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Abstract
The genetics of cancer metastasis is important for designing optimal therapeutic strategies. The lysyl oxidase (LOX)
gene has been found important in the metastatic process, with roles in setting the microenvironment for future
metastatic sites. Associations between the LOX polymorphisms (473G/A and -22G/C) have been examined in several
studies, however, results were inconsistent, prompting a meta-analysis in order to obtain more precise estimates.

Searches of six databases yielded 14 articles (15 studies) that examined associations of 473G/A and -22G/C with
cancer. We examined five cancer groups: breast, lung, bone (osteosarcoma), GIC (gastrointestinal cancers) and GYC
(gynecological cancers). For each cancer group, we calculated pooled odds ratios (ORs) and 95% confidence intervals
(CIs) using standard  genetic models. High significance (Pa < 0.00001), homogeneity (I2 = 0%) and high precision of
effects (CI difference < 1.0 [upper CI-lower CI]) comprised the three criteria for strength of evidence (SOE). Multiple
comparisons were Bonferroni-corrected. Sensitivity analysis assessed robustness of the outcomes.

Thirteen significant associations indicating increased risk (OR > 1.00) were found in all cancer groups except breast
(Pa = 0.10-0.91). Of the 13, two were in osteosarcoma where the -22G/C effects (ORs 4.05-4.07, 95% CIs 1.30-12.70, Pa

= 0.02) were homogeneous (I2 = 0%) but imprecise (CIDs 11.4) and did not survive the Bonferroni correction. In
contrast, the Bonferroni-surviving dominant/codominant outcomes in lung cancer (OR 1.44, 95% CI 1.19-1.74) and
GYC (ORs 1.52-1.62, 95% CIs 1.26-1.88) met all three SOE criteria (Pa = 0.00001, I2 = 0%, CIDs 0.49-0.56).

In summary, associations of LOX 473G/A with lung, ovarian and cervical cancers indicate 1.4-1.6-fold increased risks.
These outcomes were underpinned by robustness and high statistical power at the aggregate level.

Introduction
Between 70-90% of cancer deaths result from metastasis, whereby the cancer has spread through the body [1]. In
metastasis, cancer cells form new tumors far from the location where cancer was first detected (primary tumor) [2].
Metastasis occurs when cancer cells from the primary tumor invades the surrounding tissue, use the lymph and/or
blood to travel through the body, then enter a distant organ (extravasate), settle in the new microenvironment and
proliferate to form a secondary tumor [3]. Ability of the extravasated cancer cells to grow depends on features that are
inherent to both the cancer cells and target organ and the active interplay between these two [4]. These interactions
underpin the complexity of metastasis, given that this systemic process involves nonmalignant host cells in both
primary and secondary sites [5]. Metastatic transformation is a driving factor in cancer research because treatments
are more successful before metastasis has occurred than after. Thus, the pivotal role of metastasis in determining the
success of cancer treatments depends on thorough understanding of this cancer phenomenon [6]. Metastasis results
from genetic and epigenetic alterations in pathways involving proteins that mediate cell invasion, survival outside of
the primary tumor microenvironment, and colonization at a distant organ site [7]. Lysyl oxidase (LOX) is a protein that
is involved in the etiology of cancer metastasis because of its functional role affecting signaling, transcription and
translation, which alters cell adhesion, motility and proliferation resulting from increased extracellular matrix (ECM)
deposition [8]. Elevated expression of LOX was found to significantly correlate with increased metastasis and reduced
patient survival [9]. Thus, involvement of LOX in multiple stages of metastasis [10] and its role the metastatic milieu of
various cancers [11-14] renders this protein a useful clinical target [15]. Furthermore, LOX accumulation in future
metastatic sites [9] renders the gene for this protein important in understanding its emissary role in metastasis.

