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Abstract: The aim of this paper is to study the interaction between a

single mode field and four-level atom in N-configuration under nonlinear

medium effect. The non-resonance case and the deformation forms in

the coupling interaction between the field and the atom are included.

The wave function of the proposed system is obtained when the atom

is prepared initially in its excited state while the field is prepared in a

coherent state. The effect of the deformation and nonlinear medium on

the temporal behavior of collapse-revival, field entropy and geometric

phase of the system are examined. The results show that the presence

of the intensity of the coupling interaction and the non-linear medium

have an important influence on the properties of these phenomena.

1 Introduction

In the past few years, the famous Jaynes-Cummings model (JCM) [1] has been went

through various generalizations, including the multiplicity of cavity modes [2] and

the multiplicity of atoms [3]. Moreover, the two-level has been expanded to the

multilevel, one of the most important of these generalizations is the study of an

atom with four levels [4]. The four-level atom model has a lot of configurations

for example, cascade, bi-cascade, N -type, bi-Λ(V ), tripod and etc. In particular,

many forms for the realization of four-level atom interacting with a cavity field have

been studied and several of their aspects have been demonstrated [5]. The four-level

atomic system is one of fundamental sources of nonclassical properties of quantum

information. In particular, an all-optical switching in a bi-Λ four-level atomic system

both theoretically and experimentally are presented [6] and the spontaneous emission

behavior when the atom inside in an optical crystal with anisotropic dispersion is

also investigated [7]. The Pump-probe spectroscopy of coherently-driven bi-Λ four-

level, using the master equation approach has been demonstrated [8]. A four-state
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of a quantum system that absorbs two photons but does not absorb a single photon

has been described [9,10].

Recently, lasing without population in the Y-diagram in a bi-quantum dot nanos-

tructure has been discussed in [11]. Also, the optical aspects of this system, using the

density matrix formalism are investigated [12]. On the other hand, many features

of four-level quantum systems have been studied, as the electromagnetic induced

absorption [13,14], the absorbtion spectrum and the squeezing [15] and the optical

gain properties [16]. Also, the effect of a nonlinear medium on the interaction of a

four-level moving atom with a cavity field has been studied in [17,18]. Moreover, the

quantum behavior of an atomic system with a four-level tripod type [19-23] has been

examined. Through those reviews, investigations into four-level atomic systems are

very interesting and important in the field of quantum information.

The main objective in this paper is to generalize the proposed model [24] to

study the interaction of a N-type four-level atom with a cavity field. The model

consists of an atom with four levels of N-type and contains a non-resonant case

with deformation functions in addition to the nonlinear medium. Depending on the

solution of the time-dependent Schrödinger equation, the wave function is obtained

when the atom and the field start from the excited and coherent states respectively.

Some properties for the considered system are calculated and investigated. The

effect of the deformation function and the non-linear medium on the behavior of

atomic population inversion, the quantum entropy and the geometric phase in the

non-resonance case are investigated.

The article is arranged as follows: In Section 2, we present the proposed model

and show some mathematical properties that are used in obtaining the exact solution

for Schrödinger equation. We devote Section 3 to the wave function describing the

proposed system. The atomic population inversion, quantum entropy and geometric

phase are calculated in Sections 4, 5 and 6, respectively. We finish the paper by

giving results and conclusions.

2 The model

Here, we assume that a four-level N -type atom interacting inside a cavity interacting

with one-mode field. The model has the deformed operators for some kinds of

nonlinearities of both the intensity dependent-coupling and the field. We denote

that, the four levels |j〉, (j = 1, 2, 3, 4) with energy ωj(j = 1, 2, 3, 4) and the filed
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with frequency Ω. The Hamiltonian Ĥ of the atomic system in the rotating wave

approximation can be written, as (~ = 1)

Ĥ =
4∑

j=1

ωjσ̂jj + ΩR̂†R̂ + χR̂†2R̂2 +

[
R̂

(
λ1Ŝ13 + λ2Ŝ23 + λ3Ŝ24

)
+ h.c.

