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Abstract
Background: Preoperative prediction of the soft tissue sarcomas (STSs) grade is important for treatment decisions. To
preoperatively distinguish low-grade (grades I and II) and high-grade (grade III) STSs, we developed and validated the
performance of a magnetic resonance imaging (MRI)-based radiomics nomogram.

Methods: Patients with an STS based on the French Federation of Cancer Centers Sarcoma Group grading system at two
independent institutions were enrolled (training set, n = 109; external validation set, n = 71). The minimum redundancy
maximum relevance method and least absolute shrinkage and selection operator logistic regression were used to process
feature selection and radiomics signature development. Three radiomics signature models were constructed based on T1-
weighted imaging (RS-T1 model) and fat-suppressed T2-weighted imaging sequences (RS-FST2 model) and their combination
(RS-Combined model). Model performance (discrimination capability, calibration curve, and clinical usefulness) was evaluated
in the external validation set.

Results: The RS-T1 model, RS-FST2 model, and RS-Combined model achieved predictive abilities with area under the receiver
operating characteristic curves (AUCs) of 0.645, 0.641, and 0.829, respectively, in the external validation set. The nomogram,
incorporating signi�cant clinical factors and the RS-Combined model, showed extremely high predictive ability in the training set
and external validation set with AUCs of 0.916 (95% con�dence interval, 0.866–0.966) and 0.879 (0.791–0.967), respectively.
The nomogram achieved signi�cant patient strati�cation.

Conclusions: The proposed noninvasive MRI-based radiomics nomogram shows superior predictive performance in
differentiating low-grade from high-grade STS.

Background
Soft tissue sarcomas (STSs) are a heterogeneous group of malignant mesenchymal neoplasms [1]. They account for 1% of all
tumors and have a high mortality rate of about 50% [2]. According to the American Cancer Society, the incidence of STS was
approximately 8790 cases each year in the United States in 2017 [2]. This is comparable with the annual occurrence of
esophageal cancer (17,500 cases) and cervical cancer (12,000 cases) [3]; thus, the rarity of STS may be overestimated. Surgery
is considered the cornerstone curative treatment for localized STS with or without radiation therapy, and chemotherapy can be
added for selected patients. However, survival remains unsatisfactory; tumor recurrence is common, and the 5-year survival rate
is approximately 50%–60% [4, 5]. Therefore, identi�cation of prognostic biomarkers is needed to stratify high-risk patients and
improve the prognosis.

The histopathological grade is considered the most signi�cant prognostic factor in making optimal clinical therapy decisions for
patients with STS [6]. STSs can be de�ned as grades I to III according to the French Federation of Cancer Centers Sarcoma
Group (FNCLCC) grading system, which is based on histologic tumor characteristics such as the mitotic count, tumor
differentiation, and necrosis [7]. The prognosis of high-grade (grade III) STSs may improve with (neo)adjuvant chemotherapy,
while low-grade STSs (grades I and II) can avoid the potential unnecessary treatment [8-10]. The preoperative histological tumor
grade is mainly con�rmed through needle biopsy [11]; however, the pathological results are closely related to the sample size,
tumor site, and internal components of the tumor. Additionally, because of tumor heterogeneity, the initial biopsy grade
sometimes underestimates the actual grade of the surgical specimen [7, 12]. Consequently, formulation of an accurate and
noninvasive preoperative STS grading method is essential to identify patients who are most likely to bene�t from optimal
adjuvant treatment at the earliest possible time.

Magnetic resonance imaging (MRI) is integral to the detection, assessment, diagnosis, and follow-up of STS because of its
excellent soft tissue contrast resolution and noninvasiveness. Previous studies have revealed speci�c conventional MRI features
that are associated with the tumor grade [13, 14]. However, direct voxel-to-voxel contrast of histologic grades and imaging
features is lacking [6]. Therefore, the STS grade cannot be determined by MRI alone.
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Radiomics has the capability to express intratumoral heterogeneity in a noninvasive manner with large-scale digital medical
images using high-throughput extraction of innumerable quantitative features [15]. Moreover, radiomics provides comprehensive
knowledge because the data are obtained from the entire tumor instead from just a focal sample [16]. Furthermore, radiomics is
reproducible. Thus, MRI-based radiomics would be broadly applicable to patients with sarcomas. Radiomics has been
successfully applied in prediction of the histologic grade, local recurrence or distant metastasis, overall survival, and response to
neoadjuvant therapy in patients with STSs [17-22]. Most previous reports de�ned high-grade STS as grades II and III, while we
de�ne high-grade STS as grade III based on recently published studies [6, 22]. Additionally, the use of MRI-based radiomics for
prediction of high-grade STS (grade III) has not been widely recognized and requires further validation. Moreover, MRI-based
radiomics nomograms that combine radiomics and clinical factors for STS grading using data from multiple centers are
relatively limited.

