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Abstract 

Whereas accelerated attention beclouded early stages of the coronavirus spread, knowledge of 

actual pathogenicity and origin of possible sub-strains remained unclear. By harvesting the 

Global initiative on Sharing All Influenza Data (GISAID) database (https://www.gisaid.org/), 

between December 2019 and January 15, 2021, a total of 8864 human SARS-CoV-2 complete 

genome sequences processed by gender, across 6 continents (88 countries) of the world, 

Antarctica exempt, were analyzed. We hypothesized that data speaks for itself and can discern 

true and explainable patterns of the disease. Identical genome diversity and pattern correlates 

analysis performed using a hybrid of biotechnology and machine learning methods corroborate 

the emergence of inter- and intra- SARS-CoV-2 sub-strains. Interestingly, some viral sub-strain 

patterns progressively transformed into new sub-strain clusters indicating varying amino acid 

and strong nucleotide association derived from same lineage. A novel cognitive approach to 

knowledge mining from enriched genome datasets and output classification targets, helped 

intelligent prediction of emerging or new viral sub-strains. Classification results outsmarted 

state-of-the-art methods and sustained an increase in sub-strains within the various continents 

with nucleotide mutations dynamically varying between individuals in close association with the 

virus adaptability to its host/environment. They also offer explanations for the growing concerns 

and next wave(s) of the virus. Defuzzifying confusable pattern clusters for comparative 

performance with the proposed cognitive solution is a possible future research direction of this 

paper.   

 
 

 

Introduction  

The coronavirus disease pandemic had forced complete shutdown on all economies of the 

world1,2. Since then, its breadth and depth have grown exponentially, causing disruptions that 

require a hybrid of computational approaches–to discover the changing nature of the virus as it 

transmits from country to country. While there exist claims that the virus has remained 
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unchanged, a growing number of studies have reported the emergence of several sub-strains3,4. 

The rapid human to human transmission of the pathogenic SARS-CoV-2 to most parts of the 

world has exhibited differences in disease severity and fatality even within a demographic region 

of a country. This disparity has been attributed to factors such as gender, age, ethnicity, race, and 

co-morbidities. However, the dissimilarity in genome sequencing of early viral samples obtained 

from infected individuals in European, North American, Asian, and Oceanian regions disgorged 

several studies aimed at analyzing and understanding the evolutionary history and relationships 

among the different SARS-CoV-2 strains. 

SARS-CoV-2 is a β-coronavirus–an enveloped non-segmented positive-sense RNA virus 

(subgenus–sarbecovirus, subfamily–Orthocoronavirinae)5, which proliferation begun in 

December 2019 in Wuhan China. It has since been confirmed that two strains of the new 

coronavirus (the L- and S-strains) are spreading around the world today6, and the fact that the L-

type is more prevalent suggests that it is “more aggressive” than the S-type. Greater proportion 

of research progress on SARS-CoV-2 has taken the biotechnology dimension7,8, specifically 

focusing on species characterization and variants analysis through features extraction. However, 

Artificial Intelligence (AI) and Machine Learning (ML) methods are expanding biotechnology 

capacity into the bioinformatics realm, through intelligent genome probing for precise viral 

classification. So far, AI/ML research on SARS-CoV-2 has permeated four key areas of 

medicine and healthcare, namely, screening and treatment9,10,11,12, contact tracing13, prediction 

and forecasting14,15, and drugs and vaccine discovery16,17,18.  

To understand the origin and structure of SARS-CoV-2, a sequence of the viral genetic 

material is required. Sequencing viral genomes is performed to identify regions of similarity that 

may have consequences for functional, structural, or evolutionary associations19. Furthermore, it 

can reveal the possibility of future health risks and vaccine remedies. Phylogenetic tree and 

genomic tree (also referred to as hierarchical clustering) are common determinants for 

representing genetic diversity and evolutionary relationships of sequenced genomes. While 

phylogenetic tree reflects slow evolution within the genome (point mutations), hierarchical 

clustering describes major genetic re-arrangement events (insertions or deletions). Converting 

massive amount of complete genome sequences into meaningful biological representations has 

limited progress of discovering viral sub-strains and detailed transmission routes. Although 

numerous algorithms/tools have evolved to target specific gene sites/locations for “on-the-fly” 

online phylogeny representations, incomplete representation and clustering errors abound–as 

different genome sites undergo different evolutionary changes, resulting in disparate multi-

dimensional patterns at different sites. Attempts at estimating phylogenies by comparing entire 

genomes have been made by focusing mainly on gene content and gene order comparisons. 

While early attempts concentrated on morphological characters with the premise that direct 

genes comparison makes more sense, modern attempts use sequences from homologous genes19 

but are burdened by the fact that a gene’s evolutionary history may differ from the evolutionary 

history of the organism, as some genes sufficiently conserved across the species of interest may 

escape detection. Alignment-free genome comparison methods are therefore becoming 

popular19,20 and have evolved to crash the heavy computational requirements of traditional 

alignment-based methods. Randhawa et al.21 for instance proposed an alignment-free approach 

based on ML, for fast, inexpensive, and taxonomic classification of complete COVID-19 

genomes in real time. 

Variants of SARS-CoV-2 have emerged with reported new peaks of infection. A variant is a 

strain when it has a different characteristic. Variants with few mutations belong to the same 
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lineages. Lineages are important for showing how a virus spreads through communities or 

populations. Interestingly, the less virulent strains are disappearing while those showing 

significant mutant variations prevail. A few documented cases of the spread of the viral sub-

strains are observed based on locations, as follows: In USA, 4 sub-strains and 11 top mutations 

were discovered from the analysis of 2754 complete SARS-CoV-2 genome sequences, where 2 

out of 4 discovered sub-strains were potentially more infectious22. These sub0strains and 5 

mutants were first detected in China, Singapore, and the United Kingdom23.  In England, a sub-

strain of replicative advantage was also discovered as variant of SARS-CoV-2, characterized by 

9 spike protein mutations consisting of 3 deletions and 6 substitutions24. Some of these variants 

were prevalent in Netherlands, Switzerland, and France. In Southwestern Wisconsin, 

Southeastern Minnesota, Northeast Iowa, the sequencing of whole viral genomes of COVID-19 

positive patients showed the spread of sub-strains to individuals in 13 cities from epicenters of 

the infection25. However, no viral sub-strain was observed in China26.  

Vaccine types are also being circulated with several conspiracy theories and disbeliefs about 

the virus existence spreading across the globe. There is fear that emerging sub-strain variants 

may confer resistance to antibody neutralization, as evolving variants of concern are rapidly 

growing lineage to SARS-CoV-2 with high replicable mutants that may hinder the efficiency of 

existing vaccines and expand in response to the increasing after‐infection or vaccine‐induced 
seroprevalence24. Currently, most COVID-19 vaccines target the vital spike protein. Although 

mutations may reduce their efficacy, they do not obliterate their effects. Inactivated virus 

vaccines that target the whole virus have been developed in China, as the immune responses they 

induce target more than a single part of the spike protein. Inactivated vaccines target an even 

greater array of viral proteins, inducing several protective immune responses, which instils 

redundancy in the protective immune responses.  

 

 

Contribution to Knowledge  

Mining additional knowledge from clinical data would assist complete features extraction, missing 

information recovery, hidden patterns understanding, and facilitate output targets labeling – for 

intelligent genome characterization and prediction. Most biotechnology/bioinformatics tools are 

‘black boxes’ and not open to contributions from the research community including reproducible 

research. Furthermore, extracted features are incomplete to aid meaningful knowledge integration. 

To support the growing field of medical- and bio- informatics, this paper adopted a novel approach 

to genome sequence mining. Transitions in nucleotide (dinucleotide) and changes in gene 

(mutation) information were exploited as input features or predictors, as these features have direct 

connection to the behavior of the virus. A hierarchical agglomerative clustering method was 

applied on the extracted features to detect optimal natural clusters for determining the evolutionary 

group of the various isolates, across countries. Using a self-organizing map (SOM), patterns of 

unique SARS-CoV-2 genome sequences including the reference genome, were discerned to 

visually establish which sub-strain group(s) the various genome samples or isolates belong. By 

decoupling the SOM map through correlation hunting, a cognitive map that associates similar 

isolate clusters was obtained. The generated patterns and isolate similarity information provided 

details for enriching the input dataset through a supervised labelling of the classification targets. 

Statistical analysis validated the variability degree of the SARS-CoV-2 isolates. This research has 

therefore made substantial contributions to knowledge, as it provides the following: 
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(i) Rapid Open Source, Scalable and Replicable Algorithms–This research includes rapid 

prototype modules that permit community contributions. As opposed to most 

biotechnology and bioinformatic tools, useful intermediate results are produced – to 

provide further insights into the prevalence and transmission of COVID-19 and related 

pandemics. Our research is therefore replicable, as available algorithms and data can 

be exploited to reproduce and validate the research. 

(ii) Realtime Contact Tracing of Undocumented Source of Infection–Tracing infectious 

disease routes for efficient documentation of infected cases is very crucial in emerging 

pandemic situations. Unsupervised genome pattern clustering and cognitive knowledge 

mining information obtained in this research can be used to explain the diversity of 

SARS-CoV-2, and for understanding which of the viral sub-strain(s) maintain(s) the 

reference genome pattern or is spreading within a particular country or been acquired 

from a different country. 

(iii) Annotation-free DNA Sequences Processing–an unsupervised approach to mining raw 

DNA sequences that does not require detailed gene or genome annotation is adopted in 

this paper, to enable easy extraction of feature vectors.   

(iv) Intelligent Genome Characterization–This research enables the accurate 

characterization of infected patients. By exploiting intelligent techniques, cognitive 

knowledge that uncovers hidden sub-strains interactions between nucleotide sequences 

is obtained 

(v) Complete SARS-CoV-2 Isolates Processing by Gender–To engage meaningful research 

of SARS-CoV-2, characterization and prediction by gender is crucial. This resource, 

which is often missing in the literature was excavated from GSAID and made available 

in this paper. We present a metadata of the excavated SARS-CoV-2 genomes by 

gender. Our metadata permits intelligent mining of SARS-CoV-2, as ambiguities in 

annotation labels inherent in GISAID has been resolved in this paper. Input features 

and classification target labels of unique isolates based on SOM cluster analysis and 

cognitive knowledge mining is also available. These resources can be integrated into 

expert decision support systems for efficient contact tracing and global disease 

surveillance. 