]
,

R̂† = f(â†â)â†, R̂ = âf(â†â). (1)

where â†(â) is the creation (annihilation) operator, Ŝk` = |k〉〈`|(` = 1, 2, 3, 4) are

the population operators for ` = k and the raising (lowering) operators for ` 6= k, χ

describes the strength of the non-linearity modelling Kerr medium, λs(s = 1, 2, 3)

is the coupling constant between the atom and the field mode, and â†â = m̂ is the

photon number operator.

The model include functions of the photon number f(m̂) and also the Kerr

medium is taken into account. Also, choosing f(m̂) = 1 leads to the model [24].

Now, we shall present some interesting properties of the operators of the model under

consideration. The atomic operators satisfy the following commutation relations,

[Ŝjk, Ŝ`n] = Ŝjnδk` − Ŝ`kδnj,

where δjk is the Kroniker symbol. Moreover, the deformed field operators satisfy,

[R̂, R̂†] = (m̂ + 1)f 2(m̂ + 1)− m̂f 2(m̂),

[R̂, m̂] = R̂, [R̂†, m̂] = −R̂†. (2)

Now, we turn our attention to obtain the wave function of our system.

3 The Wave Function

In order to find the wave function of the atomic system at any time t, we consider

that it takes the following form

|Ψ(t)〉 =
∑
m

qm

[
L1(m, t)e−iA1t|1,m〉+ L2(m, t)e−iA2t|2,m〉

+L3(m, t)e−iA3t|3,m + 1〉+ L4(m, t)e−iA4t|4,m + 1〉
]

(3)

with
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A1 = ω1 + Ω m f 2(n) + χm (m− 1) f 2(n) f 2(m− 1),

A2 = ω2 + Ω m f 2(n) + χ m (m− 1) f 2(m) f 2(m− 1),

A3 = ω3 + Ω (m + 1) f 2(m + 1) + χ m (m + 1) f 2(n) f 2(m + 1),

A4 = ω4 + Ω (m + 1) f 2(m + 1) + χ m (m + 1) f 2(m) f 2(m + 1)

where qn describes the amplitude of state |m〉 and the coefficients Lj are the

probability amplitudes which can be obtained by the solution of time dependent

Schrodinger equation i d
dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉 under the initial state |Ψ(0)〉. So, the

coefficients Lj obeys the coupled system of differential equations (D. E.) :

i
d

dt




L1

L2

L3

L4




=




0 0 f1e
−iδ1t 0

0 0 f2e
−iδ2t f3e

−iδ3t

f1e
iδ1t f2e

iδ2t 0 0

0 f3e
iδ3t 0 0







L1

L2

L3

L4




(4)

where
fs = λs

√
m + 1 f(m + 1), δ1 = A3 − A4,

δ2 = A3 − A2, δ3 = A4 − A2.
(5)

It is remarkable that, when χ = 0 and f(m) = 1 the quantities δ1, δ2 and δ3 are the

usual detuning parameters ∆1, ∆2 and ∆3, respectively.

Let us now consider the atom starts the intraction from the upper state |1〉 and the

field in a coherent state |α〉:

|α〉 =
∑
m

qm|m〉 =
∑
m

√
α2me−〈m̂〉

m!
|m〉 (6)

where 〈m̂〉 = |α|2 is the initial mean photon number, then the initial state vector of

the system is given by,

|Ψ(t = 0)〉 =
∑
m

qm|m, 1〉 (7)

In this case, the coupled D. E. system (6) can be solved exactly, the probability

amplitudes taken the following expressions:

L1(m, t) =
∑

j cj eiµjt

L2(m, t) = 1
f1f2

∑
j cj (µ2

j + δ1µj − f 2
1 ) ei(µj−δ12)t

L3(m, t) = −1
f1

∑
j cj µje

i(µj+δ1)t

L4(m, t) = −1
f1f2f3

∑
j cj (µ3

j + Γ1µ
2
j + Γ2µj + Γ3) ei(µj+Γ4)t,

(8)
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where

cj =
−[Γ3+f2

1 (Γ1+µk+µ`+µm)+µkµ`mum]

(µj−µk)(µj−µ`)(µj−µm)
, (j 6= k 6= ` 6= m = 1, 2, 3, 4),

δ12 = δ1 − δ2, Γ1 = δ12 + δ1,

Γ2 = δ1δ12 − f 2
1 − f 2

2 , Γ3 = −δ12f
2
1 , Γ4 = δ3 + δ12.