This study was performed to develop an MRI-based radiomics nomogram using a two-center dataset and determine whether the
nomogram can distinguish the preoperative grade of STS. Additionally, a radiomics nomogram-based model was generated for
prognostic evaluation. Patient risk strati�cation and clinical decision bene�ts were analyzed for the established model in an
effort to improve personalized clinical treatment strategies and therapeutic decisions.

Methods
Data collection

Ethical approval for this two-center retrospective study was provided by our hospital’s institutional review board, which waived
the requirement for informed consent. Pre-therapeutic T1-weighted imaging (T1WI) and fat-suppressed T2-weighted imaging
(FS-T2WI) of 180 patients with STS were retrospectively analyzed. All patients’ FNCLCC tumor grades had been pathologically
con�rmed using postoperative specimens from November 2007 to November 2019. The minimum follow up time is 5 mouths.
Detailed descriptions of the inclusion and conclusion criteria are shown in Supplementary Material. The patients’ data were
gathered from The A�liated Hospital of Qingdao University (training set, n = 109) and The Third Hospital of Hebei Medical
University (external validation set, n = 71). The �nal pathologic results of the 180 patients with STS are shown in Table 1.

The patients were subsequently grouped into a low-grade group (n = 93) and high-grade group (n = 87) according to their
FNCLCC tumor grade. The patients’ basic data are shown in Table 2. The patients comprised 112 male and 68 female patients
with a mean age of 52.4 years (range, 1–93 years). Fig. 1 shows a �ow chart of the enrolled patients and radiomics
implementation.

MRI acquisition and region-of-interest segmentation

All 180 patients underwent MRI scanning using a GE MRI 1.5T, GE Signa HDx 3.0T (GE Medical Systems, Milwaukee, WI, USA),
Siemens Skyra 3.0T, Siemens Magnetom Prisma 3.0T (Siemens Healthcare GmbH, Erlangen, Germany), or Philips Achieva 1.5T
(Philips Medical Systems, Best, the Netherlands). The following scanning parameters were used: T1WI (repetition time [TR] /
echo time [TE], 420–680 ms / 6.1–20 ms); FS-T2WI (TR / TE, 2640–5000 ms/ 30–102 ms,); section spacing, 1 mm; section
thickness, 3–4 mm, matrix, 320 × 320; �eld of view, 200–400 mm Three-dimensional region of interest (3D-ROI) segmentation of
all tumors was conducted manually using ITK-SNAP open-source software (v.3.8.0; http://www.itksnap.org). The ROI was
outlined according to the contour of the tumor from each transverse layer on preoperative T1WI and FS-T2WI sequences and
automatically turned into a 3D-ROI. The 3D-ROI segmentation covered the entire primary tumor and avoided obvious peritumoral
edema. Intraobserver and interobserver intraclass correlation coe�cients (ICCs) were calculated to test the intraobserver
reproducibility and interobserver reliability for the radiomic feature extraction of 40 random patients. Readers 1 and 2 drew the
3D-ROIs, and the next Reader 1 repeated the segmentation after 1 month. The ROI segmentation depicted by Reader 1 were used
for further analysis. Intraobserver and interobserver ICCs of >0.75 were included for the subsequent investigation.

Image preprocessing and radiomics feature extraction
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Preprocessing procedures were applied to compensate for inhomogeneous intensity caused by different institutions and to
decrease the variability of features. A method to decrease the number of gray levels and thus improve the signal-to-noise ratio of
the texture calculations results was applied. The 3D-ROIs were then isotropically resampled to a planar resolution (voxel size = 1
× 1 × 1 mm3) using cubic interpolation to standardize the voxel spacing [23, 24].

