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Abstract
SARS-CoV-2 is the causative agent of the COVID-19 disease. Pathophysiologically, high levels of
proinflammatory cytokines in the serum of SARS-CoV-2 patients are reported, which is so-called the
cytokine storm. In this study, molecular docking calculations of six bioactive compounds from Passiflora
edulis with anti-inflammatory activity in interaction with the main protease of SARS-CoV-2 were
performed, and their pharmacokinetic properties were predicted. The results of their molecular simulations
and the ADME-T profiles of each ligand (Absorption, Distribution, Metabolism, Excretion and Toxicity)
suggest their use as potential treatment for SARS-CoV-2. Among the six investigated compounds in which
four flavonoids and two alkaloids, the best docked ligands are quercetin (-8.2 kcal/mol), chrysin (-8.0
kcal/mol), kaempferol (-7.9 kcal/mol) and luteolin (-7.7 kcal/mol), both flavonoids compounds. Their
pharmacokinetic studies using SwissADME, preADMET and pkCSM Web servers establish the good
ADMET profile for each ligand.

Introduction
Other than vaccine development, people around the world are waiting for the famous news from
researchers: a molecule against the Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) has been found.
The SARS-CoV-2 is the causative agent of the novel ß-Coronavirus (2019-nCoV) or the Corona Virus
Disease (COVID-19) that is a pneumonia infection characterized by the hyperproduction of mainly
proinflammatory cytokines (IL-1, IL-6, TNF-α, etc) [1].  In the active research of finding molecule that can
treat COVID-19, two approaches are currently being used. One is to find molecules that can be used as
potential treatment against COVID-19 among several FDA-approved drugs [2-3], while the other is to
identify from plants biodiversity potential inhibitors (phytochemicals) of SARS-CoV-2’s main protease
using molecular modeling approaches [4-5].

During molecular modeling approaches of finding potentials inhibitors, particular emphasis is placed on
the significance of binding affinity of ligand-protein complexes and on their drug-likeness properties [4,6].
However, it should be mentioned that the biological activities of these molecules are as well very
important [7]. Further, the most common trend is that an anti-COVID-19 molecule might be derived from a
plant endowed with antiviral properties [8-11]. Nevertheless, what is abundantly clear in this moment is
that the most important cause of COVID-19 related deaths is respiratory failure which is due to pneumonia
(an acute inflammatory lung injury), which itself varies depending on the disease severity level, but also
alveolar damage that can precipitate acute respiratory distress syndrome (ARDS) [12]. The innate immune
response is then to produce pro-inflammatory cytokines and chemokines to contain and stop the
infection. Pathophysiologically, previous studies have reported high levels of various cytokines (the so-
called cytokine storm) and chemokines in the serum of SARS-CoV-2 patients [13-14]. In addition, Fidan
and Aydoğdu recently reported that various pro-inflammatory cytokines such as IL-6, IL-1, the tumor
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necrosis factor (TNF-α) induce a migration of leukocytes into lungs, that then secrete the reactive oxygen
species and proteases that damage capillary endothelium and alveolar epithelium [15].

Based on the relevant clinical characteristics, phytocompounds derived from Passiflora edulis whose
isolated molecules have several therapeutic properties such as anti-inflammatory, antioxidant, anti-
microbial, anti-cancer… can be used for the treatment of COVID-19 as supported in the following lines:

Passiflora edulis (P. edulis), also known as passion fruit ( 1), exhibits potential effects for the
treatment of inflammation. Several mechanisms, including the inhibition of proinflammatory cyto-
kines: TNF-α and IL-1ß levels, enzyme: myeloperoxidase (MPO) and mediators: bradykinin, histamine,
substance P, nitric oxide (NO) release and/or action, appear to account for Passiflora edulis’s actions.
Interestingly, in a comparative study, Montanher et al. found that Passiflora edulis was more effective
than dexamethasone (0.5 in inhibiting both MPO and NO levels) [16]. This latter, which is considered
as an important steroidal anti-inflammatory drug, might hold the promise for the treatment of COVID-
19 as recently reported by Ledford [17]. Cazarin and co-authors reported in 2015 the anti-
inflammatory activity of P. edulis leaves [18]. In a dextran sodium phosphate caused mice colitis
model, P. edulis peel flour was found to reduce TNF-α, IL-1ß, IL-6, IL-12, and IL-17 [19]. Molecules
responsible for this effect could be compounds like C-glycosyl flavonoids vicenin, orientin, chrysin,
vitexin and kaempferol [20]. Finally, Harmol and harmine, two fluorescent harmala alkaloids showed
anti-inflammatory activity by significantly inhibiting the NF-kB signaling pathway [21-22].