 

Related Works  

Several studies have dwelled on the characterization of SARS-CoV-2 genome for tracing the 

evolution, strains, and diversity of the virus.  In Tang et. al6, for instance, a population genetic 

analysis of 103 SARS-CoV-2 genomes was performed. Their analysis revealed two dominant 

types of SARS-CoV-2 namely the L type (~ 70%) and S type (~ 30%). In another study, 
Stefanelli et al.27 investigated the phylogeny of 2 patients in Italy; a Chinese tourist from Wuhan 

and an Italian diagnosed, isolated, and hospitalized in January and February 2020. They found 

the Italian patient’s strain to be different from the tourist’s strain, as it clustered with strains from 

Germany and Mexico, while the Chinese tourist’s strain was grouped with strains from Europe 

and Australia. Similarly, Somasundaram et. al28 systematically explored the phylogenetic and 
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viral clade of 28 Indian isolates of SARS-CoV-2. A total of 449 complete genome samples from 

USA, Europe, China, East Asia, Oceania, Middle East (Kuwait and Saudi Arabia) and India were 

collected from Global initiative on Sharing All Influenza Data (GISAID: 

https://www.gisaid.org/). A phylogenetic analysis by maximum likelihood was achieved using 

IQ tree. Out of the Indian isolates, 26 samples were equally distributed into 2 clusters (A and B). 

Cluster A consisted of mostly Oceania/Kuwait and 13 Indian samples, while cluster B contained 

Europe and some of Middle East/South Asian samples together with another 13 Indian samples. 

The remaining 2 Indian isolates which neither belonged to cluster A nor cluster B, were present 

in the cluster with mostly China and East-Asia samples. However, the use of small datasets and 

the lack of travel history rendered their findings inconclusive 

Application of machine learning in the combat of COVID-19 has inspired new discoveries as 

well as improved methods based on experience of previous/related epidemic. Familiar areas of 

application center around medical imaging, disease tracing, epidemiology modeling and 

medicine (analysis of protein structure and drug discovery) and virulent nature of the virus. 

Whereas the processing of input data for informed decision support is necessary, the types of 

data exploited in the case of SARS-CoV-2 and related pandemic are mainly demographic and 

control or clinical data contributed by patients/volunteers around the world. Table 1 presents a 

summary of works carried out on ML/AI in related areas of application, indicating the objective, 

number of isolates collected and data source, methods, results/findings, and drawbacks. From the 

related works, we observe the following: (i) Most of the works explore hybrid tools that combine 

biotechnology and ML/AI methodologies, which have advanced precision in approach and 

solution to the pandemic. (ii) While 50% of the works rely on limited genomic evidence, others 

are mainly simulation studies. (iii) The fulcrum of most of the works revolve around 

characterization and forecasting with comparative analysis of SARS-CoV-2 evolution, and 

relationship between it and (other) related viruses. (iv) All the works are silent on the gender 

dimension. (v) None of these works to the best of our knowledge has engaged the possibility of 

SARS-CoV-2 sub-strains discovery.  

The abundance of repetitive DNA in human genome assembly has introduced huge gap of 

multi-megabase heterochromatic regions that challenges standard mapping and assembly 

algorithms. Consequently, the composition of the sequence and potential functions of these 

regions have largely remained unexplored. Furthermore, existing genome tools cannot readily 

engage complete genome analysis to predict complex details and reveal hidden patterns, essential 

to offer explanations to the increased diversity of viral diseases. This work is therefore motivated 

by the existing gap between scientific knowledge and clinical application. Despite current 

advancement in state-of-the-art predictions, application of personalized genomics into clinical 

practice is yet to flourish. By identifying relevant genetic variants using experiential knowledge 

we provide inference of the genetic impact of the variants on functional genomic elements. 

 
Table 1. Summary of ML/AI application of SARS-CoV-2 characterization and prediction 

Reference Objective Number of isolate 

and source 

Method Result/finding Drawback 

Randhawa 

et al.21 

 

To combine 

machine 

learning-based 

alignment-free 

approach with 

COVID-19 

genomic 

5538 unique viral 

genome 

sequences, 

totaling 61.8 

million bp, 

including 29 

COVID-19 virus 

Combined supervised 

machine learning with 

digital signal 

processing (MLDSP), 

augmented 

Results support the bat 

origin and classified 

the COVID-19 virus as 

Sarbecovirus, within 

Betacoronavirus. 

Their method achieved 

high classification 

Study only 

compared the 

relatedness of the 

COVID-19 virus 

sequences to the 

known genera of 

Coronaviridae 
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Reference Objective Number of isolate 

and source 

Method Result/finding Drawback 

signature for 

real-time 

taxonomic 

predictions of 

unclassified 

new sequences 

of COVID-19. 

sequences 

available on 

January 27, 2020. 

Sequence data 

came from NCBI, 

Virus- 

Host-DB, and 

GISAID. 

by decision tree, for 

genome analysis. 

Spearman’s rank 

correlation was then 

used for result 

validation.  

accuracy for the 

COVID-19 virus 

sequences; and can 

provide a reliable real-

time option for 

taxonomic 

classification.  

family and known 

sub-genera of the 

genus 

Betacoronavirus. 

Khanday et 

al.29 

To classify 

textual clinical 

reports on 

SARS-related 

viruses using 

classical and 

ensemble 

machine 

learning 

algorithms. 

212 patients’ data 

showing 

symptoms of 

coronavirus and 

other viruses were 

collected from 

GitHub30 

Feature engineering 

was performed using 

Term frequency/inverse 

document frequency 

(TF/IDF), Bag of words 

(BOW) and report 

length. These features 

were then learned using 

traditional and 

ensemble machine 

learning classifiers that 

classified the text into 

four different 

categories: COVID, 

SARS, ARDS and Both 

(COVID, ARDS). 

Logistic regression and 

Multinomial Naive 

Bayes performed better 

than other ML 

algorithms. 

Study relied on 

limited amount of 

data. 

Melin et 

al.31 

To analysis the 

spatial 

evolution of 

coronavirus 

pandemic 

around the 

world. 

Publicly available 

datasets were 

obtained from the 

Humanitarian 

Data Exchange 

(HDX)32, from 

countries where 

COVID-19 cases 

had occurred 

between January 

22, 2020 and May 

13, 2020. 

The proposed method 

used the Kohonen self-

organizing 

maps to form clusters 

of countries in the 

world. The 

classification was 

achieved using 4 

classes of COVID-19 

severity 

cases (Very High, 

High, Medium, and 

Low) 

Interesting conclusions 

that may be helpful in 

deciding the best 

strategies in dealing 

with the virus were 

drawn from extensive 

simulation. 

The research was 

mainly a 

simulation study. 

Melin et 

al.33 

To develop a 

multiple 

ensemble neural 

network model 

with fuzzy 

response 

aggregation for 

the COVID‐19 
time series. 

Dataset from 

confirmed 

COVID‐19 cases 
and death cases, 

which consists of 

12 states in 

Mexico and the 

total data of the 

country. 

A 3-module ensemble 

architecture was 

deployed, with each 

ensemble having its 

own fuzzy aggregator, 

for final prediction of 

the ensemble.  

 

The proposed multiple 

ensemble neural 

network models with 

fuzzy response 

integration closely 

followed real data and 

yielded precise 

predictions in the 

validation dataset. 

The research was 

mainly a 

simulation study. 

Castillo 

and Melin34 

To forecast 

confirmed 

COVID-19 

cases and death 

based on the 

complexity of 

their time series 

using a hybrid 

Publicly available 

datasets of 10 

countries were 

obtained from the 

Humanitarian 

Data Exchange 

(HDX) and data 

from countries 

The datasets were used 

to build the fuzzy 

model with time series 

in a fixed period. Then 

the fuzzy fractal model 

was tested by 

forecasting other times 

Simulated forecast 

results were close to 

the real values, 

confirming that the 

fuzzy fractal approach 

works well in time 

series prediction. 

The research was 

mainly a 

simulation study 

and limited to 

COVID-19 cases. 
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Reference Objective Number of isolate 

and source 

Method Result/finding Drawback 

fuzzy-fractal 

approach. 

where COVID-19 

cases have 

occurred from 

January 22, 2020 

to March 31, 

2020. 

series in window 

periods of 10 days. 

Lopez-

Rincon et 

al.35 

Deep learning is 

coupled with 

explainable 

artificial 

intelligence 

techniques to 

discover 

representative 

genomic 

sequences in 

SARS-CoV-2. 

Data came from 

National 

Genomics Data 

Center (NGDC) 

repository, 

National Center 

for Biotechnology 

Information 

(NCBI) repository 

and the Global 

Initiative on 

Sharing All 

Influenza Data 

(GISAID) 

repository. 

Convolutional neural 

network classifier was 

first trained on 553 

sequences, separating 

the genome of different 

virus strains from the 

Coronavirus family. 

The network’s behavior 

was then analyzed, to 

discover sequences 

used to model SARS-

CoV-2 identification. 

The sequences were 

later validated on the 

excavated samples. 

12 meaningful 21-bps 

sequences that best 

characterized SARS-

CoV-2 were 

discovered. For all the 

analyzed data, these 

sequences appeared 

only in SARS-CoV-2 

samples and not in any 

other viruses. 

The study 

concentrated on 

only limited set of 

viral sequencing 

data, targeting 

specific genome 

sites. 

Lopez-

Rincon et 

al.36 

To propose an 

assisted 

detection test 

that combines 

molecular 

testing with 

deep learning. 

Dataset of 553 

complete genome 

non-repeated 

sequences that 

vary from 1260 to 

31029 bps in 

length was 

collected from 

2019 Novel 

Coronavirus 

Resource 

(2019nCoVR) 

repository37 

Deep convolutional 

neural network using 

10-fold classification 

was deployed for 

automatic features 

creation starting from 

the genome sequence 

of the virus 

The proposed approach 

could correctly classify 

SARS-CoV-2, 

distinguishing it from 

other coronavirus 

strains, regardless of 

missing information 

and errors in 

sequencing (noise). 

Their work 

concentrated on 

specific genome 

sites. 

Kaden et 

al.38 

To investigate 

SARS-CoV-2 

virus sequences 

based on 

alignment-free 

methods for 

RNA sequence 

comparison. 

Viral sequence 

genomes from 

GISAID–with 156 

genomes, and 

NCBI and 

GenBank–with 

892 complete 

genomes, by April 

19, 2020, were 

excavated. 

A Generalized Matrix 

Learning Vector 

Quantizer (GMLVQ) 

model for labeled 

dataset with virus type 

information, obtained 

by phylogenetic tree 

analysis, was 

performed using 10-

fold cross validation. 

From classification 

correlation matrix 

delivered by GMLVQ 

optimization, features 

contributing decisively 

to a typed separation 

were determined. 

The GMLVQ approach 

produced lower 

complexity and 

allowed easy out-of-

training generalization. 

Rejected sequences 

could only allow 

speculations about 

new virus types 

with respect to 

nucleotide base 

mutations in the 

viral sequences. 