3D Slicer software (v.4.10.2; https://www.slicer.org/) was implemented for radiomics feature extraction. Using this software, a
range of radiomics features was extracted and the intratumoral heterogeneity of the segmented 3D-ROIs was quantitatively
expressed by the extracted features. The radiomics features (n = 1130) were respectively derived from T1WI and FS-T2WI
sequences from each 3D-ROI, incorporating shape features, �rst-order features, texture features including the gray-level co-
occurrence matrix, gray-level dependence matrix, gray-level size-zone matrix, gray-level run-length matrix, and neighboring gray
tone matrix and wavelet decomposition features.

ComBat compensation method

Effects obtained by different MRI scanners and protocols were removed using the ComBat compensation method while
retaining its outperforming features in texture patterns, which potentially improved the power and reproducibility of subsequent
investigations [25, 26].

Patients’ clinical data and MRI features

Clinical data (age, sex, and TNM stage) and MRI features were analyzed. The TNM stage was determined using the preoperative
MRI and computed tomography information. Each musculoskeletal MRI scan was evaluated by two readers who had 7 and 14
years of experience and were blinded to the clinical and histopathological data. A consensus was reached in cases of
discrepancy. The recorded data were described in Supplementary Material.

A pathologist (F.H.) with 11 years of experience in soft tissue diseases explained the pathology, incorporating the stage and
histologic subtype. The FNCLCC system assigns a score for the tumor’s mitotic index, differentiation, and extent of necrosis, and
the tumor grade is obtained by summing these three scores. The pathologic TNM stage was determined based on the guidelines
in the American Joint Committee on Cancer (AJCC) Cancer Staging Manual, 8th edition.

Construction of radiomics signature

A subsequent statistical analysis was performed using R software (v3.5.1; https://www.R-project.org). After removing redundant
and irrelevant features and retaining the most related features for grading of STS by applying the minimum redundancy
maximum relevance algorithm, the 30 best radiomics features were selected and applied to least absolute shrinkage and
selection operator (LASSO) regression to generate the radiomics signature[27]. Next, the radiomics features with non-zero
coe�cients selected from LASSO regression formed three radiomics signatures based on T1WI sequences (RS-T1 model), FS-
T2WI sequences (RS-FST2 model), and their combination (RS-Combined model). The radiomics score (rad-score) was
calculated according to its linear combination of corresponding LASSO non-zero coe�cients.

Development of clinical model and radiomics nomogram

Univariate logistic regression was performed for the clinical risk factors and MRI features used to evaluate the STS grade. The
factors with a two-sided P value of <0.05 were then introduced into a multivariate logistic regression. The variables with a two-
sided P value of <0.05 from the multivariate analysis were considered potential independent clinical risk factors associated with
the histologic grade and were used to compose a clinical model. Ultimately, a clinical model was established. Finally, the
signi�cant clinical factors and the optimal radiomics signature were selected and combined in the radiomics nomogram.

Validation of the radiomics nomogram and performance assessment of differentmodels

The radiomics nomogram was assessed for discrimination, calibration, and clinical application [28] in both sets. The
discrimination capability of the clinical model, radiomics signatures models and radiomics nomogram to correctly distinguish
the grade was quanti�ed by the AUC and accuracy. The Hosmer–Lemeshow test was used to assess the goodness-of-�t with a
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calibration curve to evaluate the calibration of the nomogram [29]. The external validation set was used to test the radiomics
nomogram, and the rad-score was correspondingly calculated using the formula established in the training set.

The AUC between each two of the three models was evaluated using the DeLong test. The clinical application was estimated by
a decision curve analysis (DCA) to determine whether the radiomics nomogram can be regarded as robust and effective. The
DCA was used to quantitatively calculate the net bene�ts for a range of different threshold probabilities in the whole cohort.

Follow-up and survival analysis

The patients underwent MRI or computed tomography follow-up examinations every 6 to 12 months for the �rst 2 years and
annually thereafter. Progression-free survival (PFS) was calculated as the survival endpoint for patient outcomes from the time
of surgery to the time of radiographic detection of recurrence, time of last follow-up examination, or time of death without
evidence of progression. Patients were censored in case of on 30 November 2019.

