared with the normal group, the mRNA expressions of 11β-HSD1 and CRH in the amygdala of rats in
the model group were both significantly decreased(P < 0.01). After treatment, except for CBX group and
CRH in the CBX group, the mRNA expressions of CRH in the amygdala of rats in the moxibustion group
and moxi + CBX group were significantly higher than those in the model group (P < 0.01 or 0.05).
Compared with CBX, the mRNA expressions of 11β-HSD1 and CRH in the amygdala of rats in the
moxibustion group were significantly increased (P < 0.01 or 0.05). As for the mRNA expressions of 11β-
HSD1 and CRH, therer were no significantly different between moxibustion and moxi + CBX group (P > 
0.05). As shown in Fig. 2B.

Compared with the normal group, the mRNA expressions of 11β-HSD1 and CRH in the hypothalamus of
rats in the model group were both significantly decreased(P < 0.01). After treatment, except for 11β-HSD1
in the CBX and moxi + CBX group, the mRNA expressions of 11β-HSD1 and CRH in the hypothalamus of
rats in the CBX, moxibustion and moxi + CBX group were significantly higher than those in the model
group (P < 0.01 or 0.05). Compared with the CBX group, except for CRH in the moxi + CBX group, the mRNA
expressions of 11β-HSD1 and CRH in the hypothalamus of rats in the moxibustion and moxi + CBX group
were both significantly increased (P < 0.01). As for the mRNA expressions of 11β-HSD1 and CRH, there
were no significantly different between moxibustion group and moxi + CBX group (P > 0.05). As shown in
Fig. 2C.

Compared with the normal group, the ACTH mRNA expression in the pituitary of rats in the model group
was significantly decreased (P < 0.01). After treatment, except for the CBX group, the ACTH mRNA
expressions in the pituitary of rats in the moxibustion and moxi + CBX group were significantly higher than
that in the model group (P < 0.01 or 0.05). Compared with the CBX, the ACTH mRNA expressions in the
moxibustion group was significantly higher(P < 0.01). As for the ACTH mRNA expressions, there were no
significantly different between moxibustion group and moxi + CBX group (P > 0.05). As shown in Fig. 2D.

The protein expression of MR, GR and 11β-HSD1 by Western
blotting
Compared with the normal group, the protein expressions of MR, GR and 11β-HSD1 in the amygdala of
rats in the model group were all decreased to different degrees (P < 0.05 or 0.01). After moxibustion
treatment, the protein expression of MR, GR and 11β-HSD1 in the amygdala of rats were increased to
different degrees compared with those in the model group (P < 0.05). As for the protein expressions of MR,
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GR and 11β-HSD1, there were no significantly different among the CBX, moxibustion and moxi + CBX
group (P > 0.05).As shown in Fig. 3A and B.

Compared with the normal group, the 11β-HSD1protein expression in the hypothalamus of rats in the
model group was significantly decreased (P < 0.01). After treatment, the 11β-HSD1 protein expression in
the hypothalamus of rats were significantly increased compared with that in the model group (P < 0.01).
As for the 11β-HSD1 protein expression in the hypothalamus of rats, there were no significantly different
among the CBX, moxibustion and moxi + CBX group (P > 0.05). As shown in Fig. 3 C and D.

mRNA expressions of MR, GR, 11β-HSD1 and CRF in
amygdala, and 11β-HSD1 and CRF in hypothalamus by in
situ hybridization
In situ hybridization-positive cells contained brown spots or particles, as indicated by the arrows. In the
normal group, a large number of mRNA expressions of MR, GR, 11β-HSD1 and CRF in amygdala, and 11β-
HSD1 and CRF in hypothalamus were observed (Fig. 4, 5, 6). After modeling induced by hydrocortisone
injection, rare mRNA expressions of MR, GR, 11β-HSD1 and CRF in amygdala, and 11β-HSD1 and CRF in
hypothalamus were observed, and the integral optical density (IOD) values of mRNA expressions of MR,
GR, 11β-HSD1 and CRF in amygdala, and 11β-HSD1 and CRF in hypothalamus of rats in the model group
were significantly decreased (P < 0.01) compared with those in the normal group (Fig. 4, 5, 6 and Fig. 7).

Treatment with moxibustion could increase the mRNA expressions of MR, GR, 11β-HSD1 and CRF, and the
IOD values of their positive cells in the amygdala of rats in the moxibustion group were significantly higher
than those in the model group and in the CBX group (P < 0.01 or 0.05) (Fig. 4, 5 and Fig. 7A, 7B).