Sawmya et 

al.39 

To track SARS-

CoV-2 

evolution 

10179 sequences 

from 67 countries 

were excavated 

ML and Deep learning 

models were used to 

identify the virulence 

As regards virulent 

strain prediction, 

LightGBM classifier 

Their work was 

unable to explain 

some strong 
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Reference Objective Number of isolate 

and source 

Method Result/finding Drawback 

among 

countries using 

phylogenetic 

analysis and 

perform deep 

learning 

classification 

for 

identification of 

virulent strains. 

from GISAID as 

of April 24, 2020. 

of the strains. From the 

classification pipeline, 

important features were 

identified as sites of 

interest (SOI) in the 

virus strains for further 

analysis. 

was superior to deep 

learning classifiers. As 

regards mutation 

prediction, CNN-

LSTM and CNN-

bidirectional LSTM 

gave near similar 

performance for 

different SoI of the 

genome. 

relationships 

between countries, 

as inferred by the 

phylogenetic tree. 

Sun and 

Wang40 

To develop 

mathematical 

model for 

characterizing 

imported and 

asymptomatic 

patients.  

Study relied on 

demographic data 

on COVID-19 

epidemic in 

Heilongjiang 

province from 

January 23 to 

March 25, 2020. 

An ordinary differential 

equation model was 

trained to fit the 

epidemic data and the 

simulation extended to 

characterize an 

infected/imported case 

as well as 

asymptomatic patients. 

Imported case was 

responsible for the 

newly confirmed 

COVID-19 infections 

in the province. 

Stochastic simulations 

showed significant 

increase in local 

contacts and outbreak 

of COVID-19. 

Reported number of 

asymptomatic patients 

was markedly lower 

than the model 

predictions, implying 

large unidentified 

asymptomatic pool. 

The research was 

mainly a 

simulation study 

and limited to 

COVID-19 cases. 

Dey and 

Mukhopad

hyay41 

To build 

machine 

learning models 

that predict 

protein-protein 

interactions 

(PPIs) between 

the virus and 

human proteins. 

SARS-CoV-2 

human PPI 

database42 

containing 332 

unique 

interactions 

between 332 

human proteins 

and four structural 

and as well as 20 

accessory 

coronavirus 

proteins. 

Classification models 

were prepared based on 

different sequence-

based features of 

human proteins like 

amino acid 

composition, pseudo 

amino acid 

composition, and 

conjoint triad. 

The ensemble voting 

classifier using 

SVMRadial, 

SVMPolynomial, and 

Random Forest 

technique, gave greater 

accuracy, precision, 

specificity, recall, and 

F1 score compared to 

other models. 

Their classifier 

yielded 70% 
accuracy due to 

limited 

experimental data. 

Dlamini et 

al.43 

To analyze 

intrinsic 

dinucleotide 

genomic 

signatures for 

whole genome 

sequence data 

of 8 pathogenic 

species, 

including 

SARS-CoV-2. 

About 33000 

Fully assembled, 

whole genome 

sequence in 

FASTA format 

were retrieved 

from GISAID, for 

8 pathogenic 

species. 

The genome sequences 

were transformed into 

dinucleotide relative 

frequencies and 

classified using 

extreme gradient 

boosting (XGBoost) 

model.  

 

Their result was able to 

discriminate between 

distantly related 

species such as viruses 

and bacteria, closely 

related species such as 

SARS-CoV-2 and 

MERS-CoV, as well as 

samples of the same 

species that originate 

from different regions. 

Classes with small 

sample size (e.g., 

Africa), yielded 

high 

misclassification 

rate. 
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Results 

The general workflow describing the proposed hybrid computational framework is presented in 

Fig. 1, and the sequence of steps implementing the workflow is given on Supplementary Table 

S1. Each genome sequence was mapped or transformed into an equivalent genomic signal (a 

discrete numeric sequence) using the following encoding of the individual nucleotide (i.e., A=1; 

C=2; G=3; T=4). As base input, we maintained nucleotide pairs above 29000 bp (the input 

vector), indicating approximate (maximum) length of DNA sequences of the raw SARS-CoV-2 

genome. Next, all repeated sequences were removed using a Microsoft Excel macro that deletes 

duplicate columns. The Excel macro implementing this process is found on Supplementary Table 

S2. A similarity threshold of 0.90 was then imposed to further trim near similar genomes, 

resulting in unique sequences of isolates distributed per continent containing 88 countries 

(male=71 countries; female=66 countries), by gender (SupplData8.xlsx), as follows (Africa: 

M=371, F=477; Asia: M=514, F=510; Europe: M=311, F=283; North America: M=294, F=199; 

South America: M=185, F=153; Oceania: M=9, F=6). A vector representation for pairwise 

Euclidean distance computation among the vectors in the form of a distance matrix was achieved 

using a SOM program developed in MATLAB. As the distance matrix is extremely high-

dimensional, suitable representative sequences of the isolate clusters, decoupled into a cognitive 

map for efficient labeling the classification targets were obtained. A k-fold cross-validation was 

finally performed by dividing the data into k parts. At each iteration i, the ith fold was used for 

testing, while the other folds were used for training. 
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Fig. 1. Workflow describing the proposed hybrid approach. The workflow begins with the excavation of FASTA 

files of human SARS-CoV-2 genome sequences from GISAID. These files were stripped and processed into a genome 

database (DB) as multiple columns of nucleotide sequence. AI/ML techniques were then applied to extract knowledge 

from the genome datasets as follows: Using ML techniques, compute dis(similarities) scores between the various pairs 

of genome sequences and obtain a genomic tree of highly dis(similar) isolates grouped in the form of a 

dendrogram/phylogenetic tree. Determine the optimal number of natural clusters–to provide additional knowledge for 

supervised learning. Separate the viral sub-strains using SOM component planes–for possible transmission 

pathway/pattern visualization. Perform nucleotide alignment of the entire genome sequences (owing to varying 

sequence lengths of the different genome isolates, a cutoff at the last nucleotide of the genome isolate or the reference 

genome serves as the maximum pair for comparison), remove duplicate columns while imposing a similarity 

threshold–to yield unique genome sequences. Extract genome features by computing dinucleotide transitions and 

mutation frequencies. Generate cognitive map–for intelligent sub-strains prediction. Label classification targets of 

extracted features using derived SOM clusters and cognitive map. Learn and predict new/emerging sub-strains using 

ANN with k-fold validation method. 
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Base Variant Analysis 

Dinucleotide transitions and nucleotide mutations were computed for male and female isolates 

and averaged across the various continents namely Africa (Data S1: SupplData1.xlsx), Asia 

(Data S2: SupplData2.xlsx), Europe (Data S3: SupplData3.xlsx), North America (Data S4: 

SupplData4.xlsx), South America (Data S5: SupplData5.xlsx), and Oceania (Data S6: 

SupplData6.xslx). We discuss in this section an analysis of the average base transitions and 

mutations, and how they influence the overall behavior of the datasets.  

Dinucleotide Transitions: Average dinucleotide transitions of SARS-CoV-2 genomes computed 

across various continents are presented in Fig. 2. These transitions are represented as 

quadrilaterals dissected along its diagonals. Wang et al.44 found that the SARS-CoV-2 reference 

genome has 29.94% of A, 32.08% of T, 19.61% of G and 18.37% of C. Hence, the expected 

dinucleotide transitions proportion is the product of the two nucleotide bases. For instance, the 

CG dinucleotide in the viral genome is 3.60% (i.e., 19.61% × 18.37%). Therefore, we arrive at 

the following computations for the respective dinucleotides/features in this study: AA=8.96%; 

CC=3.37%; GG=3.84%; TT=10.29%; AC=5.50%; AG=5.87%; AT=9.60%; CG=3.60%; 

CT=5.87%; GT=6.29%; TG=6.29%; TC=5.87%; TA=9.60%; GC=3.60%; GA=5.87%; and 

CA=5.50%. Comparison of our results therefore corroborates Wang et al.44 on CG dinucleotide 

reduction of SARS-CoV-2, as the CG transitions for both male (M) and female (F) isolates 

across the various continents present lowest dinucleotide transitions compared to the rest of the 

transitions. Furthermore, slightly different variations exist between the male and female 

transitions, which may not be unconnected with genome sequencing errors and the presence of 

new viral sub-strain(s). 

 

   
(a) African isolates     (b) Asian isolates 
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(c) European isolates     (d) North American isolates 

 

   
(e) South American isolates    (f) Oceanian isolates 

Fig. 2. Base pair transitions in SARS-CoV-2 genomes for male and female isolates. Thick arrows indicate 

transition, while dotted arrows represent transversion. Looped (dotted) arrows represent same base transition. 

Inscriptions on/near the arrows represent transition/transversion frequencies for male and female isolates. 

 

Average dinucleotide transitions variant: Observed transitions variants between male and 

female isolates (M − F) computed from Fig 2, across the various continents are shown in Table 

2. Positive numbers indicate male frequency dominance while negative numbers indicate female 

frequency dominance. Table 2 reveals that female isolates from Africa greatly dominated the 

dinucleotide transitions space compared to male isolates. This wide difference may not be 

unconnected with sequencing errors observed in the raw genomes for African isolates. Other 

continents however show negligible variations. 
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Table 2. Observed average dinucleotide transitions variants between male and female isolates 

Continent AA CC GG TT AC AG AT CG CT GT TG TC TA GC GA CA 

Africa -32 -10 -12 -38 -23 -20 -26 -5 -24 -23 -29 -17 -27 -13 -18 -24 

Asia 4 1 2 4 2 3 3 0 3 3 4 2 4 2 2 2 

Europe 2 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 

North America 9 2 2 10 5 5 7 1 6 5 6 4 7 3 5 5 

South America -3 -2 -2 -5 -4 -3 -3 -1 -4 -5 -5 -3 -4 -2 -3 -3 

Oceania 7 1 2 1 1 2 2 3 2 3 1 4 2 2 1 1 

 

 

Nucleotide Mutations: Mutations in base pairs are important for understanding the 

pathogenicity of SARS-CoV-2. These computations were compiled after direct pairwise 

comparisons with the reference genome, averaged across the various continents, to produce Fig. 

3. As expected, changes in base pairs were observed after pairwise comparisons. Also, genome 

sequences with very negligeable changes or (no significant mutations) from the reference 

genome were noticed across the various continents for male and female isolates (see Table 3). 

Overall, total insignificant mutants of 587, representing 14.98% of the total number of isolates 
was observed for male patients, while female patients showed 258 insignificant mutants, 

representing 9.06% of the total number of isolates.  
 