Survival curves were generated based on Kaplan–Meier survival analysis. Differences in survival curves were assessed by the
log-rank test. The pathologic grade results model, radiomics signature model, and radiomics nomogram model were further
evaluated for their performance in PFS strati�cation. We combined the nomogram model with the AJCC staging system (Cancer
Staging Manual, 8th edition) to analyze its ability in PFS strati�cation.

Statistical analysis

R software was used to perform the statistical analysis. A two-sided P value of <0.05 was regarded as statistically signi�cant.

A univariate analysis was performed to evaluate the relationships between the patients’ characteristics. For continuous
variables, Student’s t-test or the Mann–Whitney U test was used to determine whether signi�cant inter-group differences existed
between the low-grade and high-grade groups; for classi�ed variables, the chi-square test or Fisher’s exact test was performed
where appropriate. The packages we used in R software were described in Supplementary Material.

Results
Clinical factors and modeling

The basic clinical characteristics of the 180 patients with STS are shown in Table 2. The T-stage, MRI-reported margin, and
median PFS were signi�cantly different between the low-grade and high-grade groups in both the training set and external
validation set (both P < 0.05). The remaining factors showed no signi�cant difference between the two groups in either the
training set or external validation set. The results of the univariate and multivariate logistic regression analyses with P < 0.05 are
shown in Table 3. Based on the results of the multivariate logistic regression analysis, the T-stage and MRI-reported margin were
included to create a clinical model, with an AUC of 0.787 and 0.833 in the training set and external validation set, respectively.
The results are shown in Table 4 and Fig. 3.

Radiomic feature selection and radiomic signature performance

Both intraobserver and interobserver ICCs of >0.75 were considered features with robustness and were included in the
subsequent investigation. The selected radiomics features of the RS-Combined model are shown in Fig. 2a. The corresponding
rad-score of each patient is shown in Fig. 2b and c. The AUC was signi�cantly different between the RS-Combined model and
RS-FST2 model (P < 0.05 both in the training set and external validation set). The AUC showed signi�cant difference between
the RS-Combined model and RS-T1 model (P < 0.001) or RS-T1 model and RS-FST2 model (P < 0.001) in the external validation
set. The AUC showed no signi�cant difference between each two of the following models in the training set: RS-Combined
model vs. RS-T1 model, P = 0.297 and RS-T1 model vs. RS-FST2 model, P = 0.076. The RS-Combined model was chosen for
construction of the radiomics nomogram because it had the highest AUC in both sets. The predictive performance of these
models is shown in Table 4 and Fig. 3.

Patient risk strati�cation andvalidation of the radiomics nomogram
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Kaplan–Meier survival curves of the different models are shown in Fig. 4. The strati�ed analysis is shown in Supplementary
Material. A radiomics nomogram that combined the RS-Combined model and signi�cant clinical factors was subsequently
constructed (Fig. 5a). The predictive performance of these models is shown in Table 4 and Fig. 3. The AUC showed a signi�cant
difference between the Nomogram model and Clinical model (P < 0.05) and Nomogram model and RS-Combined model (P <
0.05) in the training set. The AUC showed no signi�cant difference between each two of the following models: RS-Combined
model vs. Clinical model, P = 0.349 and 0.965 in the training and external validation set, respectively; Nomogram vs. RS-
Combined model, P = 0.209; and Nomogram vs. Clinical model, P = 0.388 in the external validation set. Kaplan–Meier curves
showed that the nomogram-predicted model signi�cantly strati�ed patients for PFS in both sets (log rank P < 0.05, respectively;
Fig. 4k, l).

The calibration curve of the radiomics nomogram showed good agreement between the predicted and observed tumor grade in
both sets (Fig. 5b, c.). The Hosmer–Lemeshow test result was not statistically signi�cant (P = 0.872 in the training set and P =
0.506 as veri�ed by the external validation set). The DCA indicated that the radiomics nomogram had a higher overall net bene�t
than the radiomics signature and the clinical model in predicting the preoperative STS grade considering the “treat all” and “treat
none” schemes through the reasonable treatment threshold probability (Fig. 5d), proving its clinical usefulness.