As for MR mRNA expressions, the IOD values of its positive cells in the moxibustion group was
significantly higher than that in the moxi + CBX group (P < 0.05) (Fig. 4 and Fig. 7A). As for 11β-HSD1
mRNA expression,the IOD values of its positive cells in the moxi + CBX group was higher than that in the
CBX group (P < 0.05). And as for CRF mRNA expression༌the IOD values of its positive cells in the moxi + 
CBX group was higher than that in the model group (Fig. 5 and Fig. 7B).

Treatment with moxibustion could increase the mRNA expressions of 11β-HSD1, and the IOD values of its
positive cells in the hypothalamus of rats in the moxibustion group and in the moxi + CBX group were
significantly higher than those in the CBX group (P < 0.01 or 0.05), but not higher than those in the model
group (P > 0.05). Treatment with moxibustion could increase the mRNA expressions of CRF, and the IOD
values of its positive cells in the hypothalamus of rats in the moxibustion group and in the moxi + CBX
group were significantly higher than those in the model group (P < 0.01 or 0.05), but not higher than those
in the CBX group (P > 0.05) (Fig. 6 and Fig. 7C).

Discussion
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Corticotropin releasing hormone (CRH) is one of the primary regulator of the hypothalamus - pituitary -
adrenal (HPA) axis [4]. CRH, released from a central bump in the hypothalamus, is transported to the
anterior pituitary via portal vein system, and stimulates the secretion of adrenocorticotropic hormone
(ACTH), then ACTH stimulate adrenal cortical synthesis to secret glucocorticoid (GC) [4]. GC can also
inhibit the generation of ACTH and CRH by feedback, thus forming the feedback regulating loop of HPA
axis [27, 28]. In addition, the amygdala can also synthesized and secreted CRH, then directly activate the
HPA axis and be regulated by the feedback of CRH and GC [29–32]. The feedback regulation of GC to the
amygdala and the hypothalamus may be related to the combination of GC with GR and (or) with MR.
When the level of GC was within the basis range, GC almost completely binds to MR, and only when GC’s
concentration higher than the basis level will bind to GR [33]. When GC combines with GR in the amygdala,
it gives feedback information to the neurons in small cell group of paraventricular nucleus of
hypothalamus, thus reducing the secretion of CRH. Through top-down regulation, the activity of HPA axis
is further inhibited, so as to reduce the excessive GC level in the body, thus maintaining the hormone level
homeostasis of the body [32]. Before GC binds to GR and MR, its activity and concentration are affected
by the regulator 11β-HSD1, which converts inactive 11-dehydrocorticosterone / cortisone into active
corticosterone / cortisol [34].

When a large amount of exogenous corticosteroids are used in the body for a long time, GC leads to
excessive activation of GR, which eventually leads to the damage of nerve cells in the upper regulatory
center, such as hippocampus and amygdala, and the HPA axis function is inhibited by the feedback. When
the use of exogenous corticosteroids is stopped, the inhibition of HPA axis is exposed. The stress and
adaptability of the body to the changes of the external environment significantly decrease, and a series of
yang deficiency manifestations of deficiency and cold appear [35, 36]. Just as the treatment for some
autoimmune diseases requires long-term use of a large number of hormones, when the disease improves,
the patient develops hormone-dependent symptoms, showing the symptoms of yang deficiency of
traditional Chinese medicine [37, 38]. The most commonly used rat model of corticosterone kidney-yang
deficiency was prepared according to this pathological factor. In this study, after modeling the rats took on
a series of deficiency manifestations such as withered clothing hair, decreases in body weight, slowed
reaction, aversion cold, weakness, tendency to cluster, and decreased activity. In this study, detected by
PCR, WB and in situ hybridization, we found that there was a lower expression of MR, GR, 11β-HSD1, CRH
or CRF in the amygdala of rats in the model group than those in the normal group. And the expression of
11β-HSD1, CRH or CRF in the hypothalamus of rats in the model group has the same tendency as those in
the amygdala. Compared with the normal group, the level of CORT, ACTH and CRH in serum, the mRNA
expression of ACTH in pituitary in the model group rats were significantly decreased, which was the same
as the results in our previous study [18].