      
(a) Africa      (b) Asia 

 

    
(c) Europe      (d) North America 
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(e) South America     (f) Oceania 

Fig. 3. Base pair changes in SARS-CoV-2 genomes for male and female isolates. Thick arrows indicate 

transitions, while dotted arrows represent transversions. Inscriptions on/near the arrows represent transition 

frequencies for male and female isolates. 

 
Table 3. Isolates with insignificant mutants across continents 

Continent Country 

Male Female 

No. of 

insignificant 

mutants 

Total 

isolates 

% No. of 

insignificant 

mutants 

Total 

isolates 

% 

Africa 
South Africa 27 503 5.37 56 1004 5.58 

Tunisia 4 19 2.11 0 0 - 

Asia 

Singapore 10 487 2.05 6 53 1.13 

China 47 189 24.86 47 131 35.88 

Sri Lanka 2 23 8.70 0 0 - 

Bangladesh 8 22 36.36 0 0 - 

India 5 1041 0.48 2 557 0.36 

Kazakstan 5 14 35.71 9 10 90 

Indonesia 10 64 15.63 4 27 14.81 

Turkey 2 80 2.50 0 0 - 

Taiwan 24 34 70.59 20 30 66.67 

Philippines 1 6 16.67 0 0 - 

Israel - - - 1 15 6.67 

Saudi Arabia 384 408 94.12 77 91 86.83 

Oman 1 81 1.23 0 0 - 

United Arab 

Emirates 

22 73 30.14 9 38 23.68 

Europe 

Romania 1 18 5.56 0 0 - 

Spain 3 148 2.03 4 117 3.42 

Italy 6 309 1.94 5 253 1.98 

Russia 1 42 2.38 2 83 2.41 

France 1 78 1.28 1 53 1.89 

North America 

Mexico 2 66 3.30 2 44 4.55 

Dominican 

Republic 

- - - 1 5 0.20 

South America 

Chile 1 1 100 0 0 - 

Colombia 3 133 2.26 2 77 2.60 

Ecuador 4 21 19.07 0 0 - 

Brazil 13 58 22.41 10 261 3.83 
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Continent Country 

Male Female 

No. of 

insignificant 

mutants 

Total 

isolates 

% No. of 

insignificant 

mutants 

Total 

isolates 

% 

Total: 587 3918 14.98 258 2849 9.06 

 

Average nucleotide mutations variant: In an analysis of SARS-CoV-2 mutations in the United 

States, CT mutant variants were found to have strong gender dependence22. Observed mutation 

variants between male and female isolates (M − F) computed from Fig 3, across the various 

continents are shown in Table 4. Positive numbers indicate male frequency dominance while 

negative numbers indicate female frequency dominance. Table 4 reveals that female isolates from 

Asia greatly dominate the nucleotide mutations compared to male isolates. This trend is 

consistently followed by female isolates from South America with dominant transitions compared 

to male isolates. However, other mutation statistics have mixed dominant values with varying 

degree of dominance. The result indicates that nucleotide mutations (not only the CT mutant) 

dynamically vary between individuals and are more associated with the virus adaptability to its 

host/environment.  

 
Table 4. Observed mutant variants between male and female isolates 

Continent AC AG AT CG CT GT TG TC TA GC GA CA 

Africa -19 -14 -3 12 -21 -37 -48 -8 -5 -8 -5 -26 

Asia -79 -78 -147 -52 -91 -115 -121 -91 -141 -47 -90 -73 

Europe 9 -1 3 18 -15 18 -16 21 0 -21 4 6 

North America -2 15 38 17 21 12 14 13 41 21 14 -4 

South America -35 -35 -59 -20 -42 -51 -55 -41 -56 -19 -39 -32 

Oceania 50 -15 -45 11 -23 62 23 23 -53 -54 9 32 

 

 

Hierarchical Clustering Analysis (Agglomerative Nesting: AGNES)  

Li et. al45 investigated the angiotensin-converting enzyme 2 (ACE2)–the receptor agent for the 

SARS-CoV-2 virus–a known contributor to viral infections susceptibility and/or resistance46. 

ACE2 generates small proteins by cutting up larger protein angiotensinogen, in turn affecting the 

nucleotide/protein. They compared ACE2 expression levels across 31 normal human tissues 

between males and females and between younger and older persons using two-sided student’s t-

test. By examining the expression patterns, they found that protein expression levels were 

similarly expressed between males and females or between younger and older persons in 

experimented tissues. Furthermore, men showed worse prognosis than women. Their findings 

however lacked experimental and clinical data validation. Using clinical evidence, we provide 

results of hierarchical clustering analysis to examine the arrangement of the nucleotide (protein) 

sequences/clusters across the entire genome through mutant accumulation, for male and female 

patients. Three distance measures were experimented, the ward, complete and single methods. 

Results show that the ward method has the highest agglomerative coefficient of (male=0.9746; 

female=0.9683), indicating more compact clusters; closely followed by complete (male=0.9579; 

female=0.9523); average (male=0.9423; female=0.9445); and single (male= 0.8710; 

female=0.9058) methods. Using the unique isolates, the HCA or AGNES plots (see Fig. 2 of 

methods section) presents 2 natural clusters A and B, suggesting inevitable viral strains mutant 

accumulation (group A), while few mild divergent strains (group B) with specific mutations are 

geographically different. Hence, for the male isolates (Fig. 2a), 68 isolates belonged to cluster A 
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while 3 isolates belonged to cluster B. For the female isolates (Fig. 2c), 63 isolates belonged to 

cluster A while 3 isolates belonged to cluster B. 

To determine if differences exist in the genome sequences between genders, an independent 

t-test was imposed on the AGNES dis(similarity) scores. Results showed that male patients had 

statistically insignificantly longer genome sequences (0.9726 ± 0.0377) compared to female 

patients (0.9673 ±  0.0344), 𝑡𝑡(3280) = 1.710, 𝑝𝑝 = 0.0871. However, there was no 

statistically significant difference in mean similarity between the nucleotide (protein) structures 

of the two groups at 95% confidence interval, hence, no significant genetic variations were 

observed. Our result therefore corroborates the findings in Li et al.44 and validates the claim that 

no significant genetic variation exists in human SARS-CoV-2 genomes for both groups.   

 

 

Genome Pattern Analysis  

Component planes visualization reveals the distribution of single feature values on a SOM map. 

The component planes permit an investigation of continents that share similar sub-strain(s) of 

SARS-CoV-2 and which sub-strain(s) permeate the different regions. To account for the 

variability of SOM neighborhood structure at every SOM run, the reference genome was 

included as part of the experiment datasets during each training phase. Hence, 4 reference 

genome pattern possibilities were generated to establish the very topology suitable for the trained 

datasets. Our topologies possess random (but controllable) discontinuities that permit more 

flexible self-organization with high-dimensional data, thus, preserving the map structure as much 

as possible. The training was carried out by gender, per continent. To ensure clear visualization 

of the generated maps, most of the gender-specific runs were split into 2 runs. This method was 

adopted to reduce the computational burden accompanying the huge datasets in this study. A 

total of 18 SOM maps were generated (see Figs. 4-8). We observed single-, double- and 

multiple-source transmissions. Overall, 7 pattern clusters were discovered as documented in 

Table 5. Cluster 1 represents the reference genome. Clusters 2, 3, 4, 5 and 6 are inter-continent 

pattern clusters or sub-strain(s). Cluster 7 indicates discovered intra-country pattern clusters or 

sub-strains. Wang’s et al.22 analysis suggests the presence of four sub-strains in the United 

States. Our results therefore sustain an increase in sub-strains within the various continents and 

offer explanations for the growing concerns and next wave(s) of the virus. 
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(a) Male                    (b) Female 

Fig. 4. SOM component planes visualization for African isolates. Component planes 1 (encircled) represent the SARS-CoV-2 reference genome. The male 

and female isolates have 2 SOM maps each with country and (component plane map position(s)) distributed as follows: Male – (a) Map 1: Cameroon (2), Ghana 

(3-15), South Africa (16-200). Map 2: South Africa (2-63), Gambia (64-66), Algeria (67), Egypt (68-81), Tunisia (82-90), Morocco (91-92), Mozambique (93-

96), Nigeria (97-107), Senegal (108-156), Rwanda (157-173). Female – (b) Map 1: Ghana (2), South Africa (3-240). Map 2: South Africa (2-186), Gambia (187), 

Algeria (188), Egypt (189-194), Tunisia (195-203), Madagascar (204), Nigeria (205-208), Senegal (209-237), Rwanda (238-239).  

 

 
(a) Male                       (b) Female 

Fig. 5. SOM component planes visualization for Asian isolates. Component planes 1 (encircled) represent the SARS-CoV-2 reference genome. The male and 

female isolates have 2 SOM maps each with country and (component plane map position(s)) distributed as follows: Male – (a) Map 1: Singapore (2-18), Iraq 
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(19), China (20-71), Kuwait (72-74), Malaysia (75-94), Sri Lanka (95-109), Bangladesh (110-119), India (120-249). Map 2: India (1-145), South Korea (146-

149), Kazakhstan (150), Indonesia (151-164), Turkey (165-180), Iran (181-184), Taiwan (185-191), Vietnam (192-200), Israel (201), Saudi Arabia (202-221), 

Mongolia (222-224), Oman (225-231), Lebanon (232-240), United Arab Emirates (241-251). Female – (b) Map 1: Singapore (205), Iraq (6), China )7-54), 

Malaysia (55-79), Sri Lanka (80-85), Bangladesh (86-90), India (91-249). Map 2: India (2-129), South Korea (130-131), Kazakhstan (132-136), Indonesia (137-

149), Turkey (150-159), Iran (160-162), Taiwan (163-176), Vietnam (177-193), Israel (194-197), Philippines (198-199), Saudi Arabia (200-217), Pakistan (218-

219), Oman (220-227), Lebanon (228-233), United Arab Emirates (234-247), Bahrain (248).  

 

 
(a) Male                   (b) Female 

Fig. 6. SOM component planes visualization for European isolates. Component planes 1 (encircled) represent the SARS-CoV-2 reference genome. The male 

and female isolates have 2 SOM maps each with country and (component plane map position(s)) distributed as follows: Male – (a) Map 1: Switzerland (2), Faroe 

Island (3-7), Belgium (8-9), Poland (10-23), Greece (14-29), Romania (30-43), Spain (44-102), Georgia (103-105), Italy (106-161). Map 2: Italy (2-59), Russia 

(60-73), France (74-112), Slovakia (113), Hungary (114-118), Cyprus (119), Ukraine (120-125), Sweden (126), Austria (127), Croatia (128-129), Bosnia and 

Herzegovina (130), Czech Republic (131-152). Female – (b) Map 1: Switzerland (2), Faroe Islands (3-6), Belgium (7-8), Greece (9-19), Germany (20-26), 

Romania (27-47), Spain (48-95), Georgia (96), Italy (97-161). Map 2: Italy (2-28), Russia (29-55). France (56-87), Slovakia (88-90), Moldovia (91-93), Hungary 

(94-100), Ukraine (101-104), Austria (105), Finland (106), Bosnia and Herzegovina (107), Czech Republic (107-123). 
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(a) Male                          (b) Female 

Fig. 7. SOM component planes visualization for North American isolates. Component planes 1 (encircled) represent the SARS-CoV-2 reference genome. 