(9)

where µj satisfies the following fourth-order equation

µ4 + x3µ
3 + x2µ

2 + x1µ + x0 = 0 (10)

where
x0 = Γ3Γ4 + f 2

1 f 2
3 , x1 = Γ2Γ4 + Γ3 − δ1f

2
1 ,

x2 = Γ1Γ4 + Γ2, x3 = Γ1 + Γ4.
(11)

Based on Ferari method the four roots of (10) are:

µ1 = −x3

4
− y

2
− y−

2
, µ2 = −x3

4
− y

2
+ y+

2
,

µ3 = −x3

4
+ y

2
− y+

2
, µ4 = −x3

4
+ y

2
+ y+

2
,

(12)

where
y =

√
z1 + z2

3
+ z3

3z2
, y∓ =

√
z4 ∓ z5

4z6
,

z1 = −2x2

3
+

x2
3

4
, z2 = 12x0 + x2

2 − 3x1x3,

z3 = [
z7+
√
−4z3

2+z2
1

2
]
1
3 , z4 = 2z1 − z2

3z3
− z3

3
,

z5 = −8x1 + 4x2x3 − x3
3, z6 =

√
z2 + z2

3z3
+ z3

3
,

z7 = 27(x2
1 + x0x

2
3)− x2(72x0 − 2x2

2 + 9x1x3).

(13)

Now, the time-dependence properties of some statistical quantities of the considered

system will be obtained by the atomic system wave function |Ψ(t)〉.

4 Atomic population inversion

The population inversion is one of important quantities in quantum information

[25, 26, 27, 28]. Where through its results we can determine the periods of collapse

and revival, which are useful in determining the periods of maximally entangled

state and purity periods (separable state). The atomic population inversion (API)

is defined in terms of the diagonal elements of the atomic density matrix ρ̂AB(t) as

W (t) = ρ11(t)− ρ33(t)

ρ11(t) =
∑
m

|qmL1(m, t)|2 , ρ44(t) =
∑

n

|qmL4(m, t)|2 (14)
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Figure 1: Time evolution of the atomic inversion W (t).The field is initially in the

identical pair coherent states (α =
√

10) with χ = 0 in (a,c,e) and χ = 0.5 (b,d,f).

f(m) = 1in (a,b), f(m) =
√

m in (c,d) and f(m) = 1√
m

in (e,f).
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We neglect the effect of the deformation f(m̂) = Î and the nonlinear medium

χ = 0. The function W (t) oscillates regularly and the revival occurs periodically

every 2π
√

10 and the collapse achieved once at the beginning of the interaction time.

Moreover, the intensity of oscillations decreases with increasing time, as seen in the

Fig.(1a). The regular behavior becomes chaotic and the phenomena of revival and

collapse are erased after adding the Kerr medium into the interaction cavity. When

the case of deformation f(m̂) =
√

m̂ is taken into account, the phenomena of revival

and collapse are largely achieved while the intensity of the oscillations decreases.

Moreover, the amplitude of oscillations and the revival times are reduced. The

effect of the Kerr medium appears at the beginning of the interaction and this effect

decreases gradually with increasing time. The axis of symmetry of the function W (t)

appears in the negative part and after a short period of time it reaches the horizontal

axis, as observed in Fig.(1d). For another case of the deformation f(m̂) = 1√
m̂

is

taken into account, the function W (t) fluctuates smoothly and the phenomena of

revival and collapse are not realized as the intensity of the oscillations decreases.

After the insertion of the Kerr medium of the interaction, the phenomena of revival

and collapse is clearly generated in the negative part and gradually rises until the

axis of symmetry reaches the horizontal axis.