With regards to the reactive oxygen species that are secreted by leucocytes, several studies
highlighted the antioxidant activity of edulis fruit and leaf which can eliminate free radicals or inhibit
the activity of free radicals [23-24].

Aqueous and ethanolic leaves extracts have shown in vitro effect on some viruses species including
Herpes Simplex Virus Type 1 and 2, Varicella-Zoster Virus, etc. [25].

 

Methodology
2.1. Literature review

Based on information reported above, six phytochemicals derived from P. edulis with anti-inflammatory
activity are chosen for this study.  Chrysin or 5,7-dihydroxyflavone (5,7-dihydroxy-2-phenyl-4H-chromen-4-
one), kaemferol or 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), luteolin or 2-(3,4-
dihydroxyphenyl)-5,7-dihydroxychromen-4-one, quercetin or 2-(3,4-dihydroxyphenyl)-3,5,7-
trihydroxychromen-4-one, harmol or 1-Methyl-2,9-dihydropyrido[3,4-b]indol-7-one and harmine or 7-
Methoxy-1-methyl-9H-pyrido[3,4-b] indole. The four first compounds are flavonoids while the two latter
compounds are alkaloids. Chemical structures of compounds were retrieved from literature sources. Their
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2D structures have been sketched using Marvin JS and their 3D structures retrieved from PubChem/NLM.
Bibliographical references were made using a bibliographical software "Mendeley".

2.2. Molecular Docking

The structure of the 3-Chymotrypsin-Like protease (3CLpro) or the COVID-19 virus main protease (Mpro)
which is among the most studied SARS-CoV-2 proteases was obtained from PDB (Protein Data Bank)
database (PDB ID:  2GTB) and imported into chimera for visualizing the binding domain of the complex
and identifying the amino acids in the binding pocket as well. The hydrogen atoms were added to the
protein in order to correct the ionization and tautomeric states of the amino acid residues. Furthermore,
the water molecules and complexes bound to receptor molecule were removed before the docking.
Incomplete side chains were replaced using Drunbrack rotamer library. In addition, the protein was
subjected to energy minimization by applying the AMBER 14SB force field, and AM1-BCC was used for
other residues with a maximum number of 200 steps at RMS gradient of 0.02. The optimized protein was
saved in pdbqt format and imported to PyRx for molecular docking which was carried out by means of
Autodock Vina virtual screening tool [26].  The validation of the docking study was performed by re-
docking the reference ligand into an appropriate protein cavity. Re-docking is accepted if the root mean
square value (RMSD) < 2.0 Å. Figure 2 displays schematic structure of the SARS-CoV-2 Mpro/3CLpro (a)
and the complex formed between the SARS-CoV-2 Mpro and 2GTB as a potential drug target for the new
coronavirus-2 (b). According to Xu and co-workers, 2GTB is the main protease found in the coronavirus
associated with the severe acute respiratory syndrome (SARS), and that the main protease in 2019-nCoV
shares 96% similarity with that in SARS [27].

2.2.1 Generation of ligand dataset and pharmacokinetic profiles

The selected compounds derivatives from various literature resources [20, 28] were drawn using Marvin
JS. Figure 3 shows the 3D structures of the sketched compounds retrieved from PubChem/NLM. The 3D
ligands were then saved in .sdf format. Ligands optimization was performed by using universal force field
(UFF) with conjugate gradients algorithm of 200 Steps, and then analyzed for pharmacokinetic properties.
Bioinformatics resources have been employed in the prediction of ADME properties (Absorption,
Distribution, Metabolism and Excretion) using the SwissADME database [29]. During the early stages of
drug discovery, the ligand to be selected as a hit must be non-carcinogenic and non-hepatotoxic. The
toxicity assessment (ADMET, T for Toxicity) that allows to predict the mutagenicity (Ames test) and
carcinogenicity of the potential ligands was made using the preADMET server, Korea [30], while the
hepatotoxicity and the oral rat acute toxicity were assessed using the pkCSM server [31].