The male isolates have 2 SOM maps while the female isolates have 1 map, each with country and (component plane map position(s)) distributed as follows: Male 

– (a) Map 1: Mexico (2-46), USA (47-150). Map 2: USA (2-23), Panama (25-102), Saint Martin (103-105), Guadeloupe (106-109), Canada (110-112), Costa 

Rica (113-145), Dominican Republic (146). Female – (b) Map 1: Mexico (2-34), USA (35-106), Panama (107-165), Saint Martin (166-168), Guadeloupe (169-

176), Canada (177-182), Costa Rica (183-196), Dominican Republic (197-200). 
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(a) Male                   (b) Female               (c) Male and female 

Fig. 8. SOM component planes visualization for South American and Oceanian isolates. Component planes 1 (encircled) represent the SARS-CoV-2 

reference genome. For South American isolates, the male isolates (a) and female isolates (b) have 1 SOM map each.  For Oceanian isolates, the male and female 

isolates (c) are condensed into 1 map, each with country and (component plane map position(s)) distributed as follows: Male – (a) Map 1: Venezuela (2-3), Chile 

(4), Argentina (5), Colombia (6-62), Ecuador (63-72), Peru (73), Brazil (74-186).  

Female – (b) Venezuela (2), Argentina (3), Colombia (4-47), Ecuador (48-50), Brazil (51-154). Male and female – (c) Map 1: Male – Australia (2-7), Guam (8-

9), New Zealand (10). Female – Australia (11-15), New Zealand (16).  
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A distribution of discovered clusters (7 in this case) by gender, across the various continents 

under study, is presented on Table 5. Notice that cluster 7 has the highest proportion of data 

points, indicating increased intra-country transmissions; save North America, where cluster 3 has 

the highest proportion of data points, an indication of increased inter-country transmissions. A 

further analysis across the continents reveals that the African, Asian, and South American 

isolates clustered around sub-strains G1, G2 and G5 (where G represents a generic sub-strain) 

with number of isolates and cluster proportions for male and female patients distributed as 

follows:  

• Africa – G1: 186 (M=20.22%, F=23.27%), G2: 185 (M=23.18%, F=20.75%), and G5: 89 

(M=6.74%, F=13.34%). The least sub-strains proportions come from Reference: 31 

(M=3.77%, F=3.56%) and G4: 0 (M=0%, F=0%).  

• Asia – G1: 255 (M=27.31%, F=24.04%), G2: 168 (M=17.47%, F=16.36%), and G5: 150 

(M=16.47%, F=13.74%). The least sub-strains proportions come from cluster 4: 27 

(M=1.61%, F=3.84%) and G4 (M=0.40%, F=0.20%). 

• South America – G1: 75 (M=24.86%, F=18.95%), G2: 91 (M=23.24%, F=31.37%) and 

6: 20 (M=3.78%, F=8.50%). The least sub-strains proportions come from cluster 4: 15 

(M=4.32%, F=4.58%) and G4: 2 (M=0%, F=1.31%). 

European and North American isolates clustered around the Reference genome, the G1 and G2 

sub-strains, with number of isolates and cluster proportions for male and female patients 

distributed as follows:   

• Europe – cluster 1: 80 (M=13.18%, F=13.78%), cluster 2: 185 (M=34.73%, F=27.21%) 

and cluster 3: 45 (M=4.18%, F=11.31%). The least sub-strains proportions come from 

cluster 4: 17 (M=2.57, F=3.18%) and cluster 5: 12 (M=0.64, F=3.53%). 

• North America – cluster 1: 50 (M=9.18%, F=11.56%), cluster 2: 79 (M=25.17%, 

F=2.51%) and cluster 3: 113 (M=35.03%, F=55.28%). The least sub-strains proportions 

come from cluster 4: 15 (M=2.38%, F=4.08%) and cluster 5: 0 (M=0%, F=0%). 

Due to paucity of data, the Oceanian isolates have data for only cluster 1: 2 (M=24.86%, 

F=18.95%). Table 6 summarizes the clusters distribution, by gender across the various 

continents. 

 
Table 5. Cluster distribution by gender across continents 

Continent Gender 

Cluster 1 

(Reference 

genome) 

Cluster 2 

(inter-country 

sub-strain G1) 

Cluster 3 

(inter-country 

sub-strain G2)  

Cluster 4 

(inter-country 

sub-strain G3) 

Cluster 5 

(inter-country 

sub-strain G4) 

Cluster 6 

(inter country 

sub-strain G5) 

Cluster 7 

(intra-country 

sub-strain) 

Total 

No. % No. % No. % No. % No. % No. % No. % % 

Africa 
Male 14 3.77 75 20.22 86 23.18 10 2.70 0 0 25 6.74 161 43.40 100 

Female 17 3.56 111 23.27 99 20.75 10 2.10 0 0 64 13.42 176 36.90 100 

Asia 
Male 26 5.22 136 27.31 87 17.47 8 1.61 2 0.40 82 16.47 157 31.53 100 

Female 40 8.08 119 24.04 81 16.36 19 3.84 1 0.20 68 13.74 167 33.74 100 

Europe 
Male 41 13.18 108 34.73 13 4.18 8 2.57 2 0.64 20 6.43 119 38.26 100 

Female 39 13.78 77 27.21 32 11.31 9 3.18 10 3.53 8 2.83 108 38.16 100 

North 

America 

Male 27 9.18 74 25.17 103 35.03 7 2.38 0 0 18 6.12 65 22.11 100 

Female 23 11.56 5 2.51 110 55.28 8 4.02 0 0 8 4.02 45 22.61 100 

South 

America 

Male 10 5.41 46 24.86 43 23.24 8 4.32 0 0 7 3.78 71 38.38 100 

Female 6 3.92 29 18.95 48 31.37 7 4.58 2 1.31 13 8.50 48 31.37 100 

Oceania 
Male 3 33.33 0 0 0 0 0 0 0 0 0 0 6 66.67 100 

Female 1 16.67 0 0 0 0 0 0 0 0 0 0 5 83.33 100 
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Cognitive Knowledge Generation 

While mutations are expected, there is need to initiate robust surveillance mechanism for 

continuous monitoring of the public health implications and rapid response to new strains of 

COVID-19. To intelligently predict the viral sub-strains for both genders, novel cognitive map 

that preserves chains of similar isolates were generated from SOM component planes using the 

Python programming language. The extracted clusters are necessary for supervised labeling of 

the classification targets. By disassembling the SOM correlation hunting matrix space, we 

attribute these associations to disparate classes of discovered viral sub-strains. The outcome is a 

cognitive map of 7 clusters simulating the discovered SOM patterns and countries/isolates linked 

to these patterns for male and female patients (see Supplementary Table S3). Each sub-strain 

cluster holds similar isolates that belong to a related pattern bounded by certain degree of 

association or correlation range, established by the SOM, and captures all isolates discovered 

within this range. We also captured from the SOM component planes any progression in patterns 

showing sub-strain(s) development leading to well separated cluster image(s). The cognitive 

knowledge can help the contact tracing of cases in emerging disease situations as well as 

establish how the reference genome has evolved over time. This additional knowledge also 

permits further characterization of the viral sub-strains, as our results allow unique SARS-CoV-2 

base pairs sequence identification (which do not appear in other viral sub-strains) but could be 

useful as baselines for designing new primers that permit further insights and examination by 

experts. 

 
 

ANN performance Evaluation 

The k-fold cross validation method is known to estimate the robustness of the model on new data 

and was used to drive the validation phase of the NN. As the model is fit on training data, we 

obtain more realistic estimates of how well the model prediction will work on new cases. The 

experimental setup performed twenty (20) runs of stratified k-fold cross validation47 on the male 

and female datasets using the Neural Network (NN) model. The number of groups was split into 

(k) such that each data sample spanned 3, 5, 10 and 15 yielding 60, 100, 200 and 300 calls 

respectively on the training and testing mode of each dataset. This was done to ensure that the 

best possible value of k was chosen alongside the NN model. The performance of the NN model 

on the datasets was finally evaluated using the Classification Accuracy, Root Mean Squared 

Error (RMSE), Mean Absolute Error, Precision, Recall and Area Under the Curve (AUC). 

Results obtained on Table 6 and Table 7 confirm the suitability of ANNs in predicting COVID -

19 subs-trains for male and female patients, respectively. Furthermore, the metric specific result 

from each dataset compared using paired t-test, depict no statistically significant difference 

between the male and female features with p values>0.05 on each metric at 95% confidence 
level. The deployed model is helpful for classifying new datasets and for building expert support 

system for efficient SARS-CoV-2 sub-strains discrimination.  

 
Table 6. Mean values and standard deviation of model performances on the male dataset 

k Classification 

Accuracy 

RMSE MAE Precision recall AUC 

3 98.5900±0.7600 0.0500±0.0200 0.0100±0.00 0.9900±0.0300 0.9700±0.0400 1.00±0.00 

5 98.5900±0.7600 0.0500±0.0200 0.0100±0.00 0.9900±0.0300 0.9700±0.0400 1.00±0.00 

10 98.5900±0.7600 0.0500±0.0200 0.0100±0.00 0.9900±0.0300 0.9700±0.0400 1.00±0.00 

15 98.5900±0.7600 0.0500±0.0200 0.0100±0.00 0.9900±0.0300 0.9700±0.0400 1.00±0.00 
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Table 7. Mean values and standard deviation of model performances on the female dataset 

k Classification 

Accuracy (%) 
RMSE MAE Precision Recall AUC 

3 98.5900±0.7600 0.0500±0.0100 0.00±0.00 0.9900±0.0100 1.00±0.01 1.00±0.00 

5 98.6100±0.7000 0.0500±0.0100 0.0100±0.00 0.9900±0.0300 1.00±0.01 1.00±0.00 

10 98.6100±0.7000 0.0500±0.0100 0.00±0.00 0.9900±0.0100 1.00±0.01 1.00±0.00 

15 98.6100±0.7000 0.0500±0.0100 0.00±0.00 0.9900±0.0100 1.00±0.01 1.00±0.00 

 

 

On Table 8, a summary of important performance metrics extracted from the literature for ANN 

with or without cross validation method, is presented to enable a comparison of our approach 

with state-of-the-art. We observe that the proposed approach performed better with very high 

classification accuracy, precision, and recall rates, indicating good generalization and correct 

prediction. Furthermore, increase in number of validation folds (k) did not improve the 

performance of the system, indicating a stable neural network. 