The LOX gene has seven exons that encode several functional domains of the LOX protein [16]. LOX undergoes a
series of transformations with size changes expressed in kilo Daltons (kDa) from a preproenzyme (46 kDa) to a
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proenzyme (50 kDa) to a propeptide (18 kDa) and ends up as a functional protein (32 kDa) in the ECM [17]. The LOX
gene has an important single-nucleotide polymorphism (SNP) located at exon 1 of chromosome 5q23.1–q23
(rs1800449). At this location, the open reading frame at position 473 contains the guanine (G)-adenine (A) bases [18].
A shift from 473G to 473A changes the amino acid arginine (Arg) at residue 158 to glutamine (Gln) (Arg158Gln) in the
LOX propeptide [16]. Since it was discovered [16], LOX polymorphisms (473G/C and -22G/C) have been closely studied
for their relationship with carcinogenesis [5, 10, 19]. At the gene level, single-study reports of LOX SNP associations
with cancer have not been consistent. It is thus opportune to statistically synthesize the findings of these studies using
meta-analysis. Here, we examine the role of the LOX SNPs in the risk of cancer metastasis, which might guide
potential future directions in cancer genetics. To obtain less ambiguous, clearer estimates of the role of SNPs in this
investigation, we assessed the strength of evidence (SOE) using statistical and meta-analytical criteria. This study
aims to highlight the genetic role of LOX polymorphisms in cancer metastasis and to provide information that could
be useful in clinical decision making.

Methods
Selection of studies

We searched MEDLINE using PubMed, Google Scholar, Scopus, Mednar, Wanfang and CNKI (China National
Knowledge Infrastructure) databases for association studies as of August 11, 2020. The terms used were “Lysyl
oxidase”, “protein-lysine 6-oxidase”, “LOX”, “polymorphism” and “cancer” as medical subject headings and text.
References cited in the retrieved articles were also screened manually to identify additional eligible studies. In case of
duplicates, the article with the most recent date was selected. Inclusion criteria were (i) case-control studies evaluating
the association between the LOX polymorphisms and cancer risk and (ii) sufficient genotype frequency data presented
to calculate the odds ratios (ORs) and 95% confidence intervals (CIs).  The exclusion criteria were as follows: (i)
reviews; (ii); (ii) articles that were not case-control studies; and (iii) studies with genotype data that could not be used
to calculate ORs and 95% CIs.

Data extraction

Two investigators (RM and NP) independently extracted data and arrived at consensus. The following information
was obtained from each publication: cancer group, family name of the first author, year of publication, the country of
origin, ethnicity, LOX SNP, primary tumor site, study-specific association of the LOX SNP with cancer from each
publication with their respective 95% CIs and P-values, status of the controls, genotyping platform, basis for matching
the controls with cases, and study features needed to tally scores for the Newcastle-Ottawa Scale (NOS).

LOX polymorphisms and cancer groups

We examined two LOX polymorphisms in five cancer groups: -22G/C in (i) osteosarcoma (bone cancer) and 473G/A in
the other four cancer groups that included (ii) breast, (iii) lung, (iv) gastrointestinal cancers (GIC) and (v) gynecological
cancers (GYC). Three and two cancer types comprised GIC (oral, gastric and colorectal) and GYC (cervical and
ovarian), respectively.

Quality of the studies

The NOS [20] was used to assess quality of the included studies. NOS scoring is based on three broad perspectives:
selection, comparability, and exposure in case–control studies. The star rating system has scores ranging from zero
(worst) to 9 (best). Scores of 5–6 and ≥7 stars indicate moderate and high quality, respectively.
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Statistical power and Hardy-Weinberg equilibrium (HWE)

Using the G*Power program [21], we evaluated statistical power. Meta-analyses in cancer genetics have used the ORs
of 1.2 and 1.5 to assess statistical power [22]. Thus, at these OR levels with a genotypic risk level of α = 0.05 (two-
sided) and 5% minor allele frequency (maf), power was considered adequate at ≥ 80%. HWE was assessed with the
application in https://ihg.gsf.de/cgi-bin/hw/hwa1.pl. A P-value of < 0.05 indicated deviation from the HWE.