Results And Discussion
3.1 Energetics and geometries

Noncovalent interactions, mainly H-bonds [32], van der Waals and π-π interactions (stacked/parallel and T-
shaped/perpendicular conformations) [33] are forces that drive and determine the binding of ligand-



Page 6/19

protein interactions. The most common tool to evaluate the strength of binding between ligand-protein
interactions is molecular docking. The docking results obtained using AutoDock Vina virtual screening
tool between ligands 1-6, the native or reference ligand with the SARS-CoV-2’s main protease (Mpro or
3CLpro) are gathered in Table 1.  

Table 1: Binding affinity (kcal/mol) of 2GTB and Ligands 1-6 with SARS-CoV-2 Mpro.

Receptor PDB ID Ligands Binding Affinity (ΔG in Kcal/mol)

2GTB Lopinavir -8.4

Nelfinavir -8.1

1 -8.0

2 -7.9

3 -7.7

4 -8.2

Ref. Ligand -7.4

5 -6.7

6 -6.4

Since Lopinavir and Nelfinavir, two FDA approved drugs for the treatment of human immunodeficiency
virus (HIV)/acquired immunodeficiency syndrome patients can represent potential treatment options [34],
they were used as drug standards for comparison.

The binding affinity values of 6 ligands ranging from -6.40 to -8.22 kcal/mol place the four flavonoids
compounds as the best docked ones to the SARS-CoV-2 main protease. The most strongly bound to the
protease cavity is ligand 4 or quercetin (-8.22 kca/mol), followed by ligand 1 or chrysin (-8.04 kcal/mol).
The overall trend of complexes stability follows the pattern: ligand 4 > ligand 1> ligand 2 > ligand 3>
ligand 5> ligand 6>. Based on data presented in this table, the binding energies of the four flavonoids
compounds are somewhat close to those of Lopinavir/Nelfinavir and higher than that of the reference
ligand. However, as part of principles that drive drug discovery, this does not mean that ligands 1-6 can
automatically inhibit the virus action, or ligands 5 and 6 cannot be considered as hits, without establishing
the pharmacokinetic properties of each ligand.

Turning next to the types of noncovalent interactions established between ligands and the SARS-CoV-2
Mpro, one can see in figure 4 below that the complexes are mainly stabilized by hydrogen bonding
interactions, but also supported by van der walls and π/π interactions. At this stage, the stability of
ligands 1-4 which are flavonoids compounds over ligands 5 and 6 can be explained by the presence of
multiple OH groups that can be act simultaneously as hydrogen bonds acceptors (HBA) and donors (HBD)
[35].
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In addition, the presence of three aromatic rings in flavonoids compounds offer much possibilities to π-π
interactions to take place. Such interactions are mainly stabilized by dispersion or van der Waals forces,
important in the ligand-protein interactions [33].

H-bonds parameters (distances and angles) between the protein target and ligands 1-6 along with the
involved groups (ligands) and the amino acids residues of the Mpro engage in H-bonding interaction are
summarized in Table 2.

Table 2. Hydrogen-bonds parameters derived from docking of ligands 1-6 with SARS-CoV-2 Mpro
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Ligand AA residues Ligand group δ (Å) θ(˚)

1 GLU166 O-H 1.99 155

HIS189 O-H 2.17 163

THR180 O-H 2.01 142

ASP187 O-H 2.18 140

HIS41 O=C2 2.17 153

2 HIS41 O-H 2.30 163

ASP187 O-H 2.29 135

GLU166 O-H 1.86 153

THR190 O=C2 2.24 158

GLN189 O-H 1.97 160

3 THR190 O-H 2.15 145

THR190 O-H 2.15 150

GLN192 O-H 2.36 144

HIS164 O-H 2.32 130

ASP187 O-H 2.00 170

4 GLN192 O-H 2.10 144

THR190 O-H 2.20 155

THR190 O-H 2.22 150

HISP164 O-H 1.99 140

ASP187 O-H 1.78 165

5 ARG188 H-N 2.06 145

THR190 H-O 1.83 165

MET165 H-N 2.04 151

6 TYR54 H-N 2.18 160

It can be seen that ligands 1, 2, 3 and 4 form five conventional hydrogen bonds with the active site of the
SARS-CoV-2 main protease, whereas the two weakest complexes are three and one hydrogen bonds for
ligand 5 and ligand 6, respectively. The strongest (shortest) hydrogen bonding interaction is established
between the residue of the amino acid ASP187 of the Mpro with the O-H group of the quercetin ligand (1.78
Å). The two adducts form the strongest complex.
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3.2 Physicochemical properties and ADME-T profiles