 
Table 8. Summary of performance metrics from previous works 

Reference k-fold 

method 

Classification 

Accuracy (%) 
RMSE Precision Recall F1-Score % AUC 

% 

[41] - 72.3300 - 0.7241 0.7167 0.72030 - 

[43] - From Asia (67.0000). 

Otherwise (86.0000) 

- - - - - 

[33] - - 0.08019 - - - - 

[38] 10-fold 76.9000 - - - - - 

[29] - 96.2000 - 0.9400 0.9600 0.95000 - 

[21] 10-fold 93.5000 - - - - - 

[36] 10-fold 90.0000 - - - - 0.9200 

 

 

Discussion  

In clinical diagnostics, image processing and computer vision are revolutionizing image-based 

diagnosis. Similarly, in the field of genetics, genomic research is poised to improve care through 

genotypes definition of other organisms. AI-based and Big Data analytics have also offered 

promising applications through processing of large and complex genome datasets. The future of 

individualized medicine has however imposed limitations, challenges and biases during 

implementation and stiffened successful deployment of AI in medical applications, particularly 

those utilizing human genetics and genome datasets. Although addressing underrepresented data 

in training datasets can resolve bias, while model retraining can assist in improving performance, 

confusable symptoms relative to the disease have posed a major bottleneck for future 

applications. This work has created a foundation for future studies on emerging infectious 

diseases by investigating the variation and functions of SARS-CoV-2 genomes for possible 

discovery of patterns exhibited by human isolates. The case of symptomatic and asymptomatic 

patients presents inconsistencies and is inconclusive in this paper. This aspect of infectious 

disease therefore demands more research efforts on prompt detection of asymptomatic cases. 
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Methods 

Data Source and Genome Sequences Selection  

Publicly available datasets of coronavirus cases around the globe deposited between December 

2019 and January 15, 2021 were excavated from GISAID (https://gisaid.org – a database of 

SARS-CoV-2 partial and complete genome compilations distributed by clinicians and 

researchers, the world over). A total of 8864 isolates (5130 male samples, and 3734 female 

samples) from different countries of the world were collected and processed, across 6 continents, 

Antarctica exempt (as no deposit of SARS-CoV-2 data was found as at the time of excavation). 

Complete genome lengths of above 29000 bp with <1% undefined or ambiguous bases (‘N’s) 
were excavated from 88 different countries (male=71 countries; female=77 countries) distributed 

across the following continents: Africa (Data S1: SupplData1.xlsx), Asia (Data S2: 

SupplData2.xlsx), Europe (Data S3: SupplData3.xlsx), North America (Data S4: 

SupplData4.xlsx), South America (Data S5: SupplData5.xlsx), and Oceania (Data S6: 

SupplData6.xslx). Table 1 documents the continent, isolate distribution by country, isolate 

distribution by gender, and total isolates excavated. Metadata on the extracted genome sequences 

consisting of the following columns (Isolate Code: Country+isolate number, Country, Accession 

Number, Gender, Age, Status, Specimen source and Additional Information) were also 

documented (see Data S7: SupplData7.xlsx). The Additional Information column holds both 

location and host information such as transmission history, treatment history, date sample was 

taken, etc. FASTA files of the genome isolates can be located at GISAID using the Accession 

Number. Specimen sources include swabs (nasal, oral, throat, nasal and oral); fluids 

(bronchoalveolar lavage, saliva, sputum, stool) and unknown. We observed that the GSAID 

database was inconsistent in rendering the patient status, as numerous incoherent annotations 

introduced inherent redundancy. To assist efficient documentation and processing of data, a 

taxonomy re-classifying the patient status is given in Fig. 1. This taxonomy subsumes the 

incoherent annotations (annotations in square text boxes) into unique specifications (annotations 

in oval shapes), for intelligent data mining48. Age range of 1 month and 107 years were 

collected.  

The presence of ambiguous nucleotides may potentially mask the genomic signature encoded 

within nucleotide frequencies. Although sequencing errors in the form of ambiguous nucleotides 

(e.g., strings of letter “N”) were noticed in the datasets, the affected nucleotide positions were 

ignored during preprocessing, such that the nucleotide positions maintained their current position 

and did not shift. A total genome sequence size of (8864 × 29000− 8864 × 30165) bps =

(257,056,000− 267,382,560) bps was excavated, processed, and stored in comma separated 

value (CSV) file. 

 
Table 1. Distribution of excavated isolates  

Continent Country Male Female Total 

Africa Algeria (3), Cameroon (1), DRC (8), Egypt (35), Gambia 

(13), Ghana (15), Madagascar (3), Morocco (6), Mozambique 

(7), Nigeria (18), Rwanda (27), Senegal (135), South Africa 

(1507), Tunisia (26) 

701 1103 1804 

Europe Andorra (1), Austria (18), Belgium (11), Bosnia and 

Herzegovina (4), Bulgaria (1), Croatia (15), Cyprus (8), 

Czech Republic (173), Denmark (3), Faroe Islands (14), 

Finland (2), France (131), Georgia (4), Germany (12), Greece 

(30), Hungary (80), Italy (561), Moldova (3), Norway (1), 

Poland (7), Portugal (2), Romania (52), Russia (125), 

802 743 1545 
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Continent Country Male Female Total 

Slovakia (4), Spain (256), Sweden (3), Switzerland (2), 

Ukraine (13). 

Asia Bahrain (1), Bangladesh (29), Cambodia (1), China (319), 

India (1598), Indonesia (91), Iran (11), Iraq (2), Israel (38), 

Kazakhstan (24), Kuwait (3), Lebanon (18), Malaysia (89), 

Mongolia (6), Myanmar (1), Nepal (1), Oman (58), Pakistan 

(4), Philippines (12), Saudi Arabia (500), Singapore (540), 

South Korea (18), Sri Lanka (29), Taiwan (64), Thailand (2), 

Turkey (134), United Arab Emirates (111), Vietnam (74). 

2618 1160 3778 

South America Argentina (2), Brazil (519), Chile (1), Colombia (186), 

Ecuador (28), Peru (2), Venezuela (3). 

394 347 741 

North America Canada (27), Costa Rica (58), Dominican Republic (6), 

Guadeloupe (17), Mexico (110), Panama (253), Saint Martin 

(8), USA (499). 

603 375 978 

Oceania Guam (2), New Zealand (2), Australia (14). 12 6 18 

 Total: Number of countries excavated per continent: Africa 

(14), Europe (28), Asia (28), South America (7), North 

America (8), Oceana (3).  

5130 3734 8864 
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Fig. 1. Reclassified GISAID COVID-19 patient status taxonomy 
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Table 2 documents patient status statistics for symptomatic and asymptomatic cases. As 

observed, there are more hospitalized cases (7580) compared to non-hospitalized cases (391), 

with more male patients, hospitalized (M=4318, F=3262). Furthermore, more males died of 

COVID-19 than females (M=541, F=248). Asymptomatic cases however represent (37/5130; 

0.72%) and (41/3734; 1.10%) of the total male and female isolates, respectively.  

 
Table 2. Symptomatic and asymptomatic statistics 

Continent 

Symptomatic   

Asymptomatic 

Hospitalized 

Not 

Hospitalized 
Deceased 

Live Released 

Recovering/ 

Recovered Mild Moderate Severe Critical 

Quarantine/ 

Isolate Home 
 

 
M F M F M F M F M  F M F M F M F M F M F M F 

Africa 599 1039 97 63 1 0 0 0 0 0 0 0 0 0 2 0 0 0 2 1 0 0 

Asia 1737 728 623 327 29 16 37 25 0 0 0 0 5 1 5 2 0 0 182 61 0 0 

Europe 441 436 34 31 35 43 122 109 32 21 35 17 4 6 1 0 25 19 37 26 32 33 

North 

America 165 123 96 61 2 0 0 0 0 0 0 0 4 3 0 0 159 120 173 62 4 6 

South 

America 100 109 68 66 27 29 0 0 0 0 0 0 7 1 0 0 33 33 147 98 1 2 

Oceania 1 2 0 0 9 4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

Total: 3043 2437 918 548 103 92 159 134 32 21 35 17 20 11 8 2 219 172 541 248 37 41 

 Total Hospitalized (M=4318; F=3262)  

 

 

Configuration of Computing Device  

A HP laptop 15-bs1xx with up to 1TB storage running on Windows 10 Pro Version 10.018326 

Build 18362 was used for processing the excavated genome sequences, algorithms/programs, 

and other ancillary data. The system had an installed memory (RAM) of 16 GB with the 

following processor configuration: 1.60 GHz, 1801 MHz, 4 Core(s) and 8 logical processors. 

Although our system performed satisfactorily and produced the desired results, higher system 

configurations would improve the computational speedup.  

 

Hierarchical Agglomerative Clustering (HAC)  

The dataset is configured with observations (nucleotides) represented in rows, while columns are 

variables (genome sequences ordered by countries). The number of columns corresponds to 

selected countries while the sequences have varying lengths.  The data table is further converted 

into as.matrix format where all values of raster layers objects have columns for each layer and 

rows for each cells with numeric (continuous) values. In order to make the variables comparable 

through the elimination of arbitrary variable units, they are transformed (standardized) such that 

they have mean of zero and standard deviation of unity49, using equation (1).  𝑥𝑥(𝑠𝑠) = 𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥)𝑠𝑠𝑠𝑠(𝑥𝑥)
,     (1) 

where 𝑠𝑠𝑠𝑠(𝑥𝑥) represents the standard deviation of the feature values. 

The procedure for implementing the HAC are as follows: Compute all the pairwise 

similarities (distances) between observations in the dataset and represent the result as a matrix. 

The resultant matrix is square and symmetric with diagonal members defined as unity–the 

measure of similarity between an element and itself. The matrix elements are computed by 

iterating over each element and calculating its (dis)similarity to every other element. Suppose 𝐴𝐴 

is a similarity matrix of size 𝑁𝑁 × 𝑁𝑁, and 𝐵𝐵, a set of 𝑁𝑁 elements. 𝐴𝐴𝑖𝑖𝑖𝑖 is the similarity between 

elements 𝐵𝐵𝑖𝑖 and 𝐵𝐵𝑖𝑖 using a specified criterion (Euclidean distance, squared Euclidean distance, 

manhattan distance, maximum distance, Mahalanobis distance, cosine similarity). The selected 
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criterion however depends on the nature of the experimental datasets. This paper adopts the 

standardized Euclidian distance criterion, as this measure is widely used and has shown good 

performance in the modeling variances in biological sequences.  