11β-HSD has two isoenzymes, i.e. 11β-HSD1 and 11β-HSD2. 11β-HSD1 is a primary reductase that
converts inactive 11-dehydrocorticosterone/cortisone into active corticosterone / cortisol. But the action of
11β-HSD2 is opposite to that of 11β-HSD1 [10]. When the concentration or activity of GC is high in vivo,
11β-HSD2 outweighs 11β-HSD1 in the role of conversion, in contrast, when GC low, 11β-HSD1 outweighs
11β-HSD2. Together, they assist MR and GR to maintain the relative stability of hormone levels. CBX can
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inhibit both 11β-HSD1 and 11β-HSD2 [11]. After modeling in this study, GC was always at a low level in
rats, 11β-HSD1 was activated and played an important role, and MR was also activated and combined
with GC. Therefore, as the results of this study showed, the mRNA expression of MR in the amygdala was
about three times that of GR. As a blocking agent, CBX mainly inhibits 11β-HSD1, so in this study 11β-
HSD1 was selected as the observation index instead of 11β-HSD2. In this study, the expression of 11β-
HSD1 in the amygdala and hypothalamus of rats in the CBX group was lower than that in the model
group. Due to the effect of 11β- HSD1 was blocked by CBX, the concentration or activity of GC is lower in
the CBX group, thus causing increased expression of MR in the amygdala by feedback regulation. Just as
the experiment results showing that the MR expression of amygdala in rats in the CBX group is higher
than that in the model group, correspondingly, CRF expession in the amygdala and hypothalamus, CRH
expression in hypothalamus and ACTH expression in the pituitary of rats in the CBX group are higher than
those in the model group, and the levels of CORT, ACTH and CRH in serum of rats in the CBX group is
higher than that in the model group. Literature research found that there was no similar studies have been
reported, but there were still some experiments that use the expressions of CRH, MR, GR, etc. in the
amygdala and hypothalamus as observation indicators to study the effect of GC on the body. For
example, when pregnant Wistar rats were injected with CBX (12.5 mg s.c.) daily throughout pregnancy,
Welberg, et al. [39] found that CBX treatment reduced birth weight, and adult offspring of CBX-treated
dams had persistently reduced body weight, showed less grooming and rearing,and reduced immobility in
a forced swim test. In addition, they found that these animals had increased basal CORT levels, increased
CRH and reduced GR mRNA in the hypothalamus, increased GR mRNA expression in the amygdala, with
unaltered MR mRNA. The effect of CBX on the expression of CRH, MR and GR in the offspring amygdala
and hypothalamus of pregnant rats was inconsistent with the results of this study. The reason mainly
maybe that the observing subjects or animal models were different in the two experiments.

For the treatment of kidney-yang deficiency syndrome, the introduction to medicine,a classic work of
traditional Chinese medicine, has the theory that moxibustion treating the deficiency syndrome, so as to
help restoring the yuan yang; moxibustion treating the cold syndrome, so as to help re-warming the qi.
Moxibustion is a traditional Chinese medical therapy using the burning of dried mugwort (moxa) and is
widely used in China for the treatment of various diseases and symptoms of “deficient conditions”
(weakness) [40]. Suspended moxibustion is an indirect form of moxibustion in which the moxa-stick is
placed on an acupoint without skin contact to stimulate circulation by warming the acupoints and
inducing smoother flow of blood and qi, to improve health and facilitate recovery from disease [40]. In our
previous study, moxibustion on shenshu and guanyuan points could positively regulate the dysfunction of
pituitary-adrenal and pituitary-thyroid axis in rats with kidney-yang deficiency syndrome [18]. In this study,
compared with the model group, the mRNA and protein expressions of MR, GR and 11β-HSD1 in the
amygdala of rats were significantly up-regulated after the treatment on shenshu and guanyuan point with
suspended moxibustion. After moxibustion, the mRNA expressions of 11β-HSD1 and CRF(or CRH) in the
hypothalamus, ACTH in the pituitary and the level of CRH, ACTH and CORT in serum of rats were all
significantly increased compared with those in the model group. According to the theory of tradition
Chinese medicine, shenshu is mainly used to repair yang, guanyuan is mainly used to repair qi, and the
two acupoints are in harmony with each other, so as to cultivate yuan qi, and to improve the function of
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tonifying kidney and warming yang [41]. One possible reason is that, according to the theory from the
Golden mirror of medicine (YiZong Jin Jian), another classic work of traditional Chinese medicine,
shenshu point belongs to the bladder meridian, which is the back shu point of the kidney༌and guanyuan
point belonging to ren meridian, is the small intestine collection point, and is the commonly used point for
the treatment of all kinds of deficiency. Another reason may be that, according to modern
neuroanatomical theory, Shenshu point, innervated by the 1st ~ 3rd lumbar ganglion segment, was related
with genitalia by ilioinguinal nerve and genital nerve of lumbar plexus, and was closely related to the
kidney, adrenal gland, internal genitalia, etc. through the traffic branch of the lumbar sympathetic trunk
and the lumbar visceral nerve [18]. And guanyuan point is connected to the liver, spleen, kidney and other
substantial organs through the twelfth thoracic nerve and related small visceral nerves. Zhou et al. [42]
using HRP nerve tract tracking technology, found that the afferent projection of guanyuan and uterus had
convergence and overlap in the spinal ganglia between lumbar 3 and sacral 5. In this study, treatment with
suspended moxibustion on shenshu and guanyuan has not only a strong theoretical basis, but also a wide
range of experimental basis. For example, Zhao et al. [43] found that the symptoms of kidney-yang
deficiency were improved after a period of mild moxibustion treatment on guanyuan and shenshu point in
elderly patients. Ren et al. [41] found that the treatment of moxibustion on shenshu and guanyuan could
significantly improved the inhibitory state of the HPA axis in rats with kidney-yang deficiency, and the
therapeutic effect of combination of shenshu and guanyuan was significantly better than that of
combination of shenshu and zusanli or combination of zusanli and guanyuan. This was one of the
reasons that shenshu and guanyuan were selected in this study.