Data synthesis

Examining two LOX polymorphisms (473G/A and -22G/C) warranted the use of a common notation indicating var and
wild-type (wt) alleles. Supplementary Table S2 includes a column for the minor (var) allele in both polymorphisms.
After estimating cancer risk (OR) for each study, pooled ORs with 95% CIs were calculated for each of the five cancer
groups in the following genetic models: (i) homozygous: (var–var and wt–wt) genotypes compared with wt–wt, (ii)
recessive: (var–var versus wt–var + wt–wt), (iii) dominant: (wt–wt versus wt–var + var–var), and (iv) codominant: (var
versus wt). Three indicators were used for strength of evidence (SOE): First, highly significant P-values (Pa = 0.00001)
most likely to survive the Bonferroni correction, which was performed with Microsoft Excel (Microsoft, Redmond, WA,
USA). Second, highly precise effects were assessed with the confidence interval difference (CID = upper CI-lower CI).
High (> 1.0) and low (< 1.0) CID values indicate low and high precision, respectively [23]. Third, homogeneity was
assessed with the I2 metric, expressed as 0% [24]. In meta-analysis, however, studies differ from each other [25]. This
heterogeneity was estimated with the c2-based Q test [26] where significance was set at PHET < 0.10. The random-
effects model (DerSimonian–Laird) [27] was used in the presence of heterogeneity [24] and the fixed-effects model
(Mantel–Haenszel) [28] in its absence. Summary effects that met the SOE criteria were tested for robustness, with use
of sensitivity analysis, which involves serial omission of the studies followed by recalculation of the pooled OR.
Significant outcomes (Pa < 0.05) with  ≥ 10 studies warranted assessment for publication bias. Except for
heterogeneity estimation [26] two-sided P-values of £ 0.05 were considered significant. Data for the meta-analysis
were analyzed using Review Manager 5.3 (Cochrane Collaboration, Oxford, England), SIGMASTAT 2.03, and
SIGMAPLOT 11.0 (Systat Software, San Jose, CA).

Results
Characteristics of the included studies

Figure 1 outlines the selection process in a flowchart based on guidelines from the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses [29] with a checklist detailing the description of this meta-analysis
(Supplementary Table S3). A total of 504 citations were identified from the initial search, the screening of which
yielded 22 full-text articles. Of the 22, eight were excluded for not conforming to the inclusion criteria. Table 1 lists the
14 articles [30-43] included in this study , seven [30, 31, 33, 36, 38, 40, 43] of which were new additions to the meta-
analysis literature on LOX-cancer. Two Chinese language publications [44, 45] were duplicates (excluded from this
study) of the English language article [36] included in this study. This article [36] examined two cancer types (lung and
colorectal), which were treated as two studies. Subjects were all Asians except in two publications in breast cancer.
Three, two and two articles focused on breast, lung and bone, respectively. Four articles each examined GIC and GYC.
Age (mean ± standard deviation years) of the patients were predominantly 50s to 60s in all cancers except two studies
in GYC (38.2 ± 9.2y) and osteosarcoma (16.1 ± 2.8y). NOS scores (median interquartile range: 5 [5.3-6.8]) indicated
that quality of the component studies was moderate. Supplementary Table S1 shows the quantitative traits of the
included studies. Sample sizes ranged from 98 to 1,273 and those for cases and controls in each cancer group were
as follows: breast (935/923), GIC (1,575/1,546), lung (538/748), osteosarcoma (369/488) and GYC (991/1,071).

https://ihg.gsf.de/cgi-bin/hw/hwa1.pl
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Aggregate statistical power (ASP) in the five cancer groups were adequate at an OR = 1.5 (82.5%-99.9%), but not at an
OR = 1.2, where only GIC was adequately powered (91.8%). Five studies were HW-non-compliant covering lung and
bone cancers and all but one in GYC (Supplementary Table S2).

Overall and subgroup analysis

This meta-analysis yielded 28 comparisons (Tables 2 and Supplementary Table S4), of which 18 were non-significant
(Pa > 0.05), found in breast, bone and lung cancers. Thirteen outcomes were significant (Pa < 0.05), all indicating
increased risk (ORs 1.36-4.07). The low number of studies precluded assessment of publication bias.