Prognostic radiomic prediction models show moderate performance

We also assessed whether the established models offer increased bene�ts over the clinical staging system. The radiomics
nomogram model achieved optimal predictive performance for PFS in the external validation set with a concordance index (C-
index) of 0.584 [95% con�dence interval (CI), 0.511-0.658] compared with the RS-T1 model (C-index: 0.568, 95%CI 0.492-0.641),
RS-FST2 model (C-index: 0.507, 95%CI 0.424-0.589), RS-Combined model (C-index: 0.564, 95%CI 0.487-0.641), and the AJCC
staging system alone (C-index: 0.526, 95%CI 0.450-0.601).

Finally, the model that combined radiomics nomogram model with the best-selected predictive performance and the AJCC
staging system achieved a slightly increased bene�t (C-indices for radiomics nomogram + AJCC: 0.591, 95%CI 0.492-0.641).
Furthermore, the radiomics nomogram combined with the AJCC staging system signi�cantly strati�ed patients for PFS (log rank
P < 0.010; Fig. 5e).

Discussion
Preoperative grading of STS is critical for choosing the optimal treatment method (neoadjuvant treatment or radiation therapy).
Additionally, preoperative grading has been proven to independently affect the prognosis in patients with STS [6, 30]. However,
the preoperative grade based on biopsy examination results is sometimes underestimated because of tumor heterogeneity [7]. In
this study, a noninvasive method derived from massive clinical and MRI data was investigated for predicting the preoperative
histologic grade. The radiomics nomogram, which combined the RS-Combined model with clinical factors, successfully
distinguished high-grade from low-grade STS with the highest performance and exhibited good calibration in both sets,
indicating the incremental value of the nomogram and showing that it can be a promising tool for clinical strategy adjustment.
Additionally, the developed radiomics nomogram model signi�cantly strati�ed patients into low- and high-risk patients for PFS.
The model that combined the radiomics nomogram and the AJCC staging system showed better prognostic ability than the
AJCC staging system alone with signi�cant patient risk strati�cation. The radiomics models showed moderate performance for
the prognostic prediction of PFS.

 MRI is widely used for characterization of soft tissue tumors. Previous reports have noted some qualitative MRI characteristics
that may serve as potential imaging biomarkers of the histopathologic STS grade. Zhao et al. [14] found that high-grade STS
tended to have high peritumoral signal intensity on T2-weighted images. Crombé et al. [6] con�rmed that MRI features of
necrosis, heterogeneity, and peritumoral enhancement are associated with high-grade STS. In this study, a clinical model that
included the T-stage (which represents tumor size) and MRI-reported margin was proven to predict the tumor grade, which is
partly consistent with recent reports [13, 14]. The results indicated that patients with high-grade STS are more likely to have an
ill-de�ned margin, and one reason may be that high-grade tumors show greater invasive ability in peripheral tissues [14].
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However, although traditional MRI interpretation re�ects the macroscopic imaging features, it lacks objectivity and quanti�cation
and tends to be in�uenced by the radiologist’s experience.

Radiomics as an emerging favorable alternative method for preoperatively describing the quantitative characteristics of tumors.
It produces maximized information from large-scale radiologic images that is beyond qualitative evaluation by visual inspection
[31-33]. Therefore, radiomics based on MRI scans may achieve better decision-making. Corino et al. [34] reported that a
radiomics classi�er based on apparent diffusion coe�cients in 19 patients could be used to distinguish grade II from III STS.
Xiang et al. [35] found that quantitative MRI-based histogram parameters can differentiate the grade of STS, Zhang et al. [17]
demonstrated that FS-T2WI-based radiomics could be used to predict the histopathological grade of STS in a study with a small
cohort of 35 patients, and Wang et al. [18] found that radiomics signature-based machine-learning classi�ers can distinguish
low-grade from high-grade STS. Nevertheless, these studies had small sample cohorts and two of them lacked a validation set,
which potentially lead to the problem of over�tting. Conversely, we de�ned high-grade STS as grade III with balanced patient
data, retrospectively enrolled more patients from two different hospitals, combined a clinical model to form a radiomics
nomogram, and validated model e�ciency in an external validation set. Additionally, conventional T1WI and FS-T2WI
examinations were used for radiomics feature extraction because these techniques are commonly used, easy to access, familiar
among radiologists, and show stability in clinical practice. Conversely, multi-modality MRI sequences such as diffusion-
weighted imaging readily exhibit distortion and susceptibility artifacts, and dynamic contrast-enhanced images tend to be
in�uenced by the injected contrast medium [36].