5 Field entropy

The Shannon entropy measure is one of the most classical measures of quantum op-

tics [29]. While the von Neumann entropy measure is the first to appear and suitable

for closed systems [30]. In this case the field entropy Sf (t) can be expressed in terms

of the eigenvalues Λj(t) for the reduced field density operator Trfield|ψ(t)〉〈ψ(t)| as,

Sf (t) = −
4∑

j=1

Λj(t) ln Λj(t), (15)

We are now studying the entanglement between the cavity field and the atom

by means of previous conditions in the atomic population. The interaction starts

from the separate state, followed by a partial entangled state that improves in the

collapse region and decreases in the middle of the revival region, these results are in

agreement with [31, 32]. The entanglement is significantly reduced after the addition

of the Kerr medium to the interaction and a weak interaction is generated between

the field and the atom as shown in the Fig.(2b). After taking the deformation
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Figure 2: Time evolution of the entropy SAB(t) with same conditions as Fig. 1
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f(n̂) =
√

m̂ into account, the entanglement improves and an orderly fluctuation

appears while the intensity of the oscillations decreases compared to the previous

case Fig.(2a,2c). The entanglement decreases after adding Kerr medium and weak

correlation appears with increasing time. For the second case of the deformation

f(m̂) = 1√
m̂

, the Rabi frequency does not depend on the number of photons, due

to a weak entanglement is generated and the entanglement between the parts of

the system is closer to separation state. After the inclusion of the Kerr medium

for interaction, the Rabi frequency that depends on the number of photons and is

proportional to n̂, the entanglement improves clearly.

6 Geometric phase

One essential feature in quantum mechanics, namely, the Pancharatnam phase and

the geometric phase has been studied by many physicists [33, 34, 35, 36]. The

geometric phase is very sensitive to the initial state and different system parameters.

The dynamical performance of the geometric phase between the initial and final

states of the system is defined by [37, 38]

ΦG(t) = arg〈Ψ(0)|Ψ(t)〉 (16)

We now begin to study the geometric phase under the same conditions in the

previous sections. In the absence of the deformation and the Kerr medium, the

geometric phase function ΦG(t) has symmetric and uniform oscillations around the

horizontal axis. Also, these oscillations are erased in the period of collapse and return

to the fluctuations in the period of revival see Fig.(1a,3a). The situation changes

completely after adding the Kerr medium to the interaction cavity. The regular

oscillations in the previous case become random and the amplitude of the oscillations

increases. The Rabi frequency becomes more effect when the deformation f(m̂) =√
m̂ taken into account. The function ΦG(t) has more oscillation and the intensity

of the oscillations increases. After insertion of the Kerr medium, the behavior of the

function ΦG(t) becomes chaotic and increases both the intensity and amplitude of

the oscillations. The second case of deformation f(m̂) = 1√
m̂

reduces the effect of

the Rabi frequency (almost constant). The function ΦG(t) becomes regular and the

intensity of the oscillations decreases significantly. The intensity of the oscillations

increases again after the insertion of the Kerr medium (Rabi frequency dependence
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on the photon number).

7 Conclusion

In this article, some properties of a model describing N -type four-level atom inter-

acting with a single-mode cavity field when both the Kerr medium and intensity de-

pendent taken into accounts are studied. The feature wave function of the proposed

system is obtained by solving the differential Schrödinger equation. The effect of

two types of deformation on statistical quantities is also studied. The results showed

that the phenomena of collapse and revival are achieved in the non-deformed case

f(m̂) = Î and in absence of the Kerr medium term. This phenomenon disappears

after adding the Kerr medium, and improves in the deformed case f(m̂) =
√

m̂

and does not appear at all in the second case f(m̂) = 1√
m̂

. A correlation appeared

between the collapse, the revival periods and the entanglement function. The entan-

glement decreases after inclusion of the Kerr medium in the absence of deformation,

while the entanglement increases in the presence of the f(m̂) = 1√
m̂

case. The effect

of the deformation and the Kerr medium on the geometric phase and its relation to

the atomic population have been also studied.
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European Physical Journal Plus, 130 (11), 227 (2015).

[28] Abdalla, M.S., Khalil, E.M., Obada, A.-S. F. Physica A, 466, 44 (2017).

[29] Shannon, C.E., Bell Syst. Tech. J. 27, 379 (1948).

[30] Von Neumann, J. Die Mathematischen Grundlagen der Quantenmechanik;

Springer: Berlin, Germany, 1932.

[31] Abdalla, M.S., Khalil, E.M., Obada, A.-S. F., Peřina, J., Křepelka, J. Eur.
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