Breast cancer

Three articles [30-32] in the breast cancer group were ethnically heterogeneous (Asians, Caucasians and African-
Americans). Table 2 shows that associations were non-significant in all genetic models (ORs 0.98-1.92, 95% CIs 0.62-
4.14, Pa = 0.10-0.91), not even when stratified by ER status (ORs 1.28-1.54, 95% CIs 0.67-2.91, Pa = 0.12-0.45)
(Supplementary Table S4). 

Lung cancer and osteosarcoma

The lung cancer (473G/A) and osteosarcoma (-22G/C) comparisons were each based on two studies collectively
yielding eight outcomes (Table 2). Of the eight, five were significant (Pa < 0.05), three of which survived the Bonferroni
correction, all in lung cancer (Pa < 0.0001). Of the three, only the codominant result was homogeneous (I2 = 0%) which,
with high precision (CID 0.55), met all three SOE criteria. In osteosarcoma, two significant outcomes (Pa = 0.02) in the
homozygous/recessive models had high magnitude (ORs 4.05-4.07). However, their imprecise effects (CIDs 11.35-
11.39) and failure to survive the Bonferroni correction warrant caution in interpreting the risk that -22G/C poses for
bone cancer.

GIC and GYC

Of the eight GIC and GYC significant outcomes, seven survived the Bonferroni correction (Table 2). These highly
significant (Pa < 0.0001) pooled ORs presented a dichotomy of precision effects, low in homozygous/recessive (CIDs
of 1.63-3.14), high in dominant/codominant (CIDs 0.40-0.56). Figure 2 visualizes of the difference between low and
high precision studies in GYC. The diamond was broader and horizontal lines from each study in the homozygous plot
were longer (CID: 1.78, low precision) compared to the shorter lines (CID: 0.49, high precision) and narrower diamond
in the codominant plot.

Core outcomes

Table 2 and 3 show that lung cancer and GYC outcomes in the dominant/codominant models met all three SOE
criteria: (i) high significance [Pa < 0.00001]; (ii) high precision [CIDs 0.49-0.55]; (iii) zero heterogeneity [I2 = 0%],
underpinned by robustness and high ASP (94.2-99.5% at OR = 1.5).

Discussion
Summary of findings

Given the different clinical manifestations, etiologies and progression in the five cancer groups, we conducted the
meta-analysis by cancer group, which reduced the number of studies (n = 2-4). However, each study contributed to the
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aggregate sample size that resulted in adequate to high ASP in all five cancer groups (82.5-99.9% at an OR = 1.5)
(Supplementary Table S2). This OR level has been used in previous studies that explored associations of genetic
polymorphisms with cancer [46]. Breast cancer was the only comparison to yield non-significance (Pa = 0.10-0.91) in
all genetic models (Table 2 and Supplementary Table S4). Study-specific ORs from the three component studies were
unsurprisingly non-significant for the var 473G/A genotype in this ethnically heterogeneous cancer group (Table 1).
These three articles have examined the influence of ER status in breast cancer risk, where two reported significant
outcomes in their expression studies. Min et al [31] showed significantly higher expression levels of LOX in ER- breast
cancers compared to ER+ ones (Pa < 0.05). Friesenhengst et al [30] favored the greater prognostic role of LOX
expression over that of the 473G/A genotype. In contrast to the breast cancer findings, GIC and GYC increased risk
effects were significant in all genetic models (Table 2), which presented contrasts according the genetic model.
Homozygous and recessive odds in GIC indicated 3.0 to 3.3-fold risks, more than double the odds in the
dominant/codominant models (1.4-fold). In GYC, the homozygous/recessive odds were 2.7 and 2.5-fold, while that in
the dominant/codominant models were 1.5-1.6-fold. Thus, for both GIC and GYC, homozygous/ recessive odds were
higher than the dominant/codominant odds. Between these two cancer groups, GIC may pose greater increased risks
(3.3-fold) than those in GYC (2.7-fold). However, other meta-analytical evidence need to be considered for a more
complete picture of LOX genetic associations with cancer. Thus, two dichotomies delineated effects between the
genetic models and cancer groups of GIC/GYC. (i) precision was low in the homozygous/recessive models but not in
the dominant/codominant models; (ii) GYC outcomes were homogeneous (I2 = 0%) but not in GIC (I2 = 30-61%).
Between the non-significant breast cancer and significant GIC/GYC outcomes in all genetic models were significance
in some, not all genetic models of osteosarcoma and lung cancer. In the -22G/C polymorphism of osteosarcoma, the
codominant null outcome agreed with the lack of significant association in glioma [19] but contrasted with our
moderately significant homozygous/ recessive finding. In lung cancer, the homozygous/recessive outcomes were
highly significant (Pa = 0.00001) but imprecise (CIDs 2.61-2.71). In contrast, the codominant pooled OR met all SOE
criteria (high significance + high precision [(CID 0.55)] + zero heterogeneity). This centralized the codominant lung
cancer and dominant/codominant GYC outcomes, with evidence of association between LOX 473G/C with risk of
cancer. Scaffolds that underpinned the SOE were robustness and high statistical power.