The RS-Combined model established in this study showed good reproducibility with a similar AUC and accuracy in the training
set and external validation set, indicating that RS-Combined model was generalizability and stability. Peeken et al. [37]
established a radiomics-combined model based on contrast-enhanced T1-weighted fat-saturated (T1FSGd) and fat-saturated
T2-weighted (FS-T2WI) MRI sequences with an AUC of 0.76. However, because most patients in our study underwent non-
contrast-enhanced T1WI and FS-T2WI examinations, we could only construct a more generalized RS-Combined model based on
T1WI and FS-T2WI, and it achieved an AUC of 0.829 in the external validation set and showed prediction performance similar to
that reported by Peeken et al. [37]. This might indicate that good model performance can also be obtained by incorporating
T1WI instead of T1FSGd in future studies. This will allow patients to avoid invasive procedures and the potential risks of
contrast-enhanced examinations, such as contrast agent allergy and increased liver and kidney metabolic burdens.

We established a radiomics nomogram that combined independent clinical factors and the RS-Combined model, showing the
best AUC in each dataset, better calibration, and highest net bene�t in a range of threshold probabilities. This is consistent with
recent reports of strati�cation of patients with glioblastoma and soft tissue tumors [37, 38]. The nomogram graphically creates
a clinical statistical predictive model, is easy to use, and enables accurate prediction of an individual patient’s probability of
preoperative strati�cation. The preoperative nomogram model allowed us to stratify patients, identify patients with high-grade
STS who may need adjuvant systemic therapies, and more con�dently establish a rational follow-up schedule [39, 40]. The
nomogram can be applied in different clinical situations to provide complementary staging information, such as when a biopsy
specimen is di�cult to access anatomically or when the biopsy result is unclear.

We also assessed the prognostic ability of the developed radiomics models. Radiomics models solely developed to predict PFS
displayed only moderate predictive ability. The radiomics nomogram grading model signi�cantly strati�ed patients into low- and
high-risk groups in both the training and external validation sets compared with the other models. The radiomics nomogram
showed a slightly enhanced prognostic capacity when combined with the AJCC staging system.

Previous investigations have demonstrated that radiomics can be used to predict survival outcomes in patients with STS.
Spraker et al. [20] found that radiomics features alone or combined with age and grade were respectively independent predictors
of over survival, and the latter achieved best performance. Peeken et al. [37] demonstrated that the radiomics model based on
T1FSGd MRI sequences showed signi�cant patient strati�cation performance for overall survival, and improved prognostic
performance was found with the combination of a T2FS radiomics model with the AJCC system. Conversely, we evaluated
survival prediction by incorporating a nomogram-predicted grade model that included clinical stage and MRI features, and it
showed superior patient risk strati�cation performance. Unlike Peeken et al. [37], we found that the pathologic-reported grade
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model itself achieved signi�cant strati�cation performance, making it easy for the proposed radiomics nomogram models to be
potential surrogate markers. However, the radiomics nomogram models signi�cantly strati�ed patients in the training set only by
a close margin (P = 0.047). Additionally, the radiomics nomogram combined with the AJCC staging system generated more
signi�cant PFS strati�cation performance than the nomogram and AJCC staging system alone. The �lter models might show
promise for the long-term management of patients with STS.

Our study had several limitations. First, we retrospectively examined the images; thus, selection bias was inescapable despite
our strict criteria. Second, manual tumor segmentation by a team may lead to irregularities. Key techniques such as automatic
segmentation may be more accurate and time-saving and can be used to improve the robustness of radiomics models in future
research. Third, our data were obtained from two institutions that used similar but different scanners and protocols. Therefore,
resampling methodology and the ComBat compensation method were applied to reduce the differences in image speci�cations,
aiming to increase the stability of features and different models. Finally, sample enlargement is needed in future studies.