Physicochemical property is an important parameter of a molecule that influences efficacy, safety or
metabolism which could be predicted by using Lipinski’s rule of five (RO5) that is: molecular mass < 500;
Hydrogen-bond donors (HBD) ≤ 5; Hydrogen-bond acceptors (HBA) < 10; and Log P < 5 [36]. Prediction of
in silico physicochemical parameters of the 6 ligands are grouped in Table 3.

Inspection of Table 3 shows that all ligands meet every single criterion of Lipinski’s rule of five and thus
fully obey the rule. Consequently, all the investigated ligands are predicted to be easily absorbed and have
good permeability and bioavailability. According to Ghose and co-workers, the molecular refractivity is a
ubiquitous parameter for a drug molecule that cannot exceed 130 m3.mol-1  and not to be under 40
m3.mol-1 [37].

Table 3. Predicted in silico physicochemical parameters using SwissADME online tool

Ligand Formula MW
(Da)

Log
P

HBD HBA PSA
(Å)

Refractivity

(m3.mol-1)

Violations Log
S

1 C15H10O4 254.24

 

2.27

 

2

 

4

 

70.67

 

71.97

 

0

 

-4.19

2 C15H10O6 286.24 1.70

 

4

 

6

 

111.13

 

76.01

 

0

 

-3.31

 

3 C15H10O6 286.24 1.86 4 6 117.31 76.01 0 -3.71

4 C15H10O7 302.24 1.63 5 7 131.36 78.03 0 -3.16

5 C12H10N2O 198.22 1.68 2 1 48.65 61.39 0 -2.18

6 C13H12N2O 212.25 2.07 1 2 37.91 65.06 0 -4.05

With MW= Molecular weight, Log P = Lipophilicity, PSA = Polar Surface Area, Log S = water solubility

None violation is observed here for all the investigated ligands as can be seen in Table 3. Finally, as
pointed out by Cerqueira and co-authors, for optimal drug absorption and distribution, the polar surface
area (PSA) values cannot be higher than 140 Å [38]. Once again, none violation is observed here. Three
potential candidates for the inhibition of the SARS-CoV-2 3CLpro have PSA values almost two to three
times less than the recommended value (ligands 1, 5 and 6), while ligands 2, 3 and 4 have PSA value
higher than 100 Å.

The next step to deal with is to establish the ADME/T profiles of each ligand. In fact, a major issue after
identifying stables complexes, that is, lead or hit compounds, is to evaluate their ADME parameters and
cardiotoxicity.
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These pharmacokinetic properties are very important parameters in the computer-aided drug discovery
since they allow one to retract some hit from early-stage trials. The ADME properties are evaluated by
using SwissADME and pkCSM servers, but other parameters such as the Blood-Brain Barrier (BBB), the
Human Intestine Absorption (HIA) and the skin permeability come from the preADMET server. The selected
endpoints for toxicity are Ames test and Rodent Carcinogenicity (rat) in preADMET server, hepatotoxicity
and oral rat acute toxicity (LD50) in pkCSM server. These parameters are gathered in Table 4. 

Table 4. ADME-T profile of ligands 1-6.

Parameter Ligand 1 Ligand
2

Ligand 3 Ligand 4 Ligand 5 Ligand 6

Absorption & Distribution            

BBB 0.933 0.286 0.368 0.173 0.320 3.798

HIA (%) 92.644 79.439 81.132 77.207 94.263 92.827

Skin permeability (log Kp) -3.346 -4.323 -4.280 -4.433 -4.662 -4.386

Bioavailability score 0.55 0.55 0.55 0.55 0.55 0.55

Metabolism            

CYP2D6 No No No No No Yes

CYP3A4 Yes No No No No Yes

Excretion            

Total clearance 0.48 0.50 0.50 0.41 0.59 0.62

Renal OCT2 substrate No No No No No No

Toxicity            

Ames test Yes No No No Yes Yes

Hepatotoxicity No No No No No No

Carcinogenicity (rat) Negative Positive Negative Negative Negative Negative

oral rat acute toxicity (LD50, in
mol/kg)