 

HAC Visualization  

After computing the distance between every pair of observation point, the result is stored in a 

distance matrix. Then, (i) every point is put in its own cluster (i.e., the initial number of clusters 

corresponds to the number of variables); (ii) the closest pairs of points are merged based on the 

distances from the distance matrix as the number of clusters reduces by 1; (iii) the distance 

between the new cluster and the previous ones is recomputed and stored in a new distance 

matrix; (iv) steps (ii) and (iii) are repeated until all the clusters are merged into one single cluster. 

The distance separating the clusters is specified via linkage methods48 which includes, 

complete, average, single, and ward. Complete linkage computes the similarities and uses the 

maximum distance between clusters for merging while calculating cluster distances and adopting 

minimum inter-cluster distance merging. Average linkage calculates the average distance 

between groups of genome sequence before merging; while the total within-cluster variance is 

minimized with ward’s method and the pair of clusters with minimum between-cluster distance 

are merged. We rely on all the four techniques for assessment and adopt the distance measure 

with the highest agglomerative coefficient for cluster formation. The resultant cluster solution is 

finally visualized as a tree structure called a dendrogram (or phylogenetic) tree. As the tree is 

traversed upwards, observations that are similar to each other are combined into branches, which 

are themselves fused at a higher height.  The height of the fusion, provided on the vertical axis, 

indicates the (dis)similarity between two observations. The higher the height of the fusion, the 

less similar the observations are. Fig. 2. show cluster plots and genomic plots generated using the 

ward minimum variance criterion. 

 

Optimal Natural Clusters Selection  

While there are natural structural entities in some datasets that provide information on the 

number of clusters or classes, others including the dataset containing genome sequences are 

structured without boundaries. Cluster validation (an unsupervised methodology aimed at 

unravelling the actual count of clusters that best describes a dataset without any priori class 

knowledge) is therefore essential. This paper adopts three widely used criteria to validate the 

number of clusters in the genome sequence dataset namely, silhouette, elbow50, and gap-statistics 

with the aim of minimizing the total intra-cluster variation (total within-cluster sum of square) as 

given in equation (2).  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�∑ 𝑤𝑤(𝑐𝑐𝑘𝑘)𝑘𝑘𝑖𝑖=1 �      (2) 

where 𝑐𝑐𝑘𝑘 is the kth cluster, and, 𝑤𝑤(𝑐𝑐𝑘𝑘) is the within-cluster variation. The total within-cluster 

sum of squares (wss) measures the compactness of the clustering solution. The following steps 

are applied to achieve the optimal clusters: (i) Compute clustering algorithm (e.g., k-means 

clustering) for different values of 𝑘𝑘; by varying 𝑘𝑘 from 1 to 10 clusters, for instance. (ii) For 

each 𝑘𝑘, calculate wss. (iii) plot the curve of wss according to the number of clusters 𝑘𝑘. (iv) the 

location of a bend (knee) in the plot is generally considered as an indicator of the appropriate 

number of clusters.  

Silhouette criterion is used to validate the clustering solution using pair-wise difference 

between the within-cluster distances, and by maximizing the value of this index to arrive at the 

optimal cluster number51. Elbow criterion plots the variance resulting from plotting the explained 
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variation as a function of the number of clusters and picking the elbow of the curve as the 

number of clusters to use. Gap-statistics compares the total intra-cluster variation for different 

values of 𝑘𝑘 with their expected values under null reference distribution of the data. The reference 

dataset is generated using Monte Carlo simulations of the sampling process.  The silhouette, 

elbow and gap-statistics methods rely on k-mean algorithm52. In this paper, the k-means 

algorithm is implemented in R script consisting of R functions for the silhouette, elbow, and gap-

statistics implementation. The decision on the choice of the optimal number of clusters is based 

on the results of the three methods. The clustering solution is visualized using the fviz_cluster 

function in R programming language for the grouping and extraction of genome sequences and 

finally represented in tree format using dendrogram. 
 

 

Genome Features Extraction 

Dinucleotide Transition Frequency: The SARS-CoV-2 reference genome53 (Severe acute 

respiratory syndrome coronavirus-2 isolate Wuhan-Hu-1, complete genome) obtained from the 

NCBI: www.ncbi.nlm.nih.gov) contains 4 conventional DNA nucleotide bases, A, C, G, T. Hence, 

there are 42 = 16 unique dinucleotide pairs that can be constructed from these bases, namely:  𝜔𝜔 = {AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT}   (4)  

If we denote the frequency of the ith dinucleotide as 𝑠𝑠𝑖𝑖, then, a genomic sequence with 16-

dimensional feature vector in the form of equation (5) are possible, 𝑓𝑓𝜔𝜔 = {dAA, dAC, dAG, … , dTT}      (5) 

The frequencies of the dinucleotide transitions are obtained by accumulating each dinucleotide 

along the extracted genome sequences. We ignore ambiguous nucleotides absent in the reference 

genome. Suppose we have 𝑚𝑚 total genome length. By allowing a single sliding iteration window 

there exists 𝑚𝑚 − 1 bubble counts. Hence, the dinucleotide frequencies of 𝑠𝑠𝑖𝑖 can be obtained by 

counting all nucleotides that correspond to 𝑚𝑚.   
 

Nucleotide Mutation Frequency: Several techniques for biological sequence alignment 

(multiple or pairwise) have flourished the literature54 and are continually being refined, but most 

of these techniques suffer from the lack of accuracy and partial interpretations. A direct pairwise 

alignment of each nucleotide with the reference genome was achieved by computing the 

recurrence of mutated nucleotides down the sequence line. For this study, the sequence of 

established SARS-CoV-2 reference genome (NC_045512; 29903 bp) sequenced in December 

2019 was used. Suppose 𝑚𝑚 represents the total length of a genome; By permitting a single sliding 

iteration window, a mutation may be any of the following pair:      

m = {AC, AG, AT, CA, CG, CT, GA, GC, GT, TA, TC, TG}     (8) 

If we denote the frequency of the ith nucleotide pair as 𝑝𝑝𝑖𝑖, then, genomic sequence pairs with 12-

dimensional feature vector in the form of equation (9) are possible, 

fm = {pAC, pAG, pAT, … , pTG}      (9) 

 

 

Unsupervised Genome Clustering  

Several mathematical techniques have been deployed for identifying underlying patterns in 

complex data. These techniques, which cluster data points differently in multidimensional space 

are important to discover fundamental patterns of gene expression inherent in data. The 

clustering technique adopted in this paper is the self-organizing map (SOM) and has been used 



35 

 

extensively in the field of bioinformatics, for visual inspection of biological processes, genes 

pattern expressions–as maps of (input) component planes analysis. SOM is a neural-network that 

projects data into a low-dimensional space55, by accepting a set of input data and then mapping 

the data onto neurons of a 2D grid (see Fig. 3). The SOM algorithm locates a winning neuron, its 

adjusting weights, and neighboring neurons. Using an unsupervised, competitive learning 

process, SOMs produce a low-dimensional, discretized representation of the input space of 

training samples, known as the feature map. During training, weights of the winning neuron and 

neurons in a predefined neighborhood are adjusted towards the input vector using equation (3), 𝑤𝑤𝑖𝑖𝑠𝑠𝑡𝑡+1 = 𝑤𝑤𝑖𝑖𝑠𝑠𝑡𝑡 + 𝑟𝑟𝑓𝑓(𝑚𝑚, 𝑞𝑞)(𝑥𝑥𝑠𝑠 −𝑤𝑤𝑖𝑖𝑠𝑠𝑡𝑡 );  1 ≤ 𝑠𝑠 ≤ 𝐷𝐷.     (3) 

where 𝑟𝑟 is the learning rate and 𝑓𝑓(𝑚𝑚, 𝑞𝑞) is the neighborhood function, with value 1 at the winning 

neuron 𝑞𝑞; and decreases as the distance between 𝑚𝑚 and 𝑞𝑞 increases. At the end, the principal 

features of the input data are retained, hence, making SOM a dimension reduction technique. The 

batch unsupervised weight/bias algorithm of MATLAB (trainbu) with mean squared error 

(MSE) performance evaluation, was adopted to drive the proposed SOM. This algorithm trains a 

network with weight and bias learning rules using batch updates. The training was carried out in 

two phases: a rough training with large (initial) neighborhood radius and large (initial) learning 

rate, followed by a finetuned training phase with smaller radius and learning rate. The rough 

training phase can span any number of iterations depending on the capacity of the processing 

device. In this paper, we kept the number of iterations at 200 with initial and final neighborhood 

radius of 5 and 2, respectively, in addition to a learning rate in the range of 0.5 and 0.1. The fine 

training phase also had a maximum of 200 epochs, and a fixed learning rate of 0.2.  Selection of 

best centroids of the genome feature within each cluster was based on the Euclidean distance 

criterion. The algorithm configures output vectors into a topological presentation of the original 

multi-dimensional data, producing a SOM in which individuals with similar features are mapped 

to the same map unit or nearby units, thereby creating smooth transition of related genome 

sequences to unrelated genome sequences over the entire map.  

 

Pattern Correlates Generation: Comparing component planes help detect similar patterns in 

identical positions indicating correlation between the respective components. Local correlations 

can also occur if two parameter planes are similar in some regions. Both linear and non-linear 

correlations including local or partial correlations between variables are possible. We achieve the 

correlation hunting56 automatically, by decoupling the SOM correlations, to explore patterns 

among the pairwise genome samples for distinct identification of transmission pathways or 

routes. The extracted correlation matrices are pairwise relations of the viral sub-strains’ 

transmissions. 

 

Cognitive Knowledge Extraction: Knowledge mining has served huge benefits for quick 

learning from big data. We apply Natural Language Processing of the genome datasets to extract 

knowledge of similar strains of the virus. A simple iteration technique is imposed on the SOM 

isolates (𝑚𝑚 = 1,2,3, … ,𝑚𝑚), where 𝑚𝑚 is the maximum number of isolates, as follows: For each 

isolate pattern, compile similar patterns with the rest of the isolates (i.e., 𝑚𝑚 + 1, 𝑚𝑚 + 2, … ,𝑚𝑚). 

Concatenate compiled isolate(s) into a list (𝑗𝑗1, 𝑗𝑗2,…, 𝑗𝑗𝑚𝑚) where 𝑗𝑗 is an element of the list. Dump 

the compiled list into 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝(𝑘𝑘𝑖𝑖 ∈ 𝑗𝑗1, 𝑗𝑗2,…, 𝑗𝑗𝑚𝑚).   