Conclusion
In conclusion, we identi�ed and validated a noninvasive radiomics nomogram combined with the radiomics signature and
clinical factors. It exhibited satisfactory predictive performance in differentiating the preoperative histopathological grade of
STS and achieved superior patient risk strati�cation performance. We expect that these results will help to improve clinical
treatment strategies and improve survival outcomes in selected patients.
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Table 1  Summary of 180 soft-tissue sarcoma patients con�rmed by FNCLCC pathologic results

  Number of Patients

 Training set(n = 109)  External validation set (n = 71)

liposarcoma 17 16

Undifferentiated pleomorphic sarcoma 23 7

Myxo�brosarcoma 13 8

Synovial sarcoma 11 9

Fibrosarcoma 6 4

Leiomyosarcoma 6 3

Rhabdomyosarcoma 5 5

Extraskeletal chondrosarcoma 5 4

Undifferentiated sarcoma 2 4

Myxoin�ammatory �broblastic sarcoma 0 2

Clear cell sarcoma  2 1

Spindle cell sarcoma 4 0

Myo�broblastic sarcoma 1 1

Alveolar soft part sarcoma 1 1

Desmoid �bromatosis 1 1

Angiosarcoma  0 2

Malignant peripheral nervesheath tumor 2 0

Extraskeletal Ewing Sarcoma  0 1

Primitive neuroectodermal tumor  2 0

Epithelioid hemangioendothelioma 0 1

Malignant solitary �brous tumor 2 0

malignant melanoma 0 1

Kaposi sarcoma 1 0

Not Otherwise Speci�ed 5 0
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Table 2  Demographic characteristics between low-and high-grade group in the training and external validation set

 Training set (n =109 ) External validation set (n = 71)

Low-a

 (n =59 )

High-a

 (n = 50)

P* Low-a

 (n =34 )

High-a

 (n =37)

P*

Age (years) (mean ± SD) 51.0 ± 20.2 55.0 ± 19.1 0.312 53.3 ± 19.3 50.4 ± 18.7 0.521

Gender    

Male 38 33 0.862 18 23 0.432

Female 21 17 16 14

T-stageb    

1 17 9 0.003 9 4 0.001

2 31 19 23 16

3 10 10 1 9

4 1 12 1 8

N-stageb    

0 58 49 1.000 34 35 0.494

1 1 1 0 2

M-stageb    

0 57 40 0.006 32 32 0.432

1 2 10 2 5

AJCC-stage    

IA 1 3 0.005 0 0 0.351

IB 15 2 6 3

IIA 14 9 7 6

IIB 18 15 12 22

III 8 11 5 3

IV 3 10 4 3

Median PFS 43 19 0.000 39 24 0.002

MRI features    

T1 high signal matrix    

+ 22 18 0.889 20 13 0.046

- 37 32 14 24

T2 low signal matrix    

+ 25 23 0.704 30 31 0.737

- 34 27 4 6

Heterogeneous    
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+ 33 34 0.197 19 23 0.591

- 26 16 15 14

Myxold matrix    

+ 18 7 0.041 18 18 0.718

- 41 43 16 19

Fibrous tissue signal    

+ 10 9 0.885 30 22 0.006

- 49 41 4 15

Margin    

ill-de�ned 13 32 0.000 7 26 0.000

well-de�ned 46 18 27 11

Septations            

+ 17 6 0.032 24 21 0.227

- 42 44 10 16

Fat tissue signal    

+ 23 20 0.914 16 12 0.208

- 36 30 18 25

Vessels    

+ 7 3 0.338 16 22 0.295

- 52 47 18 15

Hemorrhage    

+ 6 4 0.751 2 3 1.000

- 53 46 32 34

Maximal depth>8cm    

+ 32 28 0.854 20 19 0.527

- 27 22 14 18

Peritumoral edema    

+ 8 13 0.101 19 23 0.591

- 51 37 15 14

Bone involvement    

+ 10 7 0.672 1 8 0.029

- 49 43 33 29

Capsule    

+ 22 26 0.123 14 14 0.774

- 37 24 20 23
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Neurovascular bundle involvement    

+ 5 4 0.276 16 25 0.081

- 54 46 18 12

Abbreviation: SD standard deviation

a Grade III are de�ned as high grade. Grade I and II are de�ned as low grade.

b TNM stage were accessed from preoperative MRI and computed tomography information.