2.486

1243

2.197

1099

2.455

1228

2.471

1236

2.781

1391

2.999

1450

Values in bold are expressed in mg/kg

According to the binding affinity values, it was derived the following decreasing order in the complexes
formed between ligands and the SARS-CoV-2 3CLpro or Mpro: Ligand 4 > Ligand 1 > Ligand 2 > Ligand 3>
Ligand 5 > Ligand 6. This order only reflects the thermodynamic stability of complexes. However, the
stability over time of the ligand in a protein interaction site depends on other factors. For a ligand to be
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used for therapeutic purposes, its absorption, distribution, metabolism, excretion and toxicity are aspects
to take into account. To pursue further, it is worthy to point out that first of all, such a ligand must be non-
hepatotoxic and non-carcinogenic [39].

Scrutiny of toxicity outcomes in Table 4 reveals that all potential ligands are non-hepatotoxic. With
regards to the carcinogenicity, the results predict the carcinogenic activity only for the ligand 2. This
encouraging result of toxicity assessment allows us to go back to ADME properties. The ability of a drug
molecule to cross into the brain is an important propriety to improve the efficacy of drugs (reduce side
effects and toxicities). The BBB values for the potential candidates are all positive and the lowest value is
found in ligand 4 (0.173) which forms the strongest complex with the SARS-CoV-2 main protease. The
probability of intestinal absorption by human is very high, and in the other hand almost the same for
ligands 1, 5 and 6; and on the other hand almost the same for ligands 2, 3 and 4. Ligand 4 has the
smallest probability (79.44 %) of being absorbed by human intestine, in contrast with its binding affinity
with the COVID-19 protease. The recommended value of the skin permeability or log Kp for a drug
molecule is set at more than -2.5 cm/h. Interestingly, the computed log Kp values range from -3.3 to -4.7
cm/h. Finally, the bioavailability score which is evaluated to 0.55 confirms that ligands 1-6 have good
absorption and distribution since all potential candidates may have more than 10% of bioavailability in rat
[40]. 

The Cytochrome P450 inhibition as metabolic indicators including CYPs: 1A2, 2C19, 2C9, 2D6 and 3A4 are
predicted. Nevertheless, only CYP2D6 and CYP3A4 are responsible for drug metabolism [41-42].
Interestingly, the three best candidates according to their binding affinity are found to be non-inhibitors of
CYP2D6 and CYP3A4 except hits 1 and 6 that affect the CYP3A4, and hit 6 which in addition affects the
CYP2D6. This result rules the ligand 6 out from the list of potential candidates for the inhibition of the
SARS-CoV-2 main protease, a result which is moreover in good agreement with its lower free enthalpy
(-6.40 kcal/mol).

Turning next to excretion also called elimination, the total clearance is directly linked to the renal OCT2
(organic cation transporter 2) substrate that offers helpful information on potential contraindications. The
selected 4 flavonoids and 2 alkaloids compounds are predicted to be not renal OCT2 substrates. This
means that all the 6 phytocompounds can be eliminated through the OCT2 substrate. Surprisingly, the
total clearance values of the investigated compounds vary almost inversely with their binding affinities
values. In addition, ligands 2 and 3 which have the same molecular weight of both chemical formula
C15H10O6 have exactly the same total clearance.

Closing finally the ADME-T profiles of the six compounds, their oral acute toxicity (LD50) are classified in
category or class 4, meaning that they are slightly toxic (Globally Harmonized System: 300 < Category 4 ≤
2000) and can thus be considered as safe.