Conclusion
In this study, we demonstrated that suspended moxibustion can effectively improve the serum levels of
ACTH, CRH and CORT, and can up-regulate the mRNA and protein expression of MR, GR, 11β-HSD1, CRF
and ACTH in amygdala and hypothalamus of kidney-yang deficiency rats. Considering the experimental
model of kidney-yang deficiency syndrome used in this study shares several pathologic similarities to
human, then MR, GR and 11β-HSD 1 could represent a novel therapeutic target in the treatment of kidney-
yang deficiency syndrome.
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11β-HSD1 11 beta-hydroxysteroid dehydrogenase type 1

ACTH adrenocorticotropic hormone

CBX carbenoxolone

CORT corticosterone

CRF corticotropin releasing factor

CRH corticotropin releasing hormone

ELISA enzyme linked immunosorbent assay

GAPDH glyceraldehyde 3-phosphate dehydrogenase

GC glucocorticoid

GR glucocorticoid receptor

HPA axis hypothalamus - pituitary - adrenal axis

MR mineralocorticoid receptor

PBS phosphate buffered solution

RT-qPCR Reverse transcription real-time quantitative polymerase chain reaction

SD Sprague Dawley

SNK Student–Newman–Keuls
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Figures

Figure 1

Comparison of the level of CORT, ACTH and CRH in serum. Compiled results in a bar graph for the level (A)
of CORT, (B) of ACTH, (C) of CRH. ①P < 0.01, ②P < 0.05 versus norm； ③P < 0.01, ④P < 0.05 versus model；⑤P <
0.01, ⑥P < 0.05 versus CBX；⑦P < 0.01, ⑧P < 0.05 versus moxi. Data are shown as the mean ± standard error
of the mean (1-way analysis of variance and Student-Newman-Keuls post hoc test, n = 6 rats/group).
norm: normal group; model: model group; CBX: carbenoxolone intraperitoneal injection group; moxi:
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moxibustion group; moxi + CBX: moxibustion plus carbenoxolone intraperitoneal injection group. CORT:
corticosterone; ACTH: adrenocorticotrophic hormone; CRH: corticotropin-releasing hormone.