* Calculated from student t test or Mann-Whitney U test for continuous variables and chi-square test or Fisher exact test for
classi�ed variables, where appropriate.

 

 

 

 

Table 3  Results of univariate and multivariate logistic regression analysis in STS patients

  Univariate logistic analysis Multivariate logistic analysis

Variable OR (95% CI) P   OR (95% CI) P

Radscore 37.88 [7.71;435.29] <0.001   7.20 [3.37;19.04] <0.001

T-stage 3.67 [1.38;11.17] 0.013   1.81 [1.14;2.95] 0.026

Myxoid matrix 0.27 [0.07;0.96] 0.049        

Margin 5.78 [1.66;24.05] 0.009   2.69 [1.21;6.19] <0.001

Capsule 7.16 [2.03;31.56] 0.004        

Abbreviations: OR: odds ratio, CI: con�dence interval.
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Table 4  Results of radiomics nomogram, radiomics signature, and the clinical model predictive performance

  Training  set External validation set

  AUC

(95%CI)

ACC SEN SPE PPV NPV AUC

(95%CI)

ACC SEN SPE PPV NPV

Clinical
model

0.787

(0.697-
0.877)

0.770 0.680 0.847 0.791 0.758 0.833

(0.783-
0.927)

0.761 0.676 0.853 0.833 0.707

RS-T1

 

0.787

(0.703-
0.870)

0.725 0.720 0.729 0.692 0.754 0.645

(0.514-
0.777)

0.718 0.757 0.676 0.718 0.719

RS-FST2

 

0.680

(0.579-
0.780)

0.752 0.820 0.695 0.695 0.820 0.641

(0.511-
0.771)

0.732 0.757 0.706 0.737 0.727

RS-
Combined

0.846

(0.773-
0.918)

0.761 0.740 0.780 0.740 0.780 0.829

(0.715-
0.943)

0.789 0.676 0.912 0.893 0.769

Radiomics
nomogram

0.916

(0.866-
0.966)

0.826 0.780 0.864 0.830 0.823 0.879

(0.791-
0.967)

0.817 0.838 0.794 0.816 0.818

Abbreviations: AUC: area under curve, ACC: accuracy, SEN: sensitivity, SPE: speci�city, PPV: positive predictive value, NPV:
negative predictive value.

 

 

Figures
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Figure 1

(Top) Flow chart of the enrolled patients. FNCLCC: French Federation of Cancer Centers Sarcoma Group. (Bottom) Flow chart of
the radiomics implementation of this study. LASSO: least absolute shrinkage and selection operator.
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Figure 2

(a) The 14 individual features with accordingly non-zero coe�cients that contributed to the developed RS-Combined model. (b,
c) The radiomics score (rad-score) of each patient in the training set and external validation set separately.
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Figure 3

Receiver operating characteristic curves of (a, b) Clinical model, (c, d) RS-T1 model, (e, f) RS-FST2 model, (g, h) RS-Combined
model, and (i, j) radiomics nomogram model for predicting the histopathological grade in the training set and validation set
separately. The shaded blue parts show the 95% con�dence interval of the area under the curve and is depicted within brackets.

Figure 4

Results of Kaplan–Meier survival curves for progression-free survival of the (a, b) Clinical model, (c, d) tumor grading model
(low-grade vs. high-grade), (e, f) RS-T1 model, (g, h) RS-FST2 model, (i, j) RS-Combined model, and (k, l) radiomics nomogram
model in the training set and external validation set separately.
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Figure 5

(a) Radiomics nomogram for forecasting preoperative classi�cation of patients with soft tissue sarcoma based on combination
of the RS-Combined model and clinical factors. (b, c) Calibration curves of radiomics nomogram in the training set and
validation set. (d) Decision curve analysis for the radiomics nomogram. (e) The Kaplan–Meier survival curve for progression-
free survival of the proposed nomogram combined with the AJCC staging system is depicted
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