 

Neural Network Design: Artificial Neural Networks (ANNs) are networks inspired by the 

neurological structure of the human brain. They are complex computer code written with simple, 
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highly interconnected processing elements inspired by human biological brain structure for 

simulating the human brain and processing data/information models. Although five core ANN 

areas have been explored, namely: Multi-Layer Perceptron, Radial Basis Network, Recurrent 

Neural Networks, Generative Adversarial Networks, and Convolutional Neural Networks; this 

paper adopts the Multi-Layer Perceptron model (MLP)–a class of feedforward ANNs, with at 

least three layers of nodes: an input layer, a hidden layer, and an output layer (Fig. 4). Except for 

the input nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a 

supervised learning technique called backpropagation57 for training. The output classes (C1-C7) 

were derived from the sub-strains discovered from learning the SOM.  

 

  
  

    (a) Cluster plot–male    (b) Genomic tree–male   

  
(c) Cluster plot–female    (d) Genomic tree–female   

Fig 2. Cluster plots and genomic trees. Notice 2 distinct groups (or clusters) A and B separated between closely 

similar and dissimilar isolates, with the A group having heavy isolates concentration than the B group. For males (Fig. 

2b), group A consists of 68 isolates with 7 sub-groups as follows: 1 (CHL, SAU); 2 (CHN, TUN, KAZ, SGP, POL, 

FRA, USA, GUM, ESP, ROU); 3 (ITA, MEX, TUR, ZAF, FRO, NZL, PER, RUS, AUS, CRI); 4 (SVK, IRQ, CZE, 

HUN, HRV, OMN, CAN, ARG, CHE, EGY, KWT, SOU, MYS, SAI, Iran, AUT, VNM, GMB, ISR, MNG, GEO, 

UKR, DZA, BEL, MAR, BIH, GLP); 5 (ECU, ARE, BGD, TWN); 6 (CMR, NGA, IDN, LBN, BRA, MOZ, IND, 

SEN, COL, PAN, GRC, LKA, VEN). Group B consists of 1 sub-group as follows: 1 (DOM, GHA, RWA). For 

Females (Fig. 2d), group A consists of 63 isolates with 6 sub-groups as follows: 1 (TWN, KAZ, SAU); 2 (AUT, DEU, 

FRA, TUN, ROU, USA); 3 (LBN, GMB, ECU, AUS, IND, CRI, ARE, ESP, ZAF, ITA, MEX); 4 (BIH, GEO, BEL, 

NZL, CZE, HUN, MDG, FIN, ARG, TUR, FRO, OMN, CAN, GLP, SAI, EGY, MYS, CHE, UKR, SOU, RUS, PAK, 
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MDA, SVK, ISR, VNM, NGA, BGD, BHR, IRQ, Iran, DZA, VEN); 5 (DOM, IDN, CHN, SGP); 6 (SEN, PAN, BRA, 

COL, LKA, GRC). 

 

 
 

 

 
Fig. 3. SOM showing the map topology and interactions between nodes. Each neuron is assigned a vector of 

weights (𝑤𝑤 = 𝑤𝑤𝑖𝑖1,𝑤𝑤𝑖𝑖2, . .𝑤𝑤𝑖𝑖𝑖𝑖) with dimension similar to the input vector 𝑚𝑚 (𝑚𝑚 = 1, 2, … , 𝐿𝐿); where 𝐿𝐿 is the total number 

of neurons in the network. The input nodes have 𝑝𝑝 features, and the output nodes, 𝑞𝑞 prototypes, with each prototype 

connected to all features. The weight vector of the connections consumes the prototype of each neuron and has same 

dimension as the input vector. SOMs differ from other artificial neural networks as they apply competitive learning, 

against error correction learning such as backpropagation, and the fact that they preserve the topological properties of 

the input space using a neighborhood function. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 4. ANN architecture. A 3-layered network, with one output layer and one hidden layer. The input layer 

consumes the knowledge-enriched genome datasets comprising of extracted patterns of SOM learning of the 

respective genome isolates and additional knowledge sieved from analysis of the genome sequences (i.e., number of 

natural clusters discovered from the genomic tree, discovered SOM sub-strain clusters, and link sequences derived 

from cognitive maps of the various isolates) 
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Figures

Figure 1

Work�ow describing the proposed hybrid approach. The work�ow begins with the excavation of FASTA
�les of human SARS-CoV-2 genome sequences from GISAID. These �les were stripped and processed
into a genome database (DB) as multiple columns of nucleotide sequence. AI/ML techniques were then



applied to extract knowledge from the genome datasets as follows: Using ML techniques, compute
dis(similarities) scores between the various pairs of genome sequences and obtain a genomic tree of
highly dis(similar) isolates grouped in the form of a dendrogram/phylogenetic tree. Determine the optimal
number of natural clusters–to provide additional knowledge for supervised learning. Separate the viral
sub-strains using SOM component planes–for possible transmission pathway/pattern visualization.
Perform nucleotide alignment of the entire genome sequences (owing to varying sequence lengths of the
different genome isolates, a cutoff at the last nucleotide of the genome isolate or the reference genome
serves as the maximum pair for comparison), remove duplicate columns while imposing a similarity
threshold–to yield unique genome sequences. Extract genome features by computing dinucleotide
transitions and mutation frequencies. Generate cognitive map–for intelligent sub-strains prediction. Label
classi�cation targets of extracted features using derived SOM clusters and cognitive map. Learn and
predict new/emerging sub-strains using ANN with k-fold validation method.



Figure 2

Base pair transitions in SARS-CoV-2 genomes for male and female isolates. Thick arrows indicate
transition, while dotted arrows represent transversion. Looped (dotted) arrows represent same base
transition. Inscriptions on/near the arrows represent transition/transversion frequencies for male and
female isolates.



Figure 3

Base pair changes in SARS-CoV-2 genomes for male and female isolates. Thick arrows indicate
transitions, while dotted arrows represent transversions. Inscriptions on/near the arrows represent
transition frequencies for male and female isolates.



Figure 4

SOM component planes visualization for African isolates. Component planes 1 (encircled) represent the
SARS-CoV-2 reference genome. The male and female isolates have 2 SOM maps each with country and
(component plane map position(s)) distributed as follows: Male – (a) Map 1: Cameroon (2), Ghana (3-
15), South Africa (16-200). Map 2: South Africa (2-63), Gambia (64-66), Algeria (67), Egypt (68-81),
Tunisia (82-90), Morocco (91-92), Mozambique (93-96), Nigeria (97-107), Senegal (108-156), Rwanda
(157-173). Female – (b) Map 1: Ghana (2), South Africa (3-240). Map 2: South Africa (2-186), Gambia
(187), Algeria (188), Egypt (189-194), Tunisia (195-203), Madagascar (204), Nigeria (205-208), Senegal
(209-237), Rwanda (238-239).

Figure 5

SOM component planes visualization for Asian isolates. Component planes 1 (encircled) represent the
SARS-CoV-2 reference genome. The male and female isolates have 2 SOM maps each with country and
(component plane map position(s)) distributed as follows: Male – (a) Map 1: Singapore (2-18), Iraq (19),
China (20-71), Kuwait (72-74), Malaysia (75-94), Sri Lanka (95-109), Bangladesh (110-119), India (120-
249). Map 2: India (1-145), South Korea (146-149), Kazakhstan (150), Indonesia (151-164), Turkey (165-
180), Iran (181-184), Taiwan (185-191), Vietnam (192-200), Israel (201), Saudi Arabia (202-221),
Mongolia (222-224), Oman (225-231), Lebanon (232-240), United Arab Emirates (241-251). Female – (b)
Map 1: Singapore (205), Iraq (6), China )7-54), Malaysia (55-79), Sri Lanka (80-85), Bangladesh (86-90),
India (91-249). Map 2: India (2-129), South Korea (130-131), Kazakhstan (132-136), Indonesia (137-149),



Turkey (150-159), Iran (160-162), Taiwan (163-176), Vietnam (177-193), Israel (194-197), Philippines (198-
199), Saudi Arabia (200-217), Pakistan (218-219), Oman (220-227), Lebanon (228-233), United Arab
Emirates (234-247), Bahrain (248).

Figure 6

SOM component planes visualization for European isolates. Component planes 1 (encircled) represent
the SARS-CoV-2 reference genome. The male and female isolates have 2 SOM maps each with country
and (component plane map position(s)) distributed as follows: Male – (a) Map 1: Switzerland (2), Faroe
Island (3-7), Belgium (8-9), Poland (10-23), Greece (14-29), Romania (30-43), Spain (44-102), Georgia
(103-105), Italy (106-161). Map 2: Italy (2-59), Russia (60-73), France (74-112), Slovakia (113), Hungary
(114-118), Cyprus (119), Ukraine (120-125), Sweden (126), Austria (127), Croatia (128-129), Bosnia and
Herzegovina (130), Czech Republic (131-152). Female – (b) Map 1: Switzerland (2), Faroe Islands (3-6),
Belgium (7-8), Greece (9-19), Germany (20-26), Romania (27-47), Spain (48-95), Georgia (96), Italy (97-
161). Map 2: Italy (2-28), Russia (29-55). France (56-87), Slovakia (88-90), Moldovia (91-93), Hungary (94-
100), Ukraine (101-104), Austria (105), Finland (106), Bosnia and Herzegovina (107), Czech Republic
(107-123).

Figure 7



SOM component planes visualization for North American isolates. Component planes 1 (encircled)
represent the SARS-CoV-2 reference genome. The male isolates have 2 SOM maps while the female
isolates have 1 map, each with country and (component plane map position(s)) distributed as follows:
Male – (a) Map 1: Mexico (2-46), USA (47-150). Map 2: USA (2-23), Panama (25-102), Saint Martin (103-
105), Guadeloupe (106-109), Canada (110-112), Costa Rica (113-145), Dominican Republic (146). Female
– (b) Map 1: Mexico (2-34), USA (35-106), Panama (107-165), Saint Martin (166-168), Guadeloupe (169-
176), Canada (177-182), Costa Rica (183-196), Dominican Republic (197-200).

Figure 8

SOM component planes visualization for South American and Oceanian isolates. Component planes 1
(encircled) represent the SARS-CoV-2 reference genome. For South American isolates, the male isolates
(a) and female isolates (b) have 1 SOM map each. For Oceanian isolates, the male and female isolates
(c) are condensed into 1 map, each with country and (component plane map position(s)) distributed as
follows: Male – (a) Map 1: Venezuela (2-3), Chile (4), Argentina (5), Colombia (6-62), Ecuador (63-72),
Peru (73), Brazil (74-186). Female – (b) Venezuela (2), Argentina (3), Colombia (4-47), Ecuador (48-50),
Brazil (51-154). Male and female – (c) Map 1: Male – Australia (2-7), Guam (8-9), New Zealand (10).
Female – Australia (11-15), New Zealand (16).
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