Comparison with a previous meta-analysis

Table 4 details the differences between a previous meta-analysis [37] and ours. Table 1 identifies which articles were
and were not in Gao et al [37]. Of note, the article on glioma [19] was in Gao et al [37] but not in ours on account of our
cancer group study design. Differences in study design (overall analysis: cancer groups in our study versus pooled
cancer types in Gao et al [37]) between the two meta-analyses precluded direct comparisons of the results.

Role of LOX gene and LOX protein in cancer metastasis

Metastasis is the last stage of cancer progression that warrants a good understanding of its genetic etiology.
Literature on the association between LOX polymorphisms and cancer metastasis, particularly 473G/A are
uncommon, with outcomes that may require more clarity. Of the 14 articles in this meta-analysis, three examined
lymph node metastasis [30, 32, 43], where significant associations with the LOX genotypes (P = 0.02) were found in
the ovarian cancer study of Yang et al [43] but not for breast cancer (P = 0.41). In the breast cancer study of
Friesenhengst et al [30], however, their findings involving 473A-carriers among ER- patients showed that 473G/A may
increase the risk for breast cancer, particularly in ER- women with weaker outcome that involved metastasis. In their
osteosarcoma study, Liu et al [34] found that the AA genotype and A allele were higher in patients with metastasis
than those without metastasis indicating a significant 1.5 to 2.4-fold increased risk (P = 0.02- 0.03) but failed the
Bonferroni correction. In their ovarian cancer study, Wang et al [41] posited that 473G/A reinforces LOX signaling
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which may affect metastasis. At the mRNA level, high LOX expression was reported to favor metastasis and disfavor
patient survival [47-49]. These findings underpin the ability of LOX as a potent predictor of cancer metastasis.
Moreover, interventions that involved silencing of LOX gene expression and targeting the hypoxia pathway have been
reported to suppress [50], even reverse metastasis in breast and pancreatic cancers [51]. These differential clinical
outcomes underpin the complex role of LOX in cancer metastasis. Despite the complex role of LOX in cancer
metastasis, this gene remains an appealing therapeutic target [10, 47, 52, 53].