Summary And Conclusion
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Bacteria, fungi, viruses can cause serious infections and diseases in the world. Some of these infections
and diseases are curable while other are not. Even for those that are curable, there is sometimes multiple
drug resistance. Since humanity exists, plants have been one of man’s best friends. While it is obvious that
plants are a source of vitamins, proteins, minerals, they are as well source of phytocompounds containing
excellent therapeutic properties: antioxidant, anti-inflammatory, antifungal, antimicrobial, antitumor
activities. Passiflora edulis, also known as passion fruit, passion flower, purple granadilla, or “maracuja”
(DR Congo or Brazil), is widely cultivated for its edible fruit. With numerous biological activities, the
passion fruit also contains vitamins A, C, E, K, minerals such as Zn (0.10 g), Mg (29 mg), K (348 mg), Ca
(12 mg), etc [41]. On one hand, vitamins A and K could help to fight the COVID-19 [42]. On the other hand,
these chemical elements mainly Zn, although indispensable as enzymatic co-factors, a slight increase in
their intracellular concentration inhibits the replication of retroviruses including SARS-CoV-1 [43] important
in the management of COVID-19. Owing to its numerous therapeutic activities, P. edulis has traditional or
ethno medicinal uses in many countries. Of complex phytochemistry, its secondary metabolites have
numerous health benefits and very recently, as stated above, Jabareen and co-workers reported in an
experimental study the antiviral activity of P. edulis leaves on some viruses’ species including Herpes
Simplex Virus Type 1 and 2, Varicella-Zoster Virus, etc [25]. Since P. edulis exhibits anti-inflammatory
capabilities essential to stem the cytokine storm, this study is conducted in order to identify potential
inhibitors from a set of 6 phytochemicals endowed with anti-inflammatory activity. The 6 selected
compounds (four flavonoids and two alkaloids) reacted with the SARS-CoV-2 3CLpro or Mpro, and an
order of thermodynamic stability was obtained.

Compared with Lopinavir and Nelfinavir that are protease inhibitors recommended for the treatment of
SARS and MERS, the binding affinities of the four top compounds, both flavonoids, are very close to those
of two anti-HIV drugs, and even a bit higher to that of the ligand reference. Indeed, the ligand 1 or chrysin
has anti-inflammatory, antibacterial and antioxidant activities [44-45], while ligand 2 or kaempferol
exhibits antitumor, antioxidant and anti-inflammatory capabilities [46]. In fact, our previous studies
showed that aloe vera represents potential treatment for COVID-19 [47], and three of its phytochemicals
were identified as potential inhibitors of SARS-CoV-2 main protease, in which two compounds exhibit anti-
inflammatory effect [5]. The anti-inflammatory activity of luteolin in experimental animal models was
reported by Ziyan and co-workers [48], and recently, a study by Lesjak and co-authors showed antioxidant
and anti-inflammatory activities of quercetin and its derivatives [49].

One can remember that the hyperproduction of proinflammatory cytokines is the main reason that causes
morbidity and mortality in SARS-CoV-2 patients. Thus, the application of anti-inflammatory molecules is a
mechanistically-sound strategy for treatment development [50]. The established ADME-T profile of each
ligand suggests that the four flavonoids (chrysin, kaempferol, luteolin and quercetin) might be used as
potential treatment of SARS-CoV-2.

In conclusion, the strategy adopted in this work consisted in exploring the inhibitory power of six
phytochemicals derived from P. edulis. Given the cytokine storm, six compounds exhibiting anti-
inflammatory activity, among which four flavonoids and two alkaloids, were each paired with the SARS-
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CoV-2 main protease in order to evaluate first their thermodynamic stability. The docking affinity scores
showed that ligands 1-4 (flavonoids) are more stables than ligands 5 and 4 (alkaloids). Then, the
Lipinski’s rule of five and the pharmacokinetic studies using SwissADME, preADMET and pkCSM showed
that these phytochemicals have good ADME-T profiles, mainly the flavonoids compounds. Consequently,
chrysin, kaempferol, luteolin and quercetin as the four top compounds can be used via anti-inflammatory
mechanism of action to fight the overproduction of proinflammatory cytokines in SARS-CoV-2 patients.
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Figure 1

Leaves and Flowers (left) and yellow passion fruits (right) of P. edulis

Figure 2
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Schematic structure of the SARS-CoV-2 Mpro (a) and the complex formed between the SARS-CoV-2 Mpro
and co-crystallized inhibitor 2GTB (b)

Figure 3

3D Structures of selected flavonoids and alkaloids compounds 1–6 derived from P. edulis.
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Figure 4

Interaction map of ligands 1-6 with the main protease of coronavirus 3CLpro