Figure 2

Comparison of the relative mRNA expressions of MR, GR, 11β-HSD1, CRH and ACTH. Compiled results in a
bar graph for the relative mRNA expression (A) of MR and GR / GAPDH in amygdala, (B) of 11β-HSD1 and
CRH / GAPDH in amygdala, (C) of 11β-HSD1 and CRH / GAPDH in hypothalamus, (D) of ACTH / GAPDH
in pituitary. ①P < 0.01, ②P < 0.05 versus norm；③P < 0.01, ④P < 0.05 versus model；⑤P < 0.01, ⑥P < 0.05 versus
CBX；⑦P < 0.01, ⑧P < 0.05 versus moxi. Data are shown as the mean±standard error of the mean (1-way
analysis of variance and Student-Newman-Keuls post hoc test, n = 6 rats/group). norm: normal group;
model: model group; CBX: carbenoxolone intraperitoneal injection group; moxi: moxibustion group; moxi +
CBX: moxibustion plus carbenoxolone intraperitoneal injection group. MR: mineralocorticoid receptor; GR:
glucocorticoid receptor; 11β-HSD1: 11 beta-hydroxysteroid dehydrogenase type 1; CRH: corticotropin-
releasing hormone; ACTH: adrenocorticotrophic hormone; GAPDH: glyceraldehyde-3- phosphate
dehydrogenase.
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Figure 3

MR, GR and 11β-HSD1 activation in the amygdala and hypothalamus following treatment. (A) Western
blotting bands for MR, GR, 11β-HSD1 and GAPDH expression in the amygdala. (B) Compiled results in a
bar graph for the ratio of MR, GR and 11β-HSD1 / GAPDH expression. (C) Western blotting bands for 11β-
HSD1 and GAPDH expression in hypothalamus. (D) Compiled results in a bar graph for the ratio of 11β-
HSD1 / GAPDH expression. ①P < 0.01, ②P < 0.05 versus norm；③P < 0.01, ④P < 0.05 versus model. Data are
shown as the mean±standard error of the mean (1-way analysis of variance and Student-Newman-Keuls
post hoc test, n = 4 rats/group). norm: normal group; model: model group; CBX: carbenoxolone
intraperitoneal injection group; moxi: moxibustion group; moxi + CBX: moxibustion plus carbenoxolone
intraperitoneal injection group. MR: mineralocorticoid receptor; GR: glucocorticoid receptor; 11β-HSD1: 11
beta-hydroxysteroid dehydrogenase type 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.



Page 21/24

Figure 4

mRNA expression of MR and GR in the amygdala following treatment (in situ hybridization, × 200). Bar =
50 µm. norm: normal group; model: model group; CBX: carbenoxolone intraperitoneal injection group;
moxi: moxibustion group; moxi + CBX: moxibustion plus carbenoxolone intraperitoneal injection group.
MR: mineralocorticoid receptor; GR: glucocorticoid receptor.
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Figure 5

mRNA expression of 11β-HSD1 and CRF in the amygdala following treatment (in situ hybridization, ×
200). Bar = 50 µm. norm: normal group; model: model group; CBX: carbenoxolone intraperitoneal injection
group; moxi: moxibustion group; moxi + CBX: moxibustion plus carbenoxolone intraperitoneal injection
group. 11β-HSD1: 11 beta- hydroxysteroid dehydrogenase type 1; CRF: corticotropin releasing factor.
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Figure 6

mRNA expression of 11β-HSD1 and CRF in the hypothalamus following treatment (in situ hybridization, ×
200). Bar = 50 µm. norm: normal group; model: model group; CBX: carbenoxolone intraperitoneal injection
group; moxi: moxibustion group; moxi + CBX: moxibustion plus carbenoxolone intraperitoneal injection
group. 11β-HSD1: 11 beta- hydroxysteroid dehydrogenase type 1; CRF: corticotropin releasing factor.
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Figure 7

Compiled results in a bar graph for IOD values of MR, GR, 11β-HSD1 and CRF mRNA-positive cells.
Compiled results in a bar graph for IOD values (A) of MR and GR in the amygdala, (B) of 11β-HSD1 and
CRF in the amygdala, (C) of 11β-HSD1 and CRF in the hypothalamus. ①P < 0.01, ②P < 0.05 versus norm；③P
< 0.01, ④P < 0.05 versus model；⑤P < 0.01, ⑥P < 0.05 versus CBX；⑦P < 0.01, ⑧P < 0.05 versus moxi. Data are
shown as the mean±standard error of the mean (1-way analysis of variance and Student-Newman-Keuls
post hoc test, n = 6 rats/group). norm: normal group; model: model group; CBX: carbenoxolone
intraperitoneal injection group; moxi: moxibustion group; moxi + CBX: moxibustion plus carbenoxolone
intraperitoneal injection group. MR: mineralocorticoid receptor; GR: glucocorticoid receptor; 11β-HSD1: 11
beta-hydroxysteroid dehydrogenase