Strengths and limitations

We identified four limitations in our study: First, majority (12/14: 86%) of the studies had Asian subjects, indicating an
underrepresentation of other ethnic groups. The two studies [30, 31] with non-Hispanic Caucasian and African-
American ethnicities warrant more of these two ethnic groups in future studies. Second, imprecise effects and failure
to survive the Bonferroni correction of the significant -22G/C outcomes in the homozygous/recessive models of
osteosarcoma may have decommissioned this polymorphism as a genetic risk factor for cancer, but future studies
might modify this conclusion. Third, we did not explore gene-environment interactions. Four [32, 36, 37, 39] articles
mentioned gene-environment interactions but did not provide data for further analysis. However, four articles explored
the LOX polymorphism associations with cigarette smoking and cancers of the lung [35, 36], bone [33] and cervix [40]
as well as bisphenol A (an environmental estrogen) and osteosarcoma [33]. Fourth, the core GYC and lung cancer
outcomes had HW-deviating studies [35, 40-42], which may have posed methodological and representation bias. On
the other hand, the strengths of our study include: (i) combinability of the component studies where most (54%) of the
comparisons (15/28) were fixed-effects and 60% (9/15) had zero heterogeneity (I2 = 0%); (ii) most controls (13/14:
93%) were uniformly defined (healthy or cancer-free); (iii) most tissue sources were blood specimens (12/14: 86%); (iv)
most (11/14: 79%) of the articles had controls that were matched with cases, with 80% (eight articles based on age);
(v) all significant core outcomes were robust.

Conclusion
We have presented evidence for the role of the LOX polymorphisms in increasing cancer risk, GYC and lung cancer in
particular, which suggest that 473G/A might be a useful susceptibility cancer marker. However, a single locus effect on
cancer will likely be small given the involvement of other factors, such as gene-gene interactions. All 14 publications
focused only on LOX. Functional studies have shown that other genes such as hypoxia-inhibiting factor 1 (HIF-1)
transforming growth factor -beta (TGFβ), and interferon-gamma (IFNγ) interact with LOX to regulate metastasis [10,
15, 54, 55]. More studies based on sample sizes commensurate with the detection of small genotypic risks should
allow more definitive conclusions about the association of the LOX polymorphisms and cancer.

Abbreviations
A: adenine; ASP: aggregate statistical power; CI: confidence interval; C: cytosine; G: guanine; GIC: GYC: HWE: Hardy-
Weinberg equilibrium; I2: measure of variability; LOX: Lysyl oxidase gene; LOX: Lysyl oxidase protein; N: number of
participants; n: number of studies; NOS: Newcastle-Ottawa Scale; OR: odds ratio; Pa: P-value for association; PHET: P-
value for heterogeneity; SNP: single-nucleotide polymorphism
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Tables
Table 1 Characteristics of the included articles that examined lysyl oxidase polymorphism associations with cancer
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In
Gao

Cancer group
      First
author  
  (Number of
articles)

[R] Year Country Ethnic
Group

Patients
age *
(years)

LOXSNP Primary
tumor site 

Study-
specific
outcome for
vargenotype
OR (95%
CI) Pa value

Status
of
controls

Genotyping
platform

Match NOS


 Breast cancer (3) 
 
 
 
 
 
 
 
 
 
 

No 1

Friesenhengst
 

[30] 2014 Austria Caucasian 60.5 ±
14.8

473G/A Breast 0.99 (0.38-
2.59) 0.98† 

Healthy Taqman Residence 6

No 2 Min  [31] 2009 USA African-
American

(21-69) 473G/A Breast  1.99 (0.86-
4.61) > 0.05
AA

NM PCR Age
Residence

7

Yes 3 Ren   [32] 2011 China Asian 48.8 ±
8.9

473G/A Breast  1.84 (0.81-
4.20) 0.15
AA crude

Healthy RFLP Age 7


 Osteosarcoma (2) 
 
 
 
 
 
 
 
 
 
 

No 4 Jia  [33] 2013 China Asian 16.1 ±

2.8
22G/C Bone  1.48 (1.06-

7.37) 0.02
GC/CC        
Bisphenol >
7.0

Cancer-
free

RFLP Age Sex 6

Yes 5 Liu   [34] 2012 China Asian (10-67) 22G/C  Bone  5.09 (1.41-
18.41) 0.006
CC

Healthy RFLP Age Sex
Residence

6


 Lung
cancer (2)


 
 
 
 
 
 
 
 
 
 
 


Yes 6 Shi [35] 2012 China Asian ± 50 473G/A Lung 2.35 (1.29-
4.29)
 0.0004 AA

Cancer-
free

RFLP Age Sex
Residence

5

No 7 Wang  [36] 2016 China Asian 58.3 ±
9.3

473G/A Lung 3.84 (2.03-
7.24) < 0.01
AA

Healthy RFLP Age Sex
Residence

7


 GIC (4) 
 
 
 
 
 
 
 
 
 

--- 8 Gao   [37] 2015 China Asian 59.4 ±

9.7
473G/A Colon/rectum 2.86 (1.78-

4.59) <
0.001 AA

Cancer-
free

RFLP Age Sex 6

No 9 Shieh [38] 2007 Taiwan Asian 57.8 ±
9.8

473G/A Mouth 1.46 (0.55-
3.90) 0.50
AA

Areca
chewers

NM NM 5

No Wang  [36] 2016 China Asian 59.0 ±
10.8

473G/A Colon/rectum 2.74 (1.47-
5.12) < 0.01
AA

Healthy RFLP NM 6

Yes 10 Yoon  [39] 2011 South
Korea

Asian 60 (22-
91)

473G/A Stomach 1.47 (1.09-
1.98) < 0.05
AA crude

Healthy RFLP NM 5


 GYC (4) 
 
 
 
 
 
 
 
 

No 11 Bu   [40] 2014 China Asian 38.2 ±

9.2
473G/A Cervix  2.50 (1.32-

4.72) 0.004
AA

Healthy RFLP Age Sex
Residence

7

Yes 12 Wang  [41] 2012 China Asian 55.3 ±
10.9

473G/A Ovaries  2.30 (1.36-
3.87) < 0.01
AA

Healthy RFLP NM 5

Yes 13 Wu   [42] 2012 China Asian 53.6 ±
12.7

473G/A Ovaries  2.52 (1.28-
4.96) 0.006
AA

Cancer-
free

RFLP Age 6

No 14 Yang [43] 2017 China Asian 54.6 ±
10.4

473G/A Ovaries  2.64 (1.24-
4.53) 0.006
AA

Healthy Taqman Age 6

Gao et al meta-analysis; GIC: gastrointestinal cancers (oral, gastric, colorectal); GYC: gynecological cancers (cervical, ovarian); [R] reference; SNP: single

nucleotide polymorphism; G/A;  guanine/ adenine; OR: odds ratio; CI: confidence interval; † recessive effect; Pa: P-value for association; PCR: polymerase chain

reaction; RFLP: restriction fragment length  polymorphism; NOS: Newcastle-Ottawa Scale; * age column: values expressed as mean  ± standard deviation, values in

parentheses are median (range).
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Table 2 Summary associations of outcomes between lysyl oxidase polymorphisms and cancer 


   Test of association Test of heterogeneity

Cancer group
Genetic model

n OR 95% CI CID Pa PHET I2(%) Analysis model

Breast cancer 
 
 
 
 
 
 
 

Homozygous 3 1.15 0.72-1.83 1.11 0.56 0.33 9 Fixed
Recessive 3 0.98 0.62-1.53 0.91 0.91 0.11 54 Fixed
Dominant 3 1.29 0.81-2.04 1.23 0.28 0.005 81 Random
Codominant 3 1.92 0.89-4.14 3.25 0.10 0.00001 94 Random
Osteosarcoma (-22G/C) 
 
 
 
 
 
 

Homozygous 2 4.07 1.31-12.70 11.39 0.02 0.36 0 Fixed
Recessive 2 4.05 1.30-12.65 11.35 0.02 0.39 0 Fixed
Dominant 2 1.70 0.41-7.09 6.18 0.47 0.02 81 Random
Codominant 2 1.01 0.06-16.03 15.97 1.00 0.0001 93 Random
Lung cancer 
 
 
 
 
 
 
 

Homozygous 2 2.96 1.91-4.57 2.61 0.00001* 0.27 17 Random
Recessive 2 3.07 2.00-4.71 2.71 0.00001* 0.15 53 Random
Dominant 2 1.20 0.95-1.52 0.57 0.12 0.36 0 Fixed
Codominant 2 1.44 1.19-1.74 0.55 0.0002* 0.98 0 Fixed
GIC                
Homozygous 4 3.27 2.06-5.20 3.14 0.00001* 0.06 59 Random
Recessive 4 2.98 1.95-4.57 2.62 0.00001* 0.09 54 Random
Dominant 4 1.36 1.17-1.57 0.40 0.0001* 0.23 30 Fixed
Codominant 4 1.36 1.11-1.66 0.55 0.003 0.05 61 Random
GYC 
 
 
 
 
 
 
 

Homozygous 4 2.65 1.91-3.69 1.78 0.00001* 0.56 0 Fixed
Recessive 4 2.46 1.78-3.41 1.63 0.00001* 0.50 0 Fixed
Dominant 4 1.52 1.26-1.82 0.56 0.00001* 0.99 0 Fixed
Codominant 4 1.62 1.39-1.88 0.49 0.00001* 0.88 0 Fixed

GIC: gastrointestinal cancers (oral, gastric, colorectal); GYC: gynecological cancers (cervical, ovarian);  all cancer groups examined 473G/A unless otherwise

specified; n: number of studies; OR: odds ratio;  CI: confidence interval; CID: confidence interval difference; Pa: P-value for association; PHET: P-value for

heterogeneity; I2 is a measure  of variability attributed to heterogeneity; values in bold indicate significant associations; *survived the Bonferroni correction.         

Table 3 Main outcome summary of lysyl oxidase 473G/A and cancer
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Cancer group 
N cases/N controls 
ASP at OR 1.2 / 1.5    
Genetic model

n Fold-increase in risk CID Pa I2(%) Sensitivity treatment outcome

Lung cancer                          538 / 748                         56.4% / 94.2% 
 
 
 
 
 


Codominant* 2 1.4 0.55 0.0002 0 Robust

GYC                                      991 / 1,079 
77.7% / 99.5%


 
 
 
 
 


Dominant* 4 1.5 0.56 0.00001 0 Robust

Codominant* 4 1.6 0.49 0.00001 0 Robust

             

Homozygous 4 2.7 1.78 0.00001 0 Robust

Recessive 4 2.5 1.63 0.00001 0 Robust

             

GYC: gynecological cancers (cervical, ovarian); N: number of participants; n: number of studies; ASP: aggregate statistical power where ³ 80% is powered; CID:

confidence interval difference; I2: measure of  variability ; * met all three criteria for strength of evidence (high significance  [Pa] + high precision [CID < 1.0] + zero

heterogeneity [I2 = 0%].

 

Table 4 Meta-analysis comparisons of lysyl oxidase polymorphisms and cancer risk 

  This study                      Gao et al [37]  

Year 2020 2014
Country Thailand China
n articles/studies 14/15 7
LOX polymorphisms 473G/A and -22G/C 473G/A only
Genetic model Standard Standard
Number of databases in the literature search PubMed, Google Scholar, Scopus, Mednar, CNKI, Wanfang PubMed 

Overall analysis Summary effect for each cancer group Pooled the cancer types
Study variability I2 None
Ethnicity profile of subjects Caucasians, African-Americans, Asians Asians only
Methodological quality NOS None
Addressed HWE Yes No
Sensitivity Yes Yes
Publication bias No Yes
Precision analysis Yes No
Power analysis Yes No
Correction for multiple comparisons Bonferroni None


 
 
 
 


l oxidase; G: guanine; A: adenine; C: cytosine; CNKI: China National Knowledge Infrastructure;         

ure of variability; NOS: Newcastle-Ottawa Scale; HWE: Hardy-Weinberg Equilibrium

Figures
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Figure 1

Summary flowchart of literature search
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Figure 2

Forest plot of GYC outcomes in the overall analysis for the homozygous and codominant models
Diamonds denote
the pooled odds ratios (ORs) indicating increased risks (ORs 2.65 and 1.62). Squares indicate the OR in each study.
Horizontal lines on either side of each square represent the 95% confidence intervals (CI). The Z tests for overall effect
were highly significant (Pa < 0.00001). CID: confidence interval difference; The 2 tests show the absence of
heterogeneity (I2 = 0%); I2: a measure of variability expressed in